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Abstrat

In this paper, we explore the appliability to ompression tasks of the algorithms for

regular language inferene from stohasti samples. We ompare two arithmeti enoders

based upon two di�erent kinds of formal languages: string languages and tree languages. The

experiments show that tree-based methods outperform the preditive apability of string-

based methods when they are applied to �les ontaining strutural information and, then,

they allow for better ompression rates.

Keywords: Formal languages; automata theory; indutive learning; arithmeti om-

pression.

1 Introdution

Stohasti samples are olletions of examples that have been generated following a probabilisti

distribution. There are di�erent reasons that make inferring languages from stohasti samples

an interesting issue:

1. Inferene methods usually tend to overgeneralize the input data. There exist di�erent

ways to overome this bias: for instane, one an assume that the examples are randomly

generated from a given unknown stationary soure. This assumption allows one to avoid

using ounter-examples whih are usually sare or not representative. For instane, not

all sounds whih are not an \a" an appear in speeh. It is not unusual, however, that the

examples used to learn a language ome from a random or noisy soure.

2. Improving the results in predition or data ompression tasks requires aurate stohasti

models of the soure generating the data.

On the other hand, there exist situations (as handwritten harater reognition) where the

string representation does not apture the rihness of the input. Indeed, other tehniques, as

using trees to represent the inputs, are more adequate beause they allow one to desribe hier-

arhial relations between the omponents and they inorporate in a natural fashion strutural

information, i.e., information about how the representation was generated. Another point worth

to be remarked is that any method used to identify regular tree languages an be used to identify

ontext-free languages if the samples ontain strutural information [13℄.

In this paper we desribe, in setion 2, how to integrate both requirements (stohasti identi�-

ation and tree desription) and explore, in setion 3, its appliability to information ompression

in tasks where the data are hierarhially strutured.

�
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algorithm 1

input:S (sample set)

output:
(�

�

) (set of strings)


(�

�

) = ;

x

1

= �, m = 1

do while i � m

if 
(x

i

) = x

i

then

add x

i

to 
(�

�

)

for j = 1 to j�j

if x

i

a

j

is a pre�x in S then

m = m+ 1, x

m

= x

i

a

j

endif

endfor

endif

i = i+ 1

end do

Figure 1: Algorithm omputing 
(�

�

).

2 Identifying stohasti regular languages

In previous work, we developed a olletion of methods to identify regular languages, both for

string representations [4℄ and tree representations [3℄, when samples are stohastially generated.

They are briey desribed in this setion.

2.1 String languages

In the ase of string regular languages, our method is an extension of the method desribed

by Lang [9℄ for deterministi �nite-state automata (DFA) based, in turn, in a previous one by

Trakhtenbrot and Barzdin [12℄ and extended by Onina, Gar��a and Vidal [11℄ to a more general

lass of �nite state mahines (Mealy extended mahines that perform translation tasks).

Given the alphabet � = fa

1

; a

2

; :::; a

j�j

g, we denote with �

�

the universal language of strings

obtained by onatenation of symbols in �. The speial symbol � represents a string of length

zero (the empty string) and # denotes the end of string. The anonial order is the relation

order in �

�

suh that x < y means one of the following: either x is shorter than y or both

have same length and x preedes y alphabetially. Given any DFA [8℄ M = (Q;�; Æ; q

I

; F ), it

is possible to identify every node q 2 Q in the automaton with a single string in �

�

: the �rst

string (following anonial order) leading from the initial state q

I

to node q. In partiular, for

w 2 �

�

, let 
(w) be the string haraterizing node Æ(q

I

; w). It is straightforward to prove that

the struture of the DFA is ompletely de�ned one funtion 
 is known, as the set 
(�

�

) is

isomorphi to Q [4℄ and the transition funtion Æ is then de�ned by Æ(w; a) = 
(wa).

