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ABSTRACT

The regular languages are commonly used as models in Syntactical Pattern
Recognition tasks. A wide variety of inference algorithms have been developed to leam
these models but usually these algorithms only make use of positive information,
eventhough the negative is also available. In this paper we present an algorithm that
always obtains a deterministic automaton compatible with the positive and negative dala,
that can identify in the limit any regular language and works in a polynomial time. Some
experiments are performed to show its behaviour.

1. Introduction

One of the more deeply studied problems in the field of the inductive learningl‘2 is
the regular language inference problem described by means of finite automata. The interest
in this problem is because of the position of these languages in the Chomsky hierarchy.
The regular language family is the simplest and best known, it is because of this that it can
be used as the starting point to study larger families. At the same time the learning
techniques developed for this problem can be extended to other domains. On the other
hand, relating with the Syntactical Pattern Recognition framework (SPR), some tasks can
be suitably represented by means of regular languages. A wide variety of inference
algorithms have been applied to learn models™ """ However, the inference methods used
in SPR learn using positive information only.

The only algorithm in existence capable of inferring correctly the regular language
family (using positive and negative data) is the one proposed by Gold". This algorithm will
not assure the data consistence (when there is not enough data) and therefore it can not be
used in SPR tasks where the lack of data is usual.

In this paper two algorithms are described. The first one was previously presented
in” and”. This algorithm is capable of inferring the regular language family (using positive
and negative data), always produces a (normally very small but possibly no deterministic)
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automaton compatible with the data, and works in a polynomial time. The second one is an
improvement on the first, it has similar characteristics but always produces a deterministic
automaton.

These algorithms are based on a state clustering. It is well known that if S,isa
structurally complete sample of a regular language L (all the transitions on the canonical
automaton of the language L (A(L)) are used in the acceptation of the strings in 8) there
exists a partition % on the state set of the prefix tree acceptor of Sy, PT(S,) such that
PT(S)/r is isomorphic to A(L). The words in Z*-L allow us to reject some partitions,
then the inference problem can be put as a guided search in the reticule of all the possible
partitions. Unfortunately the search space grows exponentially with the size of the state set
in PT(S) and then with the size of S,. In place of the exhaustive search, these algorithms
try to merge pairs of states in PT(S,) according to an order and only does it if the resulting
automaton rejects all the negative sample.

These algorithms, as the one proposed by Gold have the disadvantage of not being
incremental. The Gold algorithm has a drawback, it can not generalize unless the sample
has a characteristic set. On the other hand our algorithm is free of this inconvenience and
then it is better to use in learning tasks.

2. Mathematical Background and Notation

Let Z be a finite set or alphabet, and L* the free-monoid over L. For any string
xeZ*, Ixl denotes the length of x and X is the symbol for the string of length zero. For
every x,yeX , xy is the concatenation of x and y, with xyl = It + yl. Letu =vw be a
string, we say that v (w) is a prefix (suffix) of u. A language is any subset of T*,

IfL is a language over Z, we define the set of prefix over L by:

Pr(L)={ueX® | 3 veXZ* uvel }
and the set of tails of # in L by:
Tp@) ={veX* | wel )

A finite automaton A (FA) is defined by a five-tuple (Q,X,8,90.F) where Q is a finite
set of states, gg is the initial state, FCQ is the set of final states and & Qxz-2Qis a
partial function. We say that ¢ is an a-successor of pIf p e d(g,a.). We say that p is a
brother of q if there exists an r such that p and g are a-succesors of r. A is deterministic if
for all ge Q and for all ae X, 8(¢.a) has at the most one element. The language accepted by
A is denoted by L(A). A language is regular iff it is accepted by a FA.

If A =(Q.X,8,99,F) is a FA and 7 is a partition of Q, we denote by B(g.7) the only
block that contains g and we denote the quotient set { B(g,n) | q€Q } as Q/m. Given a FA
A and a partition 7 over Q, we define the quotient automaton A/7 as:

Aln = (m.2,8',B(gp,7).{Be Q/n| BAF »3))

where &' is defined as:

VB.B'eQ/7, Vae L, B'ed'(B,a) if 3¢.q'€Q, g B, g'= B’ : q'€d(q.a).

