[grfia]
+ General Information
+ Members
+ Research
+ Intranet

2021

[WORKSHOP 2021]

15th workshop gRFIA

9th Music Encoding Conference (MEI 2021)

[]

Alicante, July 19-23

13th international workshop on Machine Learning and Music

[]

(online) September 18, 2020

Project: Multimodal Transcription of Music Scores

Go to the projects page

In this page: general info : members : partners : links : publications

General info:

Project Co-ordinators: Calvo Zaragoza, Jorge; Pertusa Ibáñez, Antonio Jorge
Funding: Ministerio de Ciencia e Innovación
Reference: PID2020-118447RA-I00
Budget: 193.237 €
Period: from 2021-09-01 to 2024-08-31
Web: https://sites.google.com/view/multiscore-project
Summary:

Optical Music Recognition (OMR) and Automatic Music Transcription (AMT) are the research fields that investigate how to computationally transcribe music score images and audio recordings, respectively, into digital scores. After decades of research, neither AMT nor OMR have lived up to their commitment and remain open challenges, with plenty of room for improvement. MultiScore seeks to unlock the current situation by levering vast amounts of annotated data to apply state-of-the-art technologies in deep neural networks, and also to find intersections and synergies in both research lines that have previously been addressed separately.

Members:

Partners:
Links:
Publications:

  1. Mas-Candela, E.; Ríos-Vila, A.; Calvo-Zaragoza, J.
    "A First Approach to Image Transformation Sequence Retrieval"
    Iberian Pattern Recognition and Image Analysis, IbPRIA 2022., pp. 321-332, Aveiro, Portugal (2022)
    : bibtex : more info
  2. Desmond, K.; Pugin, L.; Regimbal, J.; Rizo, D.; Sapp, C.; Thomae, M. E.
    "Encoding Polyphony from Medieval Manuscripts Notated in Mensural Notation"
    Music Encoding Conference Proceedings 2021, ISBN: 978-84-1302-173-7, pp. 197–219 (2022)
    : bibtex : more info
  3. Alfaro-Contreras, M.; Valero-Mas, J.J.; Iñesta, J.M.; Calvo-Zaragoza, J
    "Insights into transfer learning between image and audio music transcription"
    Sound and Music Computing Conference (2022)
    : bibtex : more info
  4. Alfaro-Contreras, M.; Valero-Mas, J.J.; Iñesta, J.M.; Calvo-Zaragoza, J
    "Late multimodal fusion for image and audio music transcription"
    arXiv (2022)
    : bibtex : more info
  5. de la Fuente, C.; Valero-Mas, J.J.; Castellanos, F.J.; Calvo-Zaragoza, J.
    "Multimodal Image and Audio Music Transcription"
    International Journal of Multimedia Information Retrieval, vol. 11, pp. 77-84 (2022)
    : bibtex : more info
  6. Arroyo, V.; Valero-Mas, J. J.; Calvo-Zaragoza, J.; Pertusa, A.
    "Neural audio-to-score music transcription for unconstrained polyphony using compact output representations"
    Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapur, Singapur (2022)
    : bibtex : more info
  7. Ríos-Vila, A; Iñesta, J.M; Calvo-Zaragoza, J
    "On the Use of Transformers for End-to-End Optical Music Recognition"
    Iberian Pattern Recognition and Image Analysis, IbPRIA 2022., ISBN: 978-3-031-04880-7, pp. 470-481, Aveiro, Portugal (2022)
    : bibtex : more info
  8. Castellanos, F. J.; Garrido-Munoz, C.; Ríos-Vila, A.; Calvo-Zaragoza, J.;
    "Region-based Layout Analysis of Music Score Images"
    arXiv (2022)
    : bibtex : more info
  9. Rosello, A.; Ayllon, E.; Valero-Mas, J.J.; Calvo-Zaragoza, J.
    "Test Sample Selection for Handwriting Recognition Through Language Modeling"
    Pattern Recognition and Image Analysis - 10th Iberian Conference, IbPRIA 2022, Aveiro, Portugal, May 4-6, 2022, Proceedings (2022)
    : bibtex : more info
  10. Ríos-Vila, A.; Calvo-Zaragoza, J.; Iñesta, J.M.
    "CTC-based end-to-end approach for full page Optical Music Recognition"
    Proceedings of the 14th Machine Learning and Music Workshop, pp. 11 (2021)
    : bibtex : more info : Online proceedings : Proceedings online
  11. Calvo-Zaragoza, J.; Pertusa, A.; Gallego, A.-J.; Iñesta, J.M.; Mico, L.; Oncina, J.; Perez-Sancho, C.; Ponce de León, P.J.; Rizo, D.
    "MultiScore Project: Multimodal Transcription of Music Scores"
    Proceedings of the 14th Machine Learning and Music Workshop, pp. 3 (2021)
    : bibtex : pdf : more info

Valid XHTML 1.0!Valid CSS!