[grfia]
+ General Information
+ Members
+ Research
+ Intranet

1st International Workshop on Reading Music Systems

[WORMS]

Paris, September 20

PRAIg '18 / +pics

[]



11th international workshop on Machine Learning and Music

[]

Stockholm: 13-15th July 2018

Publications:

All

  1. Pertusa, A; Gallego, A.-J; Bernabeu, M.
    "MirBot: A collaborative object recognition system for smartphones using convolutional neural networks"
    Neurocomputing, vol. 293, pp. 87-99 (2018)
    : bibtex : Preprint : URL
    Abstract:

    MirBot is a collaborative application for smartphones that allows users to perform object recognition. This app can be used to take a photograph of an object, select the region of interest and obtain the most likely class (dog, chair, etc.) by means of similarity search using features extracted from a convolutional neural network (CNN). The answers provided by the system can be validated by the user so as to improve the results for future queries. All the images are stored together with a series of metadata, thus enabling a multimodal incremental dataset labeled with synset identifiers from the WordNet ontology. This dataset grows continuously thanks to the users' feedback, and is publicly available for research. This work details the MirBot object recognition system, analyzes the statistics gathered after more than four years of usage, describes the image classification methodology, and performs an exhaustive evaluation using handcrafted features, neural codes, different transfer learning techniques, PCA compression and metadata, which can be used to improve the image classifier results. The app is freely available at the Apple and Google Play stores.

@article {
 author = "Pertusa, A; Gallego, A.-J; Bernabeu, M.",
 title  = "MirBot: A collaborative object recognition system for smartphones using convolutional neural networks",
 issn = "0925-2312",
 journal = "Neurocomputing",
 pages = "87-99",
 volume = "293",
 year = "2018"
}
Resources associated with this publication
Valid XHTML 1.0!Valid CSS!