TREE LANGUAGES ARITHMETIC COMPRESSION

Jorge Calera-Rubio, Rafael C. Carrasco and Jose Oncina *

Departamento de Lenguajes y Sistemas Informéticos
Universidad de Alicante, E-03071 Alicante
E-mail: {calera, carrasco, oncina}@dlsi.ua.es

Abstract

In this paper, we explore the applicability to compression tasks of the algorithms for
regular language inference from stochastic samples. We compare two arithmetic encoders
based upon two different kinds of formal languages: string languages and tree languages. The
experiments show that tree-based methods outperform the predictive capability of string-
based methods when they are applied to files containing structural information and, then,
they allow for better compression rates.

Keywords: Formal languages; automata theory; inductive learning; arithmetic com-
pression.

1 Introduction

Stochastic samples are collections of examples that have been generated following a probabilistic
distribution. There are different reasons that make inferring languages from stochastic samples
an interesting issue:

1. Inference methods usually tend to overgeneralize the input data. There exist different
ways to overcome this bias: for instance, one can assume that the examples are randomly
generated from a given unknown stationary source. This assumption allows one to avoid
using counter-examples which are usually scarce or not representative. For instance, not

WUn?

all sounds which are not an “a” can appear in speech. It is not unusual, however, that the
examples used to learn a language come from a random or noisy source.

2. Improving the results in prediction or data compression tasks requires accurate stochastic
models of the source generating the data.

On the other hand, there exist situations (as handwritten character recognition) where the
string representation does not capture the richness of the input. Indeed, other techniques, as
using trees to represent the inputs, are more adequate because they allow one to describe hier-
archical relations between the components and they incorporate in a natural fashion structural
information, i.e., information about how the representation was generated. Another point worth
to be remarked is that any method used to identify regular tree languages can be used to identify
context-free languages if the samples contain structural information [13].

In this paper we describe, in section 2, how to integrate both requirements (stochastic identifi-
cation and tree description) and explore, in section 3, its applicability to information compression
in tasks where the data are hierarchically structured.

“The authors thank the Spanish CICYT for partial support through project TIC97-0941.

algorithm 1
input: S (sample set)
output : Q(X*) (set of strings)
Q) =10
1=\ m=1
do whilez <m
if Q(z;) =x; then
add z; to Q(X*)
for j =1 to |X|
if z;a; is a prefix in S then
m=m + 1, T, = z;a;
endif
endfor
endif
t=1+1
end do

Figure 1: Algorithm computing Q(%*).

2 Identifying stochastic regular languages

In previous work, we developed a collection of methods to identify regular languages, both for
string representations [4] and tree representations [3], when samples are stochastically generated.
They are briefly described in this section.

2.1 String languages

In the case of string regular languages, our method is an extension of the method described
by Lang [9] for deterministic finite-state automata (DFA) based, in turn, in a previous one by
Trakhtenbrot and Barzdin [12] and extended by Oncina, Garcia and Vidal [11] to a more general
class of finite state machines (Mealy extended machines that perform translation tasks).

Given the alphabet ¥ = {a1, as, ..., a‘2|}, we denote with X* the universal language of strings
obtained by concatenation of symbols in Y. The special symbol A represents a string of length
zero (the empty string) and # denotes the end of string. The canonical order is the relation
order in ¥* such that x < y means one of the following: either z is shorter than y or both
have same length and z precedes y alphabetically. Given any DFA [8] M = (Q, %, 0,q1, F), it
is possible to identify every node ¢ € @) in the automaton with a single string in >%*: the first
string (following canonical order) leading from the initial state ¢; to node ¢. In particular, for
w € ¥*, let Q(w) be the string characterizing node d(gr,w). It is straightforward to prove that
the structure of the DFA is completely defined once function € is known, as the set Q(X*) is
isomorphic to @ [4] and the transition function § is then defined by §(w,a) = Q(wa).

In order to evaluate Q(X*), one can use the algorithm in Fig. 1. Note that there is an
implicit loop when checking Q(z;) = z; whose index j ranges from 1 to 4 — 1 and looks for
the first string 2; equivalent to x;, that is, looks for z; < z; such that z; = Q(z;). Stochastic
regular languages are defined by a stochastic DFA M = (Q, %, d,p) where for every transition
d(¢i,a) the automaton also includes a transition probability p(g;,) normalized in such way that
all transition probabilities with the same starting node (end of string symbol included) sum up
to one:

> plgia)=1 (1)

a€XU{#}

Figure 2: Labelled tree.