Given A and mover , we have that L(A) c L(A/7).
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Given a DFA A = (Q,L,8,99.F) L(A)=L, the partition m[ is defined as
B(q.n1,)=B(q',71 ) iff Yxe =* 0(g,x) € Fiff 8(¢'x) € F defines an A/ny_that is the DFA
that has the minimum number of states and accepts L{A); this automaton is called the
canonical automaton of the language L and we denote it by A(L).

Given L, we can also define the canonical automaton A(L) = (Q,Z,8,4¢.F) as:

Q={T W) | ue Pr(L) }: qp=TL(A); F={ T (w) | ucL B
(T (w).a) = T1 (ua) where uuae Pr(L)

A Sample S of a language L is a finite set of words that we can represent as
S=(84.5.) where S, is a subset of L (positive sample) and S_ is included in the
complementary language of L (negative sample).

Let S, be a positive sample from a regular language L, we say that S is structurally
complete if all the transitions on A(L) are used in the acceptation of the strings in S.,.

Let S, be a positive sample from a regular language L, we can define the prefix tree
acceptor of S as PT(S,) = (Pr(5,).2.5, A,S,.) where & is defined as: 8(u,a) = ua where
u, ua € Pr(S,). This automaton only accepts the strings belonging to S.

It is well known that if S, is a structurally complete sample of a regular language L,
then there exists a partition 7 on the states of PT(S,) such that PT(S)/r is the A(L).

We denote < as the lexicographic order in Z*. Given a positive sample S, and a
partition 7t over the set of all string prefixes of the sample, we can define an order between
the blocks of the partition.

Let S be a positive sample, let 7 be a partition over Pr(S,.) and let Bj.Bj be two
blocks of %. we are going to say that Bj < B; iff some ueB; : V ve By, u < v exists.

Given a partition & over Pr(S,) and given Bi,Bjen we define merge(m,B;,B j) as:

merge(r.B;Bj)={ Bex | B#Bj, B#B;} U (B;UB;)

In the rest of the paper we assume that tlzne subindex of a block is the same as the
subindex of the smallest string belonging to the block. If a block only has one string we
will represent it indistinctly as a block or as a string.

3. The Automaton Learning Algorithm

Let S, be a set of strings belonging to an unknown regular language L, and let S. be
a set of strings not belonging to L. If S, is big enough we can suppose that S, is
structurally complete and then, there exists a partition m¢ over the set of states of the prefix
tree acceptor of S, (PT(S+)) such that, if a merge is performed on all the states belonging
to the same block, we obtain the canonical automaton of the regular language L.

The proposed algorithm consists of a procedure that starts building the prefix tree
acceptor of the positive sample (S,), and then proceeds by orderly trying the merge of
states of PT(S+). At the end of the process we expect the obtained automaton to accept the
positive sample and to reject the negative. It is obvious that the PT(S,) accepts the positive
sample and rejects the negative but each time we perform a merge we are increasing the
language accepied by the automaton, then it is possible that the automaton accepts a
negative string. It can be shown’ that if both positive and negative samples are big enough,
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this only happens in the algorithm if and only if the two merged states belong to ditfercnt
blocks of the partition mc. Then, when we have enough information, all the states are
represented in the prefix tree acceptor, and in the algorithm we are merging all the
compatible states, then the algorithm produces the partition 7tc. It also can be sown [Oncina
and Garcia,92] that for each regular language there exists a positive and negative sample
(that grows with the square of the size of the canonical automaton of the language) such
that if this sample, possibly increased with more strings, is supplied to the algorithm then
the resulting automaton is isomorphic to the canonical automaton of the regular language.
Given a complete sample S = (S,4,S.) of an unknown regular language L, this
algorithm produces an automaton hypothesis PT(S)/m; where 7t; can be recursively
calculated as:
(We suppose that the prefixes are indexed in
ng = Pr(S4)={ug. .., ur } lexicographical order, then un=A)
if 3 B, B'e my.: B and uy are a-successor of B’
ny = merge( ®y.1,Bup) and B is the lower a-successor of B' such that B<uy
and S.AL(PT(S+Vmerge(n,.1,B,up)) =&
if 3 Be my.1: B is the lower block in 7y, _1 such that
i, = merge( Ty 1,B.up ) B<u, and S.AL(PT(S4)/merge(n,,_1.B.un)) = D.
otherwise
Tn = Tp-1

