
Extending Fast Nearest Neighbour Search

Algorithms for Approximate k-NN Classi�cation

Francisco Moreno-Seco, Luisa Micó, and Jose Oncina�

Dept. Lenguajes y Sistemas Informáticos
Universdad de Alicante, E-03071 Alicante, Spain

{paco,mico,oncina}@dlsi.ua.es

Abstract. The nearest neighbour (NN) and k-nearest neighbour (k-
NN) classi�cation rules have been widely used in pattern recognition
due to its simplicity and good behaviour. Exhaustive nearest neighbour
search can become unpractical when facing large training sets, high di-
mensional data or expensive similarity measures. In the last years a lot of
NN search algorithms have been developed to overcome those problems,
and many of them are based on traversing a data structure (usually
a tree) and selecting several candidates until the nearest neighbour is
found.
In this paper we propose a new classi�cation rule that makes use of
those selected (and usually discarded) prototypes. Several fast and widely
known NN search algorithms have been extended with this rule obtaining
classi�cation results similar to those of a k-NN classi�er without extra
computational overhead.

Keywords: Nearest Neighbour, Classi�cation Rule, Pattern Recogni-
tion.

1 Introduction

The nearest neighbour (NN) rule classi�es an unknown sample into the class of
its nearest neighbour according to some similarity measure (a distance). Despite
its simplicity, classi�cation accuracy is usually enough for many tasks. However,
some tasks may require �nding the k nearest neighbours in order to improve
classi�cation, thus the NN rule has been generalized to the k-NN rule [3]. Many
classi�cation tasks represent data as vectors and use one of the Minkowsky met-
rics as the distance, usually the L2 (Euclidean distance). However, there are
other tasks where a vector representation is not natural, and thus other distance
measures are used: string distance, tree distance, etc.

Although initially used in pattern recognition, the NN rules have been also
of interest for other �elds such as data mining and information retrieval, which

� The authors wish to thank the Spanish CICyT for partial support of this work
through project TIC2000�1703-CO3-02.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 589�597, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

590 Francisco Moreno-Seco et al.

usually involves searching in very large databases and facing with high dimen-
sionality data. Whenever the classi�cation task requires large training sets, ex-
pensive distance measures or high dimensionality, the simple exhaustive search
for the NN becomes unpractical. To overcome some of these problems, a large
number of fast NN search algorithms [5, 4, 18, 16, 2, 14] have been developed,
and most of them can be easily extended to �nd the k-NN. However, the require-
ment of �nding exactly the k-NN involves higher computing e�ort (dependent
on the value of k).

Recently developed algorithms are suitable for any kind of representation
which allows to de�ne a distance that holds the properties of a metric, that is,
they do not make use of the coordinates of the prototype. Several fast NN search
algorithms are based on or can be viewed in an approximation and elimination
framework [15]: a training prototype is selected as the current nearest neighbour,
and then it is used to prune the training set and �nd the next candidate to nearest
neighbour, until the training set is completely traversed or pruned. Then, the
current candidate to nearest neighbour is actually the nearest neighbor.

The structure of the paper is as follows: in the next section we shall brie�y
describe the new classi�cation rule. Then, we will show the results of this rule
when applied to various NN search algorithms in experiments with synthetic and
real data. Finally, we will conclude and outline some future work.

2 The k-NSN Classi�cation Rule

In this paper we propose a simple but powerful extension for any approximation-
elimination based NN search algorithm: when looking for the nearest neighbour,
a number of candidates to nearest neighbour are selected until the actual nearest
neighbour is found. We store the k nearest selected neighbours (k-NSN); at the
end, the sample is classi�ed by majority voting using these neighbours (which
include the nearest neighbour). This technique can be considered a new clas-
si�cation rule which requires very little computational e�ort over a NN search
(storing the k nearest selected neighbours). In addition, as we shall see in the
next section, this rule achieves classi�cation results very similar to those of the k-
NN rule. Obviously, if this rule is applied to an exhaustive NN search it yields
to the k-NN rule. This rule raises up as an extension of our previous work on
the LAESA algorithm [13, 11].

Approximation and elimination search algorithms are usually based on the
following idea: during preprocessing, a data structure is built to allow pruning
of the training set. During classi�cation, a candidate to nearest neighbour is
selected and stored, and its distance to the sample is computed. This distance
is used to prune the training set (using the data structure) and maybe to select
a new candidate. This process ends when all the training set has been pruned
or selected. Extending such an algorithm to �nd the k-NN is usually simple: the
distance used to prune the training set is the distance to the kth nearest neigh-
bour found so far. This involves less pruning and more distances to compute,

Extending Fast Nearest Neighbour Search Algorithms 591

Table 1. Fast NN search algorithms which have been extended with the k-NSN
rule

Algorithm Author(s)

kd-tree Friedman et al.[4]
FN75 Fukunaga and Narendra [5]
vp-tree Yianilos [18]
AESA Vidal [16]
LAESA Micó et al. [13]
TLAESA Micó et al. [12]
GNAT Brin [2]

which derives in an additional computational overhead, always dependent on the
value of k.

