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ABSTRACT

The LAESA (Linear Approximating Eliminating Search Algorithm) was introduced in
order to reduce the large space complexity of the AESA. This is achieved by using only
a very small subset of points, called Base Prototypes. Moreover, as the AESA, this
algorithm can be used for finding Nearest Neighbours in Metric Spaces with an average
constant number of distance computations. The algorithm makes use of two generic
functions, CONDITION and CHOICE, 1o allow for different heuristic strategies of Base
Prototypes management. In this paper, we present a new strategy for the CHOICE
function that improves the previous results. We also show that with this new criterion,
the number of distance computations does not increase with the dimensionality, but
with the average distance from the test sample 10 ils nearest neighbour.

1. Introduction

A nearest neighbours classifier finds, given a set of prototypes, which of them is at
a minimum distance from a test sample (the nearest neighbour). There are many Pattern
Recognition techniques related to this type of classifiers]. For this reason, it is very
interesting to reduce their complexity. The most interesting techniques are thosc making
only use of the metric space properties. This is due to the large number of practical
problems where it is not possible to know the coordinates of the data, and it is very
expensive to compute the distance as, for example, in Isolated Words Recognition?.

The AESA (Eliminating Approximating Search Algorithm), introduced by Vidal in
1986, reduces the number of distance computations compared to other methods
previously introduced. Two facts make this algorithm specially interesting: 1) the
algorithm makes only use of the metric properties of space, and 2) it finds the nearest
neighbour calculating a number of distances (in average) constant with the size of the set3.
This algorithm performs repeatedly two phases: in the first phase (Approximating) the
distance between the test sample and an approximately close prototype is computed. If this
distance is smaller than that of the nearest neighbour, updating takes place. In the second
phase (Eliminating), those prototypes that cannot be closer than the nearest neighbour are
eliminated by using the triangle inequality. The process finishes when the set of
prototypes is empty.

Later, a new formulation for the algorithm using the Branch and Bound strategy
was introduced?. The resuits, using this technique, were better than those of the first
version of the algorithm, because of two facts: reduction in the number of distances and
reduction of the overhead. However, the main drawback of this algorithm is the need of
computing (and storing) a matrix of distances among all the prototypes during pre-



processing time. For this reason, the use of the AESA algorithm is limited to a relatively
small set of prototypesz.

Recently, new techniques appeared reducing the space complexily with the same
behaviour as AESA for the number of distance computations. Ramasubramanian and
Paliwal?:6 propose some techniques able to solve this problem in vectorial spaces. Al the
same time, a new version of the AESA algorithm, called Linear-AESA, was introduced
with the same purposeg. This algorithm only uses the metric properties of space. The
LAESA algorithm, like the AESA, has also two phases, but only makes use of a matrix of
distances between a small subset of “Base Prototypes™ (BP’s) and the remaining

prototypes.

2. Choice of Base Prototypes

The efficiency of the LAESA algorithm depends on the nurmber of selected Base
Prototypes and their locaticn with respect to the other prototypes. This last issue was
already studied by Marvin Shapiro10, whose results show better when the reference
points (Base Prototypes) are located far away from data clusters. Ramasubramanian and
Paliwal also use a similar technique for selecting Base Prototypes, but with the difference
with respect to the LAESA that reference points do not belong to the set of data but are
placed on the coordinate axis. In order to select Base Prototypes in LAESA, we make use
of a greedy strategy with linear cost. This strategy selects incrementally the prototypes
that are maximally separated among those previously selected.

3. Algorithm LAESA

The LAESA has, as AESA as well, two main phases: Approximating and
Eliminating. The main difference between both algorithms is the use in LAESA of a
matrix of distances among the complete set of prototypes (with size n) and a small subset
of Base Prototypes (with size m<<n)7-8.9, while AESA needs the complete matrix
among all prototypes.