In order to evaluate 
(�

�

), one an use the algorithm in Fig. 1. Note that there is an

impliit loop when heking 
(x

i

) = x

i

whose index j ranges from 1 to i � 1 and looks for

the �rst string x

j

equivalent to x

i

, that is, looks for x

j

< x

i

suh that x

j

= 
(x

i

). Stohasti

regular languages are de�ned by a stohasti DFA M = (Q;�; Æ; p) where for every transition

Æ(q

i

; a) the automaton also inludes a transition probability p(q

i

; a) normalized in suh way that

all transition probabilities with the same starting node (end of string symbol inluded) sum up

to one:

X

a2�[f#g

p(q

i

; a) = 1 (1)



a

b c

a

b c

Figure 2: Labelled tree.

Funtion 
 an also be de�ned for stohasti automata in the following way: let x

j

be a an-

didate string for 
(x

i

). Then, for all symbols a in the alphabet, the probability P (x

i

a�

�

jx

i

�

�

)

of the strings starting with x

i

a onditioned to the fat that they ontain the pre�x x

i

must

oinide with the probability P (x

j

a�

�

jx

j

�

�

) of the strings starting with x

j

a onditioned to the

pre�x x

j

; moreover, 
(x

i

a) = 
(x

j

a).

Using the former de�nition, it is possible to obtain from an experimental sample S an

approximate funtion whih approahes 
 with inreasing auray as the number n of examples

in S inreases. For this purpose, it is enough to apply a stohasti test to the experimental

frequenies (in pratie, the true probabilities are unknown) whose on�dene level 1 � �

n

depends on the size of the sample in a way suh that

P

n

n�

n

< 1. This is a onsequene of

the Borel-Cantelli lemma [7℄, as the expeted number of stohasti heks that the algorithm

performs annot grow faster than linearly with the sample size (note that the reursion in 


stops if the string is not a pre�x of the sample).

2.2 Tree languages

With the given alphabet � it is possible to build objets with a riher struture than strings: for

instane, labelled trees. We will denote with �

T

the set of all di�erent labelled trees that an

be build using the symbols in � for the node labels. These trees an be oded using funtional

notation: every node is represented as a funtion whose name is the node label and whose

arguments are the subtrees generated by the siblings of the node. For instane, the tree in

�g. 2 is desribed in funtional notation as a(b(a(b))). Our algorithm needs to de�ne an order

relation between trees onsistent with the depth of the trees

1

, that is, shallow trees must preede

deeper trees.

Regular tree languages are those languages that an be reognized by deterministi tree

automata (DTA). A DTA is a generalization of a DFA and is able to proess (bottom-up)

labelled trees: a state is assigned to eah node in the tree depending on its label and depending

also on the states tied to the siblings of the node. In a way parallel to DFA, the analysis

ends when the last position is reahed (in this ase, the root of the tree) and the type of node

(aepting or non-aepting) de�nes the output of the automaton. Note that it is not neessary

to introdue an initial state as the analysis starts simultaneously from all leaves and only their

label determines the state tied to the leaf.

In order to use a DTA as a stohasti model, it is neessary to assign a probability to every

state transition and also to every node q. Formally, a stohasti DTA is A = (Q;�; Æ; p; r),

where

� Q = fq

1

; q

2

; :::; q

jQj

g is a �nite set of states;

� � = fa

1

; a

2

; :::; a

j�j

g is the �nite set of labels;

1

The depth of a tree is given by the maximum distane between a leaf and the root of the tree.



algorithm 2

input:S (sample set)

output:
(�

T

) (set of subtrees)


(�

T

) = ; for i = 1 to j�j

x

i

= a

i

endfor

m = j�j

do while i � m

if 
(x

i

) = x

i

then

add x

i

to 
(�

T

)

do 8t = f(t

1

; :::t

k

) subtree in S not in fx

1

; :::; x

m

g

if (t

1

; :::; t

k

) 2 
(�

T

)

k

then

m = m+ 1, x

m

= t

endif

end do

endif

end do

Figure 3: Algorithm omputing 
(�

T

).

