
Input image Image
preprocesing

Feature
extraction

Word
recognition

Output

Database

OFF-LINE CURSIVE HANDWRITTEN WORD
RECOGNITION BASED ON TREE EXTRACTION AND AN

OPTIMIZED CLASSIFICATION DISTANCE

J. R. Rico

Departamento de Lenguajes y Sistemas Informáticos.

Universidad de Alicante.

E-03071 Alicante. SPAIN.

e-mail: juanra@dlsi.ua.es

Abstract

This paper describes a geometric approach to the difficult off-line handwritten word recognition

problem. The method classifies feature trees from isolated handwritten words, measuring the

distance between two trees. The nearest-neighbour method has been used to classify the

prototypes and the leaving-one-out criterion has been applied in order to test the classifier.

Keywords: Off-line cursive handwriting recognition, edit-distance optimisation, distance between trees.

1.Introduction

The issue of pattern recognition is central to many applications of computer science and

technology. The off-line recognition of cursive handwritten words is an interesting problem

because it is easy to scan a handwritten document, to train the system with a particular

handwriting style and afterwards to let the system classify the rest of the text. In this paper the

objective is to classify isolated words. It is assumed that algorithms for isolating individual

words such as the “Cursive word reference line detection”[0] have been used.

The main idea is to extract word features from handwritten words in the corpus and to

build a database directly from images. The features of new words will be extracted and will be

compared with those in the database. An additional dictionary or the splitting of words in letters

or other subword units is not needed. The algorithm extracts the features directly from a bitmap.

The recognition process consists of the following stages (Figure 1) described below:

Input image Bitmap
image

Filtered image:
+dilation
+erosion
+thinning

Feature
extraction

Image preprocessing

Dominant
points
graph

Feature
tree

extraction

Feature extraction

Image
preprocessing

Word
recognition

Database

Figure 1. Stages in the word recognition process

This paper is structured as follows. Section 2 explains the way in which words are

processed and transformed into trees. Section 3 explains the classification method. Section 4

shows the experimental results. Finally, section 5 gives the conclusion.

2.Data preprocesing and feature tree extraction

2.1Image preprocesing

Input images are taken from cursive handwritten words. Images are filtered to obtain the

best representation for each word. The way the filters are applied to the image is important.

Figure 2. Data preprocessing sub-stages.

The document is scanned and a greyscale image (Figure 4) is obtained for system input

(Figure 1). Then, the data preprocessing steps are applied (Figure 2). The greyscale image

(input) is converted into a bitmap image (Figure 5). This process has an aliasing effect on the

shapes. Therefore, some morphology operations as dilation and erosion[0][0] are applied to

smooth the image. Besides, to eliminate redundant pixels, a modification of the

Nagendraprasad-Wang-Gupta thinning algorithm[0] is used to thin the image (Figure 6).

2.2Feature tree extraction

Figure 3. Feature extraction sub-stages.

Later, the feature extraction sub-stages are applied to the filtered image (Figure 3).

Dominant points in shapes[0][0] refer to points in one of the following sets(Figure 7):

• End points of the shape (that is, points simply connected).

• Points corresponding to local extremes of curvature.

• Intersection points.

These points are used to describe sudden changes in the lines of the cursive handwritten

word.

The tree features are extracted from the direction primitives between dominant points.

The method takes as root of the feature tree the first dominant point from the left and builds the

rest of the tree by following the neighbouring dominant points. Each node of the feature tree is

labelled with a string which describes how to reach that dominant point from its ancestor in the

tree. This string is obtained using nine possible directions (Figure 8). An example is shown in

Figure 9.

These feature trees are expressed as a tree code chain (Figure 10) and used as input to

the algorithm computing the distance between trees[0][0].

The meaning of the features obtained from word hello shown in Figure 10 is: label 631

represents a vector of length 63 in direction 1; label 343 stands for a vector of length 34 in

direction 3; however, label 709 represents a loop of length 70. As an example, a graphic

representation of a short string is shown in Figure 11.

Figure 4. Greyscale image. Figure 5. Bitmap image

Figure 6. Filtered image
(dilated + eroded + thinned)

Figure 7 . Dominant points

8

7

6

5

4

3

2

1

9

Figure 8. Codes used for straight-line segments
and loops

631
515 152

274 1369314

372

11011151

582

38

1221

181

343

362

709

Figure 9. Tree features (NORMdirection). The
norm of the vector is given and a
subscript indicates the direction.

hello 23 (63;1(34;3(9;4(51;5(8;4(36;2(15;2(70;9())28;4(58;2(115;1(4;1())27;4(37;2(110;1(5;1())31;4
(8;3(136;9())))))))))))3;8(122;1(18;1()))))

Figure 10. Tree code chain for the word in Figure 9.