The order in which the merge operations are performed is very important because it
assures that the sub-automaton formed by the explored states is isomorphic to a sub-
automaton of the canonical automaton. As it can be seen in the algorithm, the blocks
(states) are selected in lexicographical order (for up to u;) and the merging is performed
with smaller brother blocks (B<up) if the resulting automata rejects the negative sample
(S_NL(PT(S+)/merge(my_1,B.up)) = @). If it is not the case, this step is repeated but now
using all the biocks that are smaller than up. If this last step was not successful the partition
remains unchanged.

The algorithm must explore all the blocks of the initial partition (<iIS4I+1), for each
block the number of merges that we must try is always lower than [IS+/! (there can not be
more than 1IS,|l states lower than ug) and for each merge we must verify that
S_NL(PT(S4)/ny) = . This has a computational cost of O(nilS.Il) (the automaton can be
non deterministic) where n is the number of states of PT(S4)/np and this is always lower
than the number of states of the prefix tree acceptor that is bounded by IS, + 1. Then the
complexity of the algorithm is OIS I3IS.II).

Using S4+={011, 101} as the positive sample and S_={1, 01} as the negative sample
fig. 1 illustrates the automata corresponding to some key steps of the algorithm. First the
algorithm builds a partition with all the prefixes of the positive sample then mo={A, 0, 1,
01, 10, 011, 101}, the corresponding automaton (the prefix tree acceptor) is shown in fig.
1(a). Next, as the state O has not any brother, it tries to merge the blocks A and O (fig.
1(b)), as the induced automaton rejects the negative sample (S_NL(PT(S+)merge(n(.A0))
= &) then m1={{A,0}, 1, 01, 10, 011,101 }. Now it is the turn of the state 1, it has not
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any smaller brother then it tries a merge with the state A, but the resulting automaton
accepts the negative string 01, then ntp=n. To build n3 it looks for smaller brothers of the
state 01, it finds the state 1 and as the automaton resulting from the merge (fig. 1(c)) of
these two states rejects the negative sample then m3={{A,0}, {1, 01}, 10, 011,101}. In
the next step it tries to merge the states A and 10 without success (the negative sample 1 is
accepted) but merging the states 1 and 10, we obtain a suitable automaton (fig. 1(d)) then
n4={{A.0}, {1, 01, 10}, 011,101}. Continuing with the algorithm the states 011 and 101
are merged with the state A and we obtain the partition ng={{A,0, 011, 101}, {1, 01,
10}} fig. 1(e). .

;
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Fig. 1. Some key steps of the first algorithm

This algorithm has a slight disadvantage, it can produce a non-deterministic
automaton when the sample is not big enough, although we can easily avoid it. We know
that the canonical automaton is deterministic, then when in the algorithm we try to merge
two states and the resulting automaton is not deterministic, we can merge the states that
cause this non-determinism before testing if the negative samples are rejected. If the first
automaton rejects the negative sample it is because the two states are equivalent (when we
have enough information) and then, as the canonical automaton 1s deterministic, all the
states that cause non-determinism are going to be merged in later steps. When we perform
these additional merges we are increasing the language accepted by the automaton, then if
the first automaton accepts a negative sample the last must do so too.

We go on defining the operation D that transforms, merging states, a non
deterministic automaton into another deterministic automaton.