The Approximating criterion for selecting new candidates is the same one used by
Vidal in4. The only difference is that updating of the lower bound for the distance (G) of
every prototype p is only done when Base Prototypes are selected. This is so because we
only know the distances among Base Prototypes and the complete set.

s = EMIN Gg) (1)
with
G(p) = goop 1 d(p.u) - d(x,u) | 2)

where By is the set of Base Prototypes already used in the approximating process,
and U is the set of eliminated prototypes.

With this forrmulation, a prototype p can be eliminated for subsequent search if the
following condition is fullfilled



G(p) 2 d(x,n} (3}
In the Approximating phase. in order to choose new candidates to nearest
neighbour, we select two prototypes each time. One of them is Base Prototype and the
other is non-Base Prototype (in AESA only one prototype is selected, because all of them
are in fact Base Prototypes). Afterwards, we select one of the two prototypes by means of
the CHOICE function and the distance to the test sample is computed. Elimination of base
prototypes is controlled by a Boolean function, called CONDITION, which only allows for
the elimination if it is true, provided that the elimination condition is simultaneously
fullfilled (3). :
Base Prototypes must satisfy the eliminating criterion and the CONDITION function
must be true. We have considered different functions, where elimination of BP’s is
allowed7-8:
CONDITION = (n¢ > mv/k) (4
where nc is the number of Base prototypes previously selected and m is the total
number of Base prototypes. For values of k = 1, 2,...,0¢, this function leads to the BP
management policies hereafter referred to as ECI, EC2,...,ECee,
We have also studied another CONDITION function, called ECELIM, wich allow
elimination of BP’s if the last sclected prototype contributed no elimination

CONDITION = (no prototype was eliminated in the previous step) (5)

The CONDITION function we are using is the ECELIM criterion, because from a small
size of the set of BP’s, the increase of this size does not depend on the number of
distance computations. This behaviour is shown in Figure 3, corresponding to rc=ee.

The results using these strategies are quite interesting (the number of distances is
smaller than 1.5 times the number of distance computations with AESA). This number, as
in AESA, seems to increase rapidly with the course of the dimensionality. However, this
is not the casel 1. This behaviour is mainly due to the increase in the average distance
from the test samples to their nearest neighbours. Still, if we use in the LAESA algorithm
the only CHOICE criterion that we have until now, this desired behaviour is not noticed.
This criterion only allows the CHOICE of BP’s for computing the distance in the
Approximating phase, if this set is not empty.



Algorithm LAESA

Input: Pc E, n=IP} // finite set of prototypes //
Bg P, m=|[Bl // set of Base Prototypes //
D e R, // precomputed n xm interprototype distances//
xe E, // test sample //
Output: p*e P, d*e R // nearest neighbour prototype and its distance to x//
Functions: d ExE—-> X // distance function //

CONDITION: Boolean // controls the elimination of Base Prototypes /
CHOICE: Bx(P-B) — P/ CHOICE of Base or non-Base Prototypes /

Variables: p,q,s,be P;

Ge R, / lower bound array //
dxs, gp, g9, gb€ R ;
nce N; // number of computed distances //

d*:= oo; p*:= indeterminate; G:= [0]; s:= arbitrary_element (B); nc:=0;

while |P] >0 do
dxs:=d(x,s); P:=P-{s}; nc:=nc+1; // distance computing //
if dxs < d* then p*:= s; d*:= dxs; endif // updating p* d* //

g:= indeterminate; gq:= oo, b:= indeterminate; gb:= o=;
for every pe P do // eliminating and approximating loop //

if s e B then Gipl:= max( G[p], | D[p,s]-dxs |} /# updating G, if possible //
endif

gp:= Glpl;

if p€ B then

if ( gp 2 d* & CONDITION ) then P:= P-{p} / eliminating from B //
else
if gp<gb then gb:= gp; b:= p endif // approximating: selecting from B //
endif
else
if gp 2 d* then P;= P-{p} / eliminating from P-B //
else // approximating: selecting from P-B //
if gp<gq then gq:= gp; q:= p endif
endif
endif
endfor
$:= CHOICE( b, q );
endwhile
endalgorithm