The k-NSN rule does not involve more signi�cant overhead1 than a typical
NN search, and usually achieves similar results as a k-NN search. Of course, there
is a drawback in our approach: the value of k may not be augmented inde�nitely
to improve classi�cation rates; beyond a certain (big) value of k the rates start
to worsen.

3 Experiments

We have performed several series of experiments in order to test the applica-
tion of the k-NSN rule to some fast NN search algorithms (see table 1). All
these algorithms �t in an approximation and elimination framework, and all are
suited for general metric spaces except kd-tree, which requires point coordinates.
The algorithms of AESA family (AESA, LAESA, TLAESA) focus on reducing
the number of distance computations, thus are best suitable for expensive dis-
tances. The vp-tree and GNAT were developed to face large training sets and/or
high dimensionality of data, and thus the number of distance computations is
important but it is not its main goal.

Two sets of experiments have been performed: �rst, a set of synthetic data
experiments to test the performance of the rule in a widely known environment.
Then, some tests have been performed with several real data tasks. In both cases
our main goal was to study the error rates of these algorithms using the k-NSN
rule and to compare them with the k-NN error rates.

1 The simplest implementation is to keep sorted an array of k elements each time
a distance is computed. The extra time complexity over the NN search is O(ck),
where c is the number of computed distances. Although it is possible to reduce this
time complexity with a heap, this overhead is almost negligible when compared to
the overhead of computing c distances.

592 Francisco Moreno-Seco et al.

5

5.2

5.4

5.6

5.8

6

 0 1000 2000 3000 4000

er
ro

r
ra

te
 %

training set size

8 classes, k=5

kd-tree (k-NSN)
AESA (k-NSN)

LAESA (k-NSN)
TLAESA (k-NSN)

FN75 (k-NSN)
vp-tree (k-NSN)
GNAT (k-NSN)

k-NN

Fig. 1. Comparison between k-NN and k-NSN classi�ers, for k = 5

3.1 Experiments with Synthetic Data

For these experiments we have generated Gaussian data from 4 and 8 classes of
dimensionality 10 using the algorithm for generating clustered data in [8]. Tests
have been performed for several values of k: 5, 11 and 17, and with training sets
of growing size (from 256 to 4096). Test set had always 1024 prototypes. Also,
16 di�erent train/test sets of each size were generated in order to obtain more
sound results.

Figure 1 shows the error rates of these classi�ers with data from 8 classes
for k = 5 (results for 4 classes data were similar), and �gure 2 plots the same
results for k = 17 but including the NN error rate just to show the di�erence
with respect to k-NN and k-NSN rates. These results show that the di�erences
in error rates are negligible for k-NSN and k-NN classi�ers, and are better than
those of an NN classi�er.

In order to study the behaviour of the k-NSN rule as the value of k increases
another experiment was performed keeping the train and test sizes to 2048 and
1024 respectively. All the algorithms were run with 16 di�erent train/test sets,
and the average results are shown in �gure 3. As can be seen in that �gure, even
for high values of k most of the k-NSN classi�ers still obtain classi�cation rates
comparable to those of the k-NN classi�er. Algorithms from AESA family seem
to be very sensitive to an increase in the value of k. This may be due to the fact
that they compute very few distances with respect to the others (i.e. they select
less candidates to nearest neighbour). However, this question should be studied
more carefully and we plan to do it in the future. Finally, note that with (almost)
the same computational e�ort of �nding the nearest neighbour, the error rates
obtained with k-NSN are much better than NN rates and comparable to those
of a k-NN classi�er.

Extending Fast Nearest Neighbour Search Algorithms 593

3
4
5
6
7
8
9

10

 0 1000 2000 3000 4000

er
ro

r
ra

te
 %

training set size

8 classes, k=17

NN
kd-tree (k-NSN)
AESA (k-NSN)

LAESA (k-NSN)
TLAESA (k-NSN)

FN75 (k-NSN)
vp-tree (k-NSN)
GNAT (k-NSN)

k-NN

Fig. 2. Nearest neighbour error rate compared to k-NN and k-NSN

2
3
4
5
6
7
8

 0 50 100 150 200 250

er
ro

r
ra

te
 %

value of k

8 classes, dimensionality=10

kd-tree (k-NSN)
AESA (k-NSN)

LAESA (k-NSN)
TLAESA (k-NSN)

FN75 (k-NSN)
vp-tree (k-NSN)
GNAT (k-NSN)

k-NN

Fig. 3. Comparison between k-NN and k-NSN classi�ers as k increases

3.2 Experiments with Real Data

We have performed experiments with two di�erent data sets: �rst we have tested
our rule with chromosome data [9, 7, 6] and then with the PHONEME database
from the ROARS ESPRIT project [1].

