[grfia]
+ General Information
+ Members
+ Research
+ Intranet

2021

[WORKSHOP 2021]

15th workshop gRFIA

9th Music Encoding Conference (MEI 2021)

[]

Alicante, July 19-23

13th international workshop on Machine Learning and Music

[]

(online) September 18, 2020

Publications:

All

  1. Alashhab, Samer; Gallego, Antonio-Javier; Pertusa, Antonio; Gil, Pablo
    "Precise Ship Location With CNN Filter Selection From Optical Aerial Images"
    IEEE Access, vol. 7, pp. 96567-96582 (2019)
    : bibtex : URL
    Abstract:

    This paper presents a method that can be used for the efficient detection of small maritime objects. The proposed method employs aerial images in the visible spectrum as inputs to train a categorical convolutional neural network for the classification of ships. A subset of those filters that make the greatest contribution to the classification of the target class is selected from the inner layers of the CNN. The gradients with respect to the input image are then calculated on these filters, which are subsequently normalized and combined. Thresholding and a morphological operation are then applied in order to eventually obtain the localization. One of the advantages of the proposed approach with regard to previous object detection methods is that it is only required to label a few images with bounding boxes of the targets to be trained for localization. The method was evaluated with an extended version of the MASATI (MAritime SATellite Imagery) dataset. This new dataset has more than 7 000 images, 4 157 of which contain ships. Using only 14 training images, the proposed approach achieves better results for small targets than other well-known object detection methods, which also require many more training images.

@article {
 author = "Alashhab, Samer; Gallego, Antonio-Javier; Pertusa, Antonio; Gil, Pablo",
 title  = "Precise Ship Location With CNN Filter Selection From Optical Aerial Images",
 issn = "2169-3536",
 journal = "IEEE Access",
 pages = "96567-96582",
 volume = "7",
 year = "2019"
}
Resources associated with this publication
Valid XHTML 1.0!Valid CSS!