344

222

()

459

Figure 11. Graphic representation of 4 (34;4(22;2())45;9()).

The distance used is such that, if two word images show a small difference, for instance,

a disconnected letter (Figure 12 compared to Figure 4), the distance remains small due to the

way the feature tree is obtained. Recall that the algorithm takes the next dominant point, which

is not used, from left to right. For instance, the distance between the feature tree of the word in

Figure 10 and that in Figure 14 is only 78 units, whereas the distance between the feature tree

of the word in Figure 10 and that in Figure 15 is 654 units.

Figure 12. ‘hello’ image with an isolated ‘h’ Figure 13. ‘hell’ greyscale image.

hello 24 (63;1(34;3(9;4(51;5(8;4(12;3(26;3(16;2(70;9())27;4(58;2(115;1(4;1())27;4(37;2(109;1(5;1())31;4(8;3
(136;9()))))))))))))3;8(121;1(18;1()))))

Figure 14. Tree code chain associated to ‘hello’ Figure 12.

hell 21 (75;1(40;3(11;4(60;5(10;4(42;2(16;2(83;9())33;4(68;2(136;1(5;1())32;4(44;2(129;1(6;1())32;4())))))))))
3;8(143;1(22;1()))))

Figure 15. Tree code chain associated to ‘hell’ Figure 13.

3.Classification

In this paper an edit distance between trees is used[0][0] which uses weights for each of

these three operations: insertion, deletion or substitution. In addition, a weight adaptation

algorithm is proposed to increase the rate of classification. This algorithm changes the weights

applied to the distance between trees to obtain the best classification rate for words in the

database.

Words of different cursive handwriting styles from four different writers have been

collected. A database with 2.400 samples (600 for each writer) has been built. Each writer has

written 50 different words and each word has been written 12 times. All words in the database

have four or five letters. This poses an additional difficulty because the number of tree nodes is

very similar for all words in the database.

The leaving-one-out[0] technique has been used to estimate the error rate. Each database

prototype is compared with the rest and classified. The error rate is obtained by applying this

method to all database prototypes. This technique uses the maximum information from test

patterns to estimate the error rate.

The algorithm that has been used to compute the distance between trees is the one by

Zhang and Shasha[0]. The algorithm is based on insertion, deletion and substitution edition

functions. Each operation has an associated cost. Elementary insertions and deletions have the

same cost wI=wD, and substituting a unary vector of type a by another of type b has cost wab.

Given vectors Ma and Nb, deleting or inserting Ma has cost M wI and substituting Ma by Nb has

cost { } Iab wNMwNM −+,min . An example is shown in Figure 16.

51

32

(3+2)1

32

Insertion 21

Susbtitution(31,32)

Susbtitution(51,32) = Substution(31,32)+Insertion(21)

Figure 16. Example of substitution operation between vectors 51 and 32.

An iterative method has been used to adjust the substitution weights wij:

{ } 10
40

,'

'1

≤≤
≤≤−

+= −

αα ij

ijij

ijijt
ij

t
ij

w

nnMax

nn
ww



























=

044444444
401234321
410123432
421012343
432101234
443210123
434321012
423432101
412343210

0
ijw

The weights are initialised to the difference between i and j orientation (Figure 8), α is

a rate to accelerate the algorithm and nij is the number of due ij-substitutions in correctly

classified prototypes and n’ij is the number of substitutions of this kind in prototypes incorrectly

classified. In this way, incorrectly classified prototypes increase their distance to the sample,

while those correctly classified decrease their distances.

4.Results

The proposed method has been applied to a chosen set of data and the results are shown

in Table 1 and in Figure 17. All samples are captured using a scanner with resolution of 300 ppi

and 256 grey levels from pages wrote by four writers who used a black pen.

Different tests have been made and the highest classification rate obtained for the same

writer was 87,5% while the maximum average classification rate was 85% (Table 1).

The simple algorithm (without adaptation weights) has been applied and the results

ranged from 54% to 87,5% depending of the number of prototypes and the writer. For the

weights adaptation algorithm the results ranged from 56,65% to 87,5% depending of the

number of prototypes and the writer.

Without adaptation algorithm With adaptation algorithm
Number of
Prototypes

Correct classification
Average (%)

Standard
Deviation

Correct classification
Average (%)

Standard
Deviation

150 60 6.3 63 5.2
300 76 3.8 77 3.3
450 82 2.4 83 2
600 85 2.4 85 2

Table 1. Word classification rate without and with adaptation weights algorithm.