The chromosome database contains 4400 samples coded as strings, and we
have chosen to use the Levenshtein distance [17, 19] for this task (the kd-tree
has not been tested with this database due to this feature). The database has
been divided into two sets of 2200 samples each, and two experiments have been
performed using one of them for training and the other one for test. Figure 4
shows the average error rates of k-NN and k-NSN classi�ers as the value of k
increases. There is a parameter for LAESA and TLAESA (see [13, 12] for more
details), the number of base prototypes, which has been set to 40, which it is
not probably its optimal value. However, the search for this optimal value is

594 Francisco Moreno-Seco et al.

6

7

8

9

10

11

12

13

14

 1 3 5 7 9 11 13 15

er
ro

r
ra

te
 %

value of k

Chromosome classification

AESA (k-NSN)
LAESA (k-NSN)

TLAESA (k-NSN)
FN75 (k-NSN)

vp-tree (k-NSN)
GNAT (k-NSN)

k-NN

Fig. 4. Error rate comparison in chromosome classi�cation

beyond the scope of this paper. Table 2 shows the average classi�cation time
per sample in seconds (on a 1.5 GHz PC under Linux); it is also shown in this
table the average time for an extension of LAESA to �nd the k-NN, named k-
LAESA [10], in order to allow a more fair comparison than with exhaustive
search k-NN classi�er. The value of k for the k-NSN algorithms does not appear
because the average times are very similar for all values of k (as expected).

The PHONEME database consists of 5404 �ve-dimension vectors from 2
classes. Five di�erent partitions have been made to obtain train/test sets of
4300/1000 samples approximately. The results plotted in �gure 5 are the av-
erage of the �ve di�erent runs, and show the error rates of k-NN and k-NSN
classi�ers as the value of k increases. The best results are obtained by LAESA
and TLAESA. This may happen because the number of base prototypes was set
to 40, which probably is higher than the optimum. Both LAESA and TLAESA
compute more distances than all other algorithms.

Table 2. Ordered table of average classi�cation time of chromosomes

Algorithm/rule Time (secs.)

AESA (k-NSN) 0.024
TLAESA (k-NSN) 0.029
LAESA (k-NSN) 0.029
k-LAESA (k=5) 0.044
GNAT (k-NSN) 0.044
FN75 (k-NSN) 0.045
k-LAESA (k=15) 0.048
vp-tree (k-NSN) 0.060
k-NN (exhaustive) 0.091

Extending Fast Nearest Neighbour Search Algorithms 595

20

25

30

 1 3 5 7 9

er
ro

r
ra

te
 %

value of k

PHONEME database

kd-tree (k-NSN)
LAESA (k-NSN)

AESA (k-NSN)
TLAESA (k-NSN)

FN75 (k-NSN)
vp-tree (k-NSN)
GNAT (k-NSN)

k-NN

Fig. 5. Error rate comparison in phoneme classi�cation

From this two sets of experiments we can conclude that for low values of k (the
most often used) the error rates of the k-NSN rule are always better than those of
a NN with the same computational cost, and it nearly reaches or even improves
the k-NN error rate for some tasks. Thus, this new rule may be interesting for
some real tasks because it may obtain better results than k-NN classi�ers and
improves NN error rates with (almost) no extra computational e�ort.

4 Conclusions and Future Work

A new NN based classi�cation rule (the k-NSN rule) has been developed. Our
experiments show that classi�cation results similar to those of the k-NN rule are
obtained using this rule with very little extra computational e�ort with respect to
a NN classi�er. The k-NSN rule is applicable to any approximation-elimination
NN search algorithm. Whenever a fast approximation-elimination NN search
algorithm is applicable, it may be easily modi�ed to classify using the k-NSN
rule and thus it may obtain error rates lower than those of NN, without the extra
overhead of searching for the k-NN. Moreover, the time performance of k-NSN
classi�ers does not depend on the value of k. We have tested this rule with various
well known NN fast search algorithms: kd-tree, Fukunaga and Narendra's, vp-
tree, GNAT. We have also tested the rule with the algorithms of AESA family,
which compute a very low number of distances.

