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Abstract

This paper describes a geometric approach to the difficult off-line handwritten word recognition 

problem.  The  method  classifies  feature  trees  from isolated  handwritten  words,  measuring  the 

distance  between  two  trees.  The  nearest-neighbour  method  has  been  used  to  classify  the 

prototypes and the leaving-one-out criterion has been applied in order to test the classifier.
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1.Introduction

The issue of pattern recognition is central to many applications of computer science and 

technology. The off-line recognition of cursive handwritten words is an interesting problem 

because  it  is  easy  to  scan  a  handwritten  document,  to  train  the  system with  a  particular 

handwriting style and afterwards to let the system classify the rest of the text. In this paper the 

objective is to classify isolated words. It is assumed that algorithms for isolating individual 

words such as the “Cursive word reference line detection”[0] have been used.

The main idea is to extract word features from handwritten words in the corpus and to 

build a database directly from images. The features of new words will be extracted and will be 

compared with those in the database. An additional dictionary or the splitting of words in letters 

or other subword units is not needed. The algorithm extracts the features directly from a bitmap. 

The recognition process consists of the following stages (Figure 1) described below:
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Figure 1. Stages in the word recognition process

This paper is structured as follows.  Section 2 explains the way in which words are 

processed and transformed into trees. Section 3 explains the classification method. Section 4 

shows the experimental results. Finally, section 5 gives the conclusion.

2.Data preprocesing and feature tree extraction

2.1Image preprocesing

Input images are taken from cursive handwritten words. Images are filtered to obtain the 

best representation for each word. The way the filters are applied to the image is important.

Figure 2. Data preprocessing sub-stages.

The document is scanned and a greyscale image (Figure 4) is obtained for system input 

(Figure 1). Then,  the data preprocessing steps are applied (Figure 2). The greyscale image 

(input) is converted into a bitmap image (Figure 5). This process has an aliasing effect on the 

shapes. Therefore,  some morphology operations as dilation and erosion[0][0] are applied to 

smooth  the  image.  Besides,  to  eliminate  redundant  pixels,  a  modification  of  the 

Nagendraprasad-Wang-Gupta thinning algorithm[0] is used to thin the image (Figure 6).

2.2Feature tree extraction

Figure 3. Feature extraction sub-stages.



Later,  the feature extraction sub-stages  are applied to  the filtered image (Figure 3). 

Dominant points in shapes[0][0] refer to points in one of the following sets(Figure 7):

• End points of the shape (that is, points simply connected).

• Points corresponding to local extremes of curvature.

• Intersection points.

These points are used to describe sudden changes in the lines of the cursive handwritten 

word. 

The tree features are extracted from the direction primitives between dominant points. 

The method takes as root of the feature tree the first dominant point from the left and builds the 

rest of the tree by following the neighbouring dominant points. Each node of the feature tree is 

labelled with a string which describes how to reach that dominant point from its ancestor in the 

tree. This string is obtained using nine possible directions (Figure 8). An example is shown in 

Figure 9. 

These feature trees are expressed as a tree code chain (Figure 10) and used as input to 

the algorithm computing the distance between trees[0][0].

The meaning of the features obtained from word hello shown in Figure 10 is: label 631 

represents a vector of length  63 in direction 1; label  343 stands for a vector of length  34 in 

direction  3;  however,  label  709 represents  a  loop  of  length  70.  As  an  example,  a  graphic 

representation of a short string is shown in Figure 11.



Figure 4. Greyscale image. Figure 5. Bitmap image

Figure 6. Filtered image
(dilated + eroded + thinned)

Figure 7 . Dominant points 
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Figure 8. Codes used for straight-line segments 
and loops
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Figure 9. Tree  features  (NORMdirection).  The 
norm  of  the  vector  is  given  and  a 
subscript indicates the direction.

hello 23 (63;1(34;3(9;4(51;5(8;4(36;2(15;2(70;9())28;4(58;2(115;1(4;1())27;4(37;2(110;1(5;1())31;4
(8;3(136;9())))))))))))3;8(122;1(18;1()))))

Figure 10. Tree code chain for the word in Figure 9.
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Figure 11. Graphic representation of  4 (34;4(22;2())45;9()).

The distance used is such that, if two word images show a small difference, for instance, 

a disconnected letter (Figure 12 compared to Figure 4), the distance remains small due to the 

way the feature tree is obtained. Recall that the algorithm takes the next dominant point, which 

is not used, from left to right. For instance, the distance between the feature tree of the word in 



Figure 10 and that in Figure 14 is only 78 units, whereas the distance between the feature tree 

of the word in Figure 10 and that in Figure 15 is 654 units.