50

60

70

80

90

150 300 450 600

Sample size

C
o

rr
e

c
t

c
la

s
s

if
ic

a
ti

o
n

(%
)

(a)

50

60

70

80

90

150 300 450 600

Sample size

C
o

rr
e

c
t

c
la

s
s

if
ic

a
ti

o
n

(%
)

(b)

1

2

3

4

5

6

7

150 300 450 600

Sample size

S
ta

n
d

a
rd

 d
e

vi
a

ti
o

n
w ithout adaptation algorithm

with adaptation algorithm

(c)
Figure 17. Average word classification rate (a) without adaptation algorithm and (b) with adaptation

algorithm and (c) Standard deviation of the results with and without adaptation method.

The adaptation method proves more useful when there are few prototypes. Even if

increasing the number of prototypes decreases the effect. The standard deviation decreases

when adaptation method is applied (Figure 17c).

5.Conclusion

A method for off-line handwritten word recognition is explored. The method is based on

feature tree extraction and an edit distance between trees. The algorithm is easy to apply and the

results are promising. It uses examples from cursive handwritten words as a bitmap image. It is

clear that if we increase the number of database examples we increase the time to get an answer

from the classifier algorithm linearly. This linear dependency may be avoided algorithms as

AESA (Approximating Eliminating Search Algorithm) or related[0][0]. If the database does not

change, these algorithms compute the distance between some prototypes in pre-process time,

and uses this precomputed information to speed up the search for the nearest neighbour.

Other algorithms[0] need additional information as well as bitmap words. For example,

they have a restricted dictionary, it is difficult to increase the database with a new words, and

they need a splitting algorithm[0][0][0] to separate words in to letters. The algorithm proposed

in this paper is a new point of view about cursive off-line handwriting recognition problem.

For future work, the efforts can focus on making this algorithm more flexible and

quicker. An interesting idea would be applying it to a signature recognition system.

6. References

[0] R. C. Carrasco and M. L. Forcada: “A note on the Nagendraprasad-Wang-Gupta thinning
algorithm”. Pattern Recognition Letters, Vol. 16, pp 539-541 (1995).

[0] K. Huang and H. Yan: “Off-line signature verification based on geometric feature extraction and
neural classification”. Pattern Recognition, Vol. 30, No 1, pp 9-17 (1997).

[0] X. Li and D. Yeung: “On-line handwritten alphanumeric character recognition using dominant
points in strokes”. Pattern Recognition, Vol. 30, No 1, pp 31-34 (1997).

[0] R. K. Powalka, N. Sherkat and R. J. Whitrow: “Word shape analysis for a hybrid recognition
system”. Pattern Recognition, Vol. 30, No 3, pp 421-445 (1997).

[0] J. Wang, Maylor, K. H. Leung and S. Cheung Hui: “Cursive word reference line detection”. Pattern
Recognition, Vol. 30, No 3, pp 503-511 (1997).

[0] B. J. Oommen, K. Zhang and W. Lee: “Numerical similarity and dissimilarity measures between
two trees”. IEEE Transactions on Computers, Vol. 45, (1996).

[0] K. Zhang and D. Shasha: “Simple fast algorithms for the editing distance between trees and related
problems”. SIAM Journal of Computing, Vol. 18, pp. 1245-1262 (1989).

[0] L. Micó, J. Oncina and R. C. Carrasco: “A fast branch & bound nearest neighbour classifier in
metric spaces”. Pattern Recognition Letters, Vol. 17, pp 731-739 (1996)

[0] L. Micó and J. Oncina: “Comparison of fast nearest neighbour classifiers for handwritten character
recognition ”. Pattern Recognition Letters, (to be published), (1998)

[0] R. O. Duda & P. E. Hart: Pattern Classification and Scene Analysis. John Wiley and Sons (1973)
[0] S. Serra: Image analysis and mathematical morphology. Academic Press (1989-1992)
[0] C. Y. Suen, M. Berthod and S. Mori: “Automatic recognition of handprinted characters – the state

of art”. Proc. IEEE, 68(4):469-487, April 80. Contains 244 references.
[0] S. Impedevo, G Dimauro and G. Pirlo: “A new decision tree algorithm for handwritten numerals

recognition using topological features”. Proc. SPIE, 1384:280-284, November 1990.
[0] D. G. Elliman and R. N. Banks: “A comparison of two neural networks for hand-printed character

recognition”. In IEE 2nd Neural Networks, number 349 in IEE, pages 224-228, November 1991.
[0] A.W. Senior and A.J.Robinson. “An Off-line Cursive Handwriting Recognition System”. IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 20. No. 3, pp 309-321 (1998).

Acknowledgements: The author thanks the Dirección General de Investigación Científica y Técnica
(CICYT) of the Government of Spain for support through project
TIC97-0941, as well as R. C. Carrasco and M. Forcada for their careful reading of this paper.

	1.Introduction
	2.Data preprocesing and feature tree extraction
	2.1Image preprocesing
	2.2Feature tree extraction

	3.Classification
	4.Results
	5.Conclusion
	6. References