Function € can also be defined for stochastic automata in the following way: let z; be a can-
didate string for Q(z;). Then, for all symbols a in the alphabet, the probability P(z;aX*|z;X*)
of the strings starting with z;a conditioned to the fact that they contain the prefix z; must
coincide with the probability P(z;aX*|z;X*) of the strings starting with x;a conditioned to the
prefix z;; moreover, Q(z;a) = Q(z;a).

Using the former definition, it is possible to obtain from an experimental sample S an
approximate function which approaches 2 with increasing accuracy as the number n of examples
in S increases. For this purpose, it is enough to apply a stochastic test to the experimental
frequencies (in practice, the true probabilities are unknown) whose confidence level 1 — ay,
depends on the size of the sample in a way such that)" na, < co. This is a consequence of
the Borel-Cantelli lemma [7], as the expected number of stochastic checks that the algorithm
performs cannot grow faster than linearly with the sample size (note that the recursion in
stops if the string is not a prefix of the sample).

2.2 Tree languages

With the given alphabet X it is possible to build objects with a richer structure than strings: for
instance, labelled trees. We will denote with ©7 the set of all different labelled trees that can
be build using the symbols in 3 for the node labels. These trees can be coded using functional
notation: every node is represented as a function whose name is the node label and whose
arguments are the subtrees generated by the siblings of the node. For instance, the tree in
fig. 2 is described in functional notation as a(b(a(bc))c). Our algorithm needs to define an order
relation between trees consistent with the depth of the trees!, that is, shallow trees must precede
deeper trees.

Regular tree languages are those languages that can be recognized by deterministic tree
automata (DTA). A DTA is a generalization of a DFA and is able to process (bottom-up)
labelled trees: a state is assigned to each node in the tree depending on its label and depending
also on the states tied to the siblings of the node. In a way parallel to DFA, the analysis
ends when the last position is reached (in this case, the root of the tree) and the type of node
(accepting or non-accepting) defines the output of the automaton. Note that it is not necessary
to introduce an initial state as the analysis starts simultaneously from all leaves and only their
label determines the state tied to the leaf.

In order to use a DTA as a stochastic model, it is necessary to assign a probability to every
state transition and also to every node g. Formally, a stochastic DTA is A = (Q,%,d,p,7),
where

¢ Q=1{q,q,.-,q} is a finite set of states;
e 3 = {a1,a2,...,a5|} is the finite set of labels;

'The depth of a tree is given by the maximum distance between a leaf and the root of the tree.

algorithm 2
input: S (sample set)
output : Q(X7T) (set of subtrees)
QXT) =0 fori=1to|%
T = a;
endfor
m = |3
do whilez <m
if Q(z;) =x; then
add z; to Q(XT)
do Vit = f(t1,...tx) subtree in S not in {z1,...,zm}
if (t,...,tr) € QET)* then
m=m+1,z, =1
endif
end do
endif
end do

Figure 3: Algorithm computing Q(X7).

e 5 ={0p,01,...0n} is a set of transition functions;
e p={po,p1,---Pn} is the set of transition probabilities;
e r:(@Q — [0,1] is the probability that the tree is of type g.

The last function satisfies > -, 7(g) = 1. Because the number of siblings of a node is not fixed,
we need a set of transition functions (rather than a single one) 6 = {do, o1, ...0, }, where n is the
maximum number of siblings allowed in the language. Every function §; takes as arguments a
symbol in 3 and k states (one for every sibling of the node) and returns a new state, that is,
0+ 3 X Qk = Q.

For instance, if ¢ is a leaf subtree with label a, then &k = 0 and the state tied to ¢ is 0(t) = do(a).
However, if ¢ is a subtree labelled f with two siblings generating subtrees ¢; and 5 respectively,
then ¢ = f(t1,t2) and the state tied to ¢ is 6(t) = d2(f,(¢1),0(t2)). By convention, undefined
transitions lead to invalid trees.