Figure 12. ‘hello’ image with an isolated ‘h’ Figure 13. ‘hell’ greyscale image.

hello 24 (63;1(34;3(9;4(51;5(8;4(12;3(26;3(16;2(70;9())27;4(58;2(115;1(4;1())27;4(37;2(109;1(5;1())31;4(8;3
(136;9()))))))))))))3;8(121;1(18;1()))))

Figure 14. Tree code chain associated to ‘hello’ Figure 12.

hell 21 (75;1(40;3(11;4(60;5(10;4(42;2(16;2(83;9())33;4(68;2(136;1(5;1())32;4(44;2(129;1(6;1())32;4())))))))))
3;8(143;1(22;1()))))

Figure 15. Tree code chain associated to ‘hell’ Figure 13.

3.Classification

In this paper an edit distance between trees is used[0][0] which uses weights for each of 

these  three  operations:  insertion,  deletion  or  substitution.  In  addition,  a  weight  adaptation 

algorithm is proposed to increase the rate of classification. This algorithm changes the weights 

applied to the distance between trees to obtain the best  classification rate for words in the 

database.

Words of different cursive handwriting styles  from four different  writers  have been 

collected. A database with 2.400 samples (600 for each writer) has been built. Each writer has 

written 50 different words and each word has been written 12 times. All words in the database 

have four or five letters. This poses an additional difficulty because the number of tree nodes is 

very similar for all words in the database.

The leaving-one-out[0] technique has been used to estimate the error rate. Each database 

prototype is compared with the rest and classified. The error rate is obtained by applying this 

method to all database prototypes. This technique uses the maximum information from test 

patterns to estimate the error rate.

The algorithm that has been used to compute the distance between trees is the one by 

Zhang and Shasha[0]. The algorithm is based on insertion, deletion and substitution edition 

functions. Each operation has an associated cost. Elementary insertions and deletions have the 



same cost wI=wD, and substituting a unary vector of type a by another of type b has cost  wab. 

Given vectors Ma and Nb, deleting or inserting Ma has cost M wI and substituting Ma by Nb has 

cost { } Iab wNMwNM −+,min . An example is shown in Figure 16.

51

32

(3+2)1

32

Insertion 21

Susbtitution(31,32)

Susbtitution(51,32) = Substution(31,32)+Insertion(21)

Figure 16. Example of substitution operation between vectors 51 and 32.

An iterative method has been used to adjust the substitution weights wij:
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The weights are initialised to the difference between i and j orientation (Figure 8), α  is 

a  rate to  accelerate  the algorithm and  nij is the number of  due  ij-substitutions in correctly 

classified prototypes and n’ij is the number of substitutions of this kind in prototypes incorrectly 

classified. In this way, incorrectly classified prototypes increase their distance to the sample, 

while those correctly classified decrease their distances.

4.Results

The proposed method has been applied to a chosen set of data and the results are shown 

in Table 1 and in Figure 17. All samples are captured using a scanner with resolution of 300 ppi 

and 256 grey levels from pages wrote by four writers who used a black pen.

Different tests have been made and the highest classification rate obtained for the same 

writer was 87,5% while the maximum average classification rate was 85% (Table 1).

The simple algorithm (without adaptation weights)  has been applied and the results 

ranged from 54% to 87,5% depending of the number of prototypes and the writer.  For the 



weights  adaptation  algorithm the  results  ranged  from 56,65% to  87,5% depending of  the 

number of prototypes and the writer.

Without adaptation algorithm With adaptation algorithm
Number of
Prototypes

Correct classification
Average (%)

Standard
Deviation

Correct classification
Average (%)

Standard
Deviation

150 60 6.3 63 5.2
300 76 3.8 77 3.3
450 82 2.4 83 2
600 85 2.4 85 2

Table 1. Word classification rate without and with adaptation weights algorithm.
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Figure 17. Average word classification rate (a) without adaptation algorithm and (b) with adaptation 

algorithm and (c) Standard deviation of the results with and without adaptation method.

The adaptation  method proves  more useful  when there are  few prototypes.  Even  if 

increasing the number of  prototypes decreases  the effect.  The standard deviation decreases 

when adaptation method is applied (Figure 17c).

5.Conclusion

A method for off-line handwritten word recognition is explored. The method is based on 

feature tree extraction and an edit distance between trees. The algorithm is easy to apply and the 

results are promising. It uses examples from cursive handwritten words as a bitmap image. It is 

clear that if we increase the number of database examples we increase the time to get an answer 

from the classifier algorithm linearly. This linear dependency may be avoided algorithms as 

AESA (Approximating Eliminating Search Algorithm) or related[0][0]. If the database does not 

change, these algorithms compute the distance between some prototypes in pre-process time, 

and uses this precomputed information to speed up the search for the nearest neighbour.



Other algorithms[0] need additional information as well as bitmap words. For example, 

they have a restricted dictionary, it is difficult to increase the database with a new words, and 

they need a splitting algorithm[0][0][0] to separate words in to letters. The algorithm proposed 

in this paper is a new point of view about cursive off-line handwriting recognition problem.

For  future work,  the efforts  can focus on making this  algorithm more flexible  and 

quicker. An interesting idea would be applying it to a signature recognition system. 
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