D(PT(S+)/w) = D(PT(S...)/merge(:rc,Bi,Bj)) if 3B;, Bj, By: B;, Bj are a-successors

of Bg and B; # B;

D(PT(S+)/m) = PT(S4)/w otherwise
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Now we define a new merge operation, the deterministic merge (DMerge). This
operation produces a partition such that:

PT(S+)/DMerge(rn, BI,B ) = D(PT(S4)/merge(n.B;.B

(DMerge(r, BI,BJ) 18 the partition that induces over tllnc prefix tree acceptor PT(S4)
the construction of the deterministic automaton resulting from D(
PT(S+)/merge(1:,B1,B Y.

In the worst case it is possible that the only way to transform the non-deterministic
automaton to a deterministic one will be by merging all the states. Then this function has a
computational cost of O(n), where n is the number of states of the automaton. .

The modified algorithm can be defined in the following way:

Given a complete sample S = (S4,5.) of an unknown regular language L, this
algorithm produces an automaton hypothesis PT(S})/n; where n; can be recursively
calculated as:

no=Pr(S4+)={ ug....ur}

Ty = Rp-1 if 3Bem,.1: uye B and B<uy

i, = DMerge( tn_1.B,up) if it is not the previous case and 1Ben,_1: B

is the smaller block such that B<up and
S.NL(PT(S+)YDMerge(n,.1,B,up)=2.

Ty = Rn-1 otherwise

We can observe that the first rule of the previous algorithm 1s not valid now because
all the automata that we obtain are deterministic and then no state has a brother. The first
rule of this algorithm is for skipping a step if the state being treated was previously merged
to another block. In the second rule we have to try to merge the present state with all the
previous ones then the number of DMerge functions that are executed is bounded by the
number of states (<IIS, ). Each DMerge has a cost proportional to the number of states
(O(l1S41)) and for each one the cost to know if S.NL(PT(S+)/1ny)= is OISy (the
automaton is deterministic). Then the cost of the second step is O( (ISHIHIS. IS ). This
step can be repeated for all the states of the prefix tree acceptor the complexity of the
algorithm is O (IS4 I+IS.INIS12 ).

Using S4={011, 101} as the positive sample and S.={1} as the negative sample,
fig. 2 illustrates the automata corresponding to some key steps of the algorithm (we can see
that, with this negative sample, the previous algorithm obtains a non deterministic
automaton). As in the previous case, at the beginning, the algorithm builds a partition with
all the prefixes of the positive sample then mo={A, 0, 1, 01, 10, 011, 101}, the
corresponding automaton (the prefix tree acceptor) is shown in fig. 2(a). Next, it tries to
perform a DMerge between the blocks A and 0. To do this we must first make a merge
operation between these two states. The automaton induced by this partition is shown in
figure 2(b). Now we must apply the D operation over this automaton, as there exists two
brother blocks, 1 and 01, we must make a merge operation between them (figure 2(c)) and
we apply again the D operation. As this automaton is deterministic, this operation ends and
the partition that results from the DMerge is a partition ®y such that PT(S+)/ny is the
automaton of the figure 2(c), then my={{A,0},{1, 01}, 10, 011,101}. And now is when
we must verify that S.NL(PT(S4+)/n1)=E, that is, if the automaton rejects the negative
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sample. In the next step we try a DMerge of the blocks A and 1, and we obtain the
automaton shown in figure 2(f) passing by the automata shown in the figure 2(d) and 2(e).
This automaton accepts the negative sample 1, then, as there are not more blocks for trying
to merge in the partition and applying the third rule of the algorithm, my=nry. In the
following steps we try a DMerge between A and 10 without success because the resulting
automaton accepts the negative sample 1. Next we try 1 and 01 and we obtain the
automaton of the figure 2(h). Finally, we DMerge the states A and 011 obtaining the
automaton of the figure 2(1).

, O—O0—@©

(& (h)

Fig. 2. Some key steps of the second algorithm
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4. Experiments

Theoretical properties assessing the adequate behaviour in the limit (convergence) of
the inference algorithm have been discussed in the previous section. However, from a
Pattern Recognition viewpoint, results concerning finite data behaviour seem to be of
greater interest. To obtain such results a number of experiments have been carried out.
Some of these experiments and their results will be presented in this section.