Figure 1. The LAESA algorithm,




4. New CHOICE Criterion

We propose in this work a new criterion allowing the CHOICE of non-base
prototypes from the beginning and thus, it is not necessary for the set of BP’s to be
empty. With this new criterion, the nearest neighbour to a very close sample can be found
very quickly, due to the flexibility in the CHOICE criterion. If we know that the selected
non-base prototype is very close to the sample, it will be very interesting to use it at the
Elimination phase. Moreover, it is not useful selecting many non-Base Prototypes in the
Approximating phase. Selection of non-Base Protoypes increases the number of distances
without updating the lower bound of the remaining data. Due to this reason, we propose
the following criterion:

CHOICEe(b, ) = if in the rc previous iterations ¢ it is the same {6)
then g
else b
endif

for every rc=1,2..00

This criterion does not allow the choice of non-base prototypes continuously. This
is interesting because every time a non-base prototype is selected, we do not update the
lower bound of distances of the remaining prototypes. If rc = oo, we obtain the first
criterion, corresponding to the case where we can only select non-base prototypes if the
set of BP’s is empty. Thus, we keep on calling this criterion CHOICE) and we will call
CHOICE;¢ the new criterion, dependent on the value of rc,

5. Experiments and Results

We have used “tolerance intervals™ around each prototype in order to study the
behaviour of the algorithm. Test samples are selected in these intervals (Figure 2). The
tolerance is given in percentage compared to the corresponding unit hypercube. The
samples are very close to its nearest neighbours dependent on the value of the tolerance.

The strategy of elimination used for the criterion CHOICEy is ECELIM, The number
of distance computations does not depead on the increase of the size of the set of BP’s
using this elimination criterion.

In Figure 3, one can see that the expected behaviour for low tolerances
(independence of the number of distances with the dimensionality) is not observed with
the CHOICEw criterion. This is so because this criterion only allows the choice of non-
base prototypes when this set is empty. Indeed, the algorithm shows the same behaviour
in the first part of the execution using test samples very close to their nearest neighbours.

With the new CHOICE criterion this is not the case. In Figure 4, we present some
experiments varying the parameter rc in the criterion CHOICErc. In Figure 5 one can see
the behaviour for rc= 3, 4, 6, 8, 10, =, in a uniform distribution with respect to the unit
hypercube of dimension 6, and for different sizes of the set of BP’s.



In all the experiments with the new criterion and using “tolerance intervals™ for the
test samples, we have applied the “optimum” number of BP’s obtained with the first
elimination criterion, EC1 (CONDITION=false) together with the criterion CHOICE..”-8 for
each dimension. These sizes are the following:

o

DIMENSION 2 4 6 8 10
NUMBER OF BP’s 3 6 14 28 48
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Figure 2. Uniform distribution of prototypes and samples with illustration of the
“olerance interval” concept. The percentages represent the relative size of these intervals
(small squares) about the bigger square [11].
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Figure 3. Average number of distance computations for the first criterion of CHOICE,
varying the dimension and the tolerance of samples to theirs nearest neighbours,
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Figure 4. Average number of calculated distances as a function of the number of base
prototypes for CHOICE . using the Euclidean metric with a set of prototypes in

dimension 6.
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Figure 5. Average number of distances for the new CHOICE criterion varying the
dimension and the tolerance (closeness) of test samples to their nearest neighbours.

Comparison of Figures 3 and 4, shows that for high tolerances both criteria have a
similar behaviour. However, for lower tolerances the use of the new CHOICI: criterion
does not increase the number of distances with the dimension and sometimes it even
decreases.

6. Conclusions

The results with the new CIIOICE criterion show that the number of distances to
compute in order to find the nearest neighbour to a test sample does not increase with the
dimension, and they even decrease when the data are grouped (tolerance smaller than
15%). In other words, the average number of distance computations depends on the
average distance from the test samples to their nearest prototypes. This is the reason for
the introduction of the new CHOICE criterion, because for real data, the average number of
distances of the samples to their corresponding prototypes does not increase with the
addition of new characteristics to the representation of objects. In this way, the behaviour
of the algorithm is in practice insensitive to the space dimensionality.
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