There is still a lot of work to do to explore the possibilities and range of
application of the k-NSN rule. As for the future, we plan to:

� study the evolution of k-NSN error rates as the value of k become higher
than those tested in this work, and compare them with k-NN,

� extend the NN search algorithms we have implemented to �nd the k-NN,
and then make a comparison with k-NSN rule studying error rates and time
performance,

596 Francisco Moreno-Seco et al.

� test the performance of the k-NSN rule as the dimensionality or the number
of classes increase, and

� apply the k-NSN rule to other approximation-elimination NN search algo-
rithms.

Acknowledgments

The authors wish to thank Juan S. Sánchez and Alfons Juan for providing us
the PHONEME database and the chromosomes database, respectively. We also
would like to thank José Manuel Iñesta and the anonymous referees for their
valuable comments.

References

[1] Alinat, P.: Periodic progress report 4, ROARS project ESPRIT II - Number
5516. Thomson Technical Report TS ASM 93/S/EGS/NC/079 (1993) 593

[2] Brin, S.: Near Neighbor Search in Large Metric Spaces. Proceedings of the 21st

VLDB Conference (1995) 574�584 590, 591
[3] Duda, R., Hart, P.: Pattern Classi�cation and Scene Analysis. Wiley (1973) 589
[4] Friedman, J. H., Bentley, J. L., Finkel, R.A.: An algorithm for �nding best

matches in logarithmic expected time. ACM Transactions on Mathematical Soft-
ware (1977) 3 209�226 590, 591

[5] Fukunaga, K., Narendra, M.: A branch and bound algorithm for computing k�
nearest neighbors. IEEE Trans. Computing (1975) 24 750�753 590, 591

[6] Granum, E., Thomason, M.G.: Automatically inferred Markov network models
for classi�cation of chromosomal band pattern structures. Cytometry (1990) 11
26�39 593

[7] Granum, E., Thomason, M.G., Gregor, J.: On the use of automatically inferred
Markov networks for chromosome analysis. In Automation of Cytogenetics, C.
Lundsteen and J. Piper, eds., Springer-Verlag (1989) 233�251 593

[8] Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall (1988)
592

[9] Lundsteen, C., Phillip, J., Granum, E.: Quantitative analysis of 6985 digitized
trypsin G-banded human metaphase chromosomes. Clinical Genetics (1980) 18
355�370 593

[10] Moreno-Seco, F., Micó, L., Oncina, J.: Extending LAESA fast nearest neighbour
algorithm to �nd the k nearest neighbours. Structural, Syntactic, and Statistical
Pattern Recognition. Lecture Notes in Computer Science, T. Caelly et al (Eds.)
vol. 2396, Springer-Verlag (2002) 691�699 594

[11] Moreno-Seco, F., Micó, L., Oncina, J.: A modi�cation of the LAESA algorithm
for approximated k-NN classi�cation. Pattern Recognition Letters (2003) 24

(1-3) 47�53 590
[12] Micó, L., Oncina, J., Carrasco, R.C.: A fast branch and bound nearest neighbour

classi�er in metric spaces. Pattern Recognition Letters (1996) 17 731�739 591,
593

[13] Micó, L., Oncina, J., Vidal, E.: A new version of the nearest neighbour approxi-
mating and eliminating search algorithm (AESA) with linear preprocessing-time
and memory requirements. Pattern Recognition Letters (1994) 15 9�17 590,
591, 593

Extending Fast Nearest Neighbour Search Algorithms 597

[14] Nene, S., Nayar, S.: A Simple Algorithm for Nearest Neighbor Search in High
Dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence
(1997) 19(9) 989�1003 590

[15] Ramasubramanian, R., Paliwal, K.K.: Fast nearest-neighbor search algorithms
based on approximation-elimination search. Pattern Recognition 33 (2000)
1497�1510 590

[16] Vidal, E.: New formulation and improvements of the Nearest-Neighbour Ap-
proximating and Eliminating Search Algorithm (AESA). Pattern Recognition
Letters (1994) 15 1�7 590, 591

[17] Wagner, R.A., Fischer, M. J.: The String-to-String Correction Problem. Journal
of the Association for Computing Machinery (1974) 21(1) 168�173 593

[18] Yianilos, P.N.: Data Structures and Algorithms for Nearest Neighbor Search in
General Metric Spaces. ACM-SIAM Symposium on Discrete Algorithms (1993)
311�321 590, 591

[19] Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing (1989) 18 1245�1262
593

	Extending Fast Nearest Neighbour Search Algorithms for Approximate k-NN Classification
	Introduction
	The k-NSN Classification Rule
	Experiments
	Experiments with Synthetic Data
	Experiments with Real Data

	Conclusions and Future Work