The chosen tasks were to recognize if a decimal number is divisible by a constant
(from two to ten). For each of the tasks a series of increasing-size random training-sets,
each inciuding the previous one, where drawn from a uniform distribution in the range of
decimal numbers from O to 10%-1. The random procedure was prevenied from generating
repeated samples and the test-set consisted of the all the decimal numbers from 1 to 104-1.
Each random number was included as a positive or negative sample depending on its
divisibility by the constant.

An example of one of these tasks is shown in figure 3. The items shown are: the test-
set error rates and the number of states and of edges of the automaton found in each
experiment.

It is worth noting that, with small training-sets, the inferred automaton tend to be
rather large and error-prone, while both sizes and errors reduce dramatically as enough
source structure is made available through the training data.

Each of these tasks were repeated six times for each constant. Figure 4 shows the
mean sample size needed for the convergence (number of errors = 0) and for decreasing
the number of errors to a rate lower than 5%.

e Statez
— B Coovergence
B (® Divisible by 7 —Bip= Uniform Distribution  § Emor <5%
L et A bt b bt ta e 1000 35__l_|.|.|.|.l.| [ T
3 0 3
p 100 25 3
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1 & s
E 10 10 -i
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100 r r by~ 1 0 H-
1} 500 1000 1500 2000 2 k| 4 5 & 7 3 9 10
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Fig 3. Behaviour of the algorithn for the Fig 4. Size of the training set for the
divisible by seven™ tasks (uniform convergence and for obtaining an error rate
distribution). lower than 5% for the task "Divisible by" for

different constants (imiform distribution).

Tt should be noted that these results were obtained without taking into account how
“relevant” the (random) training data were for the considered learning task. To investigate
how small the training set could become if appropriately selected, a further experiment was
carried out involving the following greedy procedure. First, starting with an automaton
learnt from the first positive training data, “0”, the test data was submitted in numerical
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order to recognize up to one decimal number appeared which was incorrectly classified.
Then this number was used as a training data. The first phase of this procedure stopped
when all the strings were correctly classified. In the second phase, the training strings that
were selected in the first phase were considered, in turn, to see whether they could be
discarded without change in the inferred automaton. The results are shown in the figure §.

Greedy procedure

1‘2]lll.l_ll|-llln.lll.

Samples (%)

2 3 4 5 6 7T B 9 10
Driviecy of

Fig 5. Size of the training set using the greedy method for the task "Divisible by" for

different constants.

Theoretically, it is known that the algorithm can obtain more information about the
structure of language from short string than from the longer ones. To observe this
behaviour the set of tasks were repeated but now the numbers were randomly drawn from
a non-uniform distribution in which the lengths of the strings were (approximately)
equiprobable (we call it the exponential distribution). As previously, the behaviour of the
algorithm for the "divisible by 7" task is shown in figure 6, and figure 7 shows the
different sizes needed for the convergence and for obtaining an error rate lower than the
5%.

Divisible by 7 ——a- States @ Coovergeace
~—Emors (%) Exponeatial Distribution —— Edges Exponential Distribution g Emor < 5%
102 ...l...l..-I.--I--.l...l.--l-...lm 25 P N WA A PR P E PR R T

10! -;

€
10
100 -
L H :
R i RASA LAns nans an s ma—— B
0 200 400 600 800 1000 1200 1400 1600 2 3 4 5 6 T 8 9 10
Traiming Sumples Divistble by
Fig 6. Behaviour of the algorithm for the Fig 7. Size of the training set for the
"divisible by seven" task (non uniform convergence and for obtaining an error rate
distribution}. lower than 5% for the task "Divisible by" for

different constants.
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5. Conclusions

The results of the experiments described in the last section indicate that the algorithm
can find relatively accurate models for differents tasks with rather small training sets above
all if the samples are representative.

In conclusion, we have presented an algorithm that have the following
characteristics:

- It uses positive and negative information.

- It can identify any regular language in the limit. .

- It always produces a deterministic automaton compatibie with the data.

- It works in a polynomial time ( O((lIS4I+IS.INISI2 ) ).

- It obtains good models with not very large training sets.
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