The normalizing condition for the set of functions py, : ¥ x Q¥ — [0, 1] is that all probabilities
of transitions leading to the same state ¢ must sum up to one. That is, for all ¢ € Q

> > pe(frar, - ak) = 1. (2)

fEX k=0 q1,92,...,qr€EQ
q=0(f,q1,92,---,q%)

Once the functions py are given, the probability that a tree ¢ is generated is the product of all
transition probabilities used while analyzing ¢. In order to ensure that the sum of probabilities
for all trees is one, this result has to be multiplied by r(¢q), being ¢ = d(¢) the state tied ¢, that
is, p(t|A) = r(0(¢t)) m(t|6(t)), where m(¢|d(¢)) represents the probability that ¢ is generated from
state ¢ = §(t), a number that can be recursively computed. For instance, for a tree t = f(t1,t2),
one gets:

m(t[6(2)) = p2(f,6(t1),0(t2)) m(t1]0(t1)) 7(t2|d(t2)). (3)

In a way similar to stochastic DFA, the structure of the stochastic DTA is defined (see
algorithm 2) by a function Q(¢) = s giving the first tree s such that §(s) = d(¢). Searching for
a tree z; candidate to (z;) requires the following checks:

1. The relative frequency in the sample of trees with root type z; must be similar to the
relative frequency of trees with root type ;.

2. The relative frequency in a given context t; = f(s1, ..., %}, ..., 53) of z;-type nodes must be
similar to the relative frequency of x;-type nodes in the same context t; = f(s1, ..., T, ..., Sk);
moreover §(t;) = §(t;).

The meaning of the word similar in the former paragraph is given by a statistical check applied
to the experimental frequencies. Once more, if we choose a the confidence level 1 — ay, satisfying
>, Ny, < 00, the number of mistakes as n (the sample size) grows is finite.

In this work, we have improved the inference algorithms described in this section in order
to reuse the information carried by the states which are found to be equivalent to another one.
Note that in the previous description we neglect the information about the strings (or trees)
containing a prefix (subtree) z; equivalent to a previous one z;. However, this information can
speed up the convergence of the identification process. Therefore, we have introduced a state
merging technique that improves the efficiency although makes implementation considerably
harder.

3 Application of the stochastic models to tree compression

We implemented two arithmetic encoders[6, 10] and their corresponding decoders based upon
the inference methods described in former section and applied them to files containing data
structured as trees. For this purpose we used the following tree grammar:

1: q = 67(5 4,491,959, 6,9,97) (0.2) " — 5E) (L)
2: q = 05(5,94,91,95,90,97) 02) 1. o _ 50(1;) (1'0)
30w = %(Saa) 06) | 15, o - sole) (10
o= (B0) 03) | 130 0 Z s (L0)
5: ¢ = 6(E.q) 0.7 | |y i~ 50() 10) (4)
6: g2 = 03(T,q2,910,93) (0.2) 15: ZS _ 60(1—31—) (1'0)
T = 0(lh) O8) | 16 g0 = dos) (10)
8: a3 = 0i(Fau) 09 | 17 o fo(n) (10)
9: @3 = 01(F,q1) (0.1) S =% '

The first number identifies the rule, the number in parenthesis is the transition probability and
terminals appear in typewriter font. Moreover, r(q;) is one if 4 = 0 and zero otherwise. In
this way, the sentences that can be generated are parse trees of conditional structures such as
if...then...else...endif, if...then...endif and language commands as print together
with numerical expressions (n) linked with sum or product operators. For instance, the sentence
"intpnepn £’ has a derivation tree:

SAE(T(F(0)))tS(pE(T(F(n))))eS(pE(T(F(n))))f)

An alternative representation for this tree is the string of rules applied in its (rightmost) deriva-
tion:
1;13;3;5;7;8;17;14;12;3;5;7;8;17; 14;11;5; 7; 8; 17; 10

where each number identifies one rule in the grammar. Of course, in this representation, the
probability of the tree is easily obtained by simply multiplying the rule probabilities. In the string
arithmetic encoder (decoder), the input is encoded (decoded) according to the probabilities the
model predicts for every continuation after a prefix. In the case of trees, our model predicts
what rules can be applied at a given point in the rightmost derivation and generates the codes
according to this probability distribution (except for the very the first symbol, which is predicted

% 45t 7
o
2 40 A
p 35 + ‘ o
N ></
n P
g 30 t 1
o 25t R 1
o
= 20¢
[}
@ 15 |
o
o L
S 10
8 =5t

0 1 1 1 1 1

0 100 200 300 400 500 600
original tree file size (kbytes)

Figure 4: Compressed file size. Long dashed: gzip; short dashed: string arithmetic encoding;
continuous: tree arithmetic encoding.

according to r(g;)). This procedure becomes more efficient when the grammar is LL(1) [1]. In
such case, both encoding and decoding can be implemented in a sequential way.

In figure 4, we show the compressed size of the files generated with the example grammar
after our arithmetic encoders are applied and compare it to the size obtained with a standard
compressor as GNU’s gzip. The model used for the arithmetic coding is included as a header
in the compressed file. As seen in the figure, the string model gives compression rates around
12 that are close to those obtained with gzip. However, the tree model reduces the size of the
compressed file by a factor of two (between 25 and 30 times the original one). We have checked
that in all cases the results are consistent with the entropic lower limit of the compressed
file [5, 2]:

> logy p(t|A") (5)

teF

where F' is the sample file and p(¢|A’) is the probability that our model A’ assigns to the tree
t. Indeed, all encoders perform close to the bounds given by (5). However, both gzip and the
string encoder are not able to use the a priori knowledge that the tree model incorporates: that
is, that the file contains trees. This fact is responsible for the additional compression obtained
with the tree model.

Although the size of the model is relatively small for large files, tree inference would be
completely useful if an incremental method was used. This would avoid coding the model as
part of the compressed file. Finally, it should be remarked that arithmetic encoders could be
also used for on-line compression if an @ priori model is available, while gzip cannot compress
isolated trees.

4 Conclusions

We have implemented two arithmetic encoders based upon the inference models we developed
previously for stochastic languages. The first one learns from string samples while the second

one learns from tree samples. In case the file to be compressed includes structural information
(that is, the information is described as trees), the string models provide similar results to the
Lempel-Ziv compression methods. However, tree models allow for higher compression rates.
Then, an incremental method which avoids coding the model would be of interest.

References

[1] Aho, A.V. & Ullman, J.D. “The theory of parsing, translation and compiling. Volume I:
Parsing”. Prentice-Hall, Englewood Cliffs, NJ (1972).

[2] Calera-Rubio, J. & Carrasco, R.C. “Computing the relative entropy between regular tree
languages”. Information Proccessing Letter (1998). To appear.

[3] Carrasco, R.C, Oncina, J. y Calera-Rubio, J. “Stochastic inference of regular tree lan-
guages”. Proceedings of the 3rd International Colloquium on Grammatical Inference. Ames
(Iowa). Lecture Notes on Artificial Intelligence (1998) 1433 , 187-198.

[4] R.C. Carrasco and J. Oncina. “Learning deterministic regular grammars from stochastic
samples in polynomial time”. Theoretical Informatics and Applications (1998). To appear.

[5] Carrasco, R.C. “Accurate computation of the relative entropy between stochastic regular
grammars”. Theoretical Informatics and Applications 31 (1997), 437-444.

[6] Cover, T.M and Thomas, J.A. “Elements of Information Theory”. John Wiley and Sons,
New York (1991).

[7] Feller, W. “An introduction to probability theory and its applications”. John Wiley and
Sons, New York (1950).

[8] Hopcroft, J.E. and Ullman, J.D. “Introduction to automata theory, languages and compu-
tation”. Addison Wesley, Reading, Massachusetts (1979).

[9] Lang, K. “Random DFA’s can be Approximately Learned from Sparse Uniform Examples”.
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory (1992).

[10] Nelson, M.R. (1991): “Arithmetic coding and statistical modeling”. Dr. Dobb’s Journal of
Software Tools (1991) 16 (February).

[11] Oncina, J., Garcia, P. y Vidal, E. “Learning subsequential transducers for pattern recogni-
tion interpretation tasks”. IEEE Transactions on Pattern Analysis and Machine Intelligence
(1993) 15 448-458.

[12] Trakhtenbrot,B.A. and Barzdin, Y.M. “Finite Automata - Behavior and Synthesis”. North-
Holland, Amsterdam (1973).

[13] Sakakibara, Y. “Efficient learning of context-free grammars from positive structural exam-

ples”. Information and Computation (1992) 97,23-60.