� Æ = fÆ

0

; Æ

1

; :::Æ

n

g is a set of transition funtions;

� p = fp

0

; p

1

; :::p

n

g is the set of transition probabilities;

� r : Q! [0; 1℄ is the probability that the tree is of type q.

The last funtion satis�es

P

q2Q

r(q) = 1. Beause the number of siblings of a node is not �xed,

we need a set of transition funtions (rather than a single one) Æ = fÆ

0

; Æ

1

; :::Æ

n

g, where n is the

maximum number of siblings allowed in the language. Every funtion Æ

k

takes as arguments a

symbol in � and k states (one for every sibling of the node) and returns a new state, that is,

Æ

k

: ��Q

k

! Q.

For instane, if t is a leaf subtree with label a, then k = 0 and the state tied to t is Æ(t) = Æ

0

(a).

However, if t is a subtree labelled f with two siblings generating subtrees t

1

and t

2

respetively,

then t = f(t

1

; t

2

) and the state tied to t is Æ(t) = Æ

2

(f; Æ(t

1

); Æ(t

2

)). By onvention, unde�ned

transitions lead to invalid trees.

The normalizing ondition for the set of funtions p

k

: ��Q

k

! [0; 1℄ is that all probabilities

of transitions leading to the same state q must sum up to one. That is, for all q 2 Q

X

f2�

n

X

k=0

X

q

1

;q

2

;:::;q

k

2Q

q=Æ(f;q

1

;q

2

;:::;q

k

)

p

k

(f; q

1

; :::; q

k

) = 1: (2)

One the funtions p

k

are given, the probability that a tree t is generated is the produt of all

transition probabilities used while analyzing t. In order to ensure that the sum of probabilities

for all trees is one, this result has to be multiplied by r(q), being q = Æ(t) the state tied t, that

is, p(tjA) = r(Æ(t)) �(tjÆ(t)), where �(tjÆ(t)) represents the probability that t is generated from

state q = Æ(t), a number that an be reursively omputed. For instane, for a tree t = f(t

1

; t

2

),

one gets:

�(tjÆ(t)) = p

2

(f; Æ(t

1

); Æ(t

2

)) �(t

1

jÆ(t

1

)) �(t

2

jÆ(t

2

)): (3)

In a way similar to stohasti DFA, the struture of the stohasti DTA is de�ned (see

algorithm 2) by a funtion 
(t) = s giving the �rst tree s suh that Æ(s) = Æ(t). Searhing for

a tree x

j

andidate to 
(x

i

) requires the following heks:



1. The relative frequeny in the sample of trees with root type x

j

must be similar to the

relative frequeny of trees with root type x

i

.

2. The relative frequeny in a given ontext t

j

= f(s

1

; :::; x

j

; :::; s

k

) of x

j

-type nodes must be

similar to the relative frequeny of x

i

-type nodes in the same ontext t

i

= f(s

1

; :::; x

i

; :::; s

k

);

moreover 
(t

i

) = 
(t

j

).

The meaning of the word similar in the former paragraph is given by a statistial hek applied

to the experimental frequenies. One more, if we hoose a the on�dene level 1��

n

satisfying

P

n

n�

n

<1, the number of mistakes as n (the sample size) grows is �nite.

In this work, we have improved the inferene algorithms desribed in this setion in order

to reuse the information arried by the states whih are found to be equivalent to another one.

Note that in the previous desription we neglet the information about the strings (or trees)

ontaining a pre�x (subtree) x

j

equivalent to a previous one x

i

. However, this information an

speed up the onvergene of the identi�ation proess. Therefore, we have introdued a state

merging tehnique that improves the eÆieny although makes implementation onsiderably

harder.

3 Appliation of the stohasti models to tree ompression

We implemented two arithmeti enoders[6, 10℄ and their orresponding deoders based upon

the inferene methods desribed in former setion and applied them to �les ontaining data

strutured as trees. For this purpose we used the following tree grammar:

1 : q

0

= Æ

7

(S; q

4

; q

1

; q

5

; q

0

; q

6

; q

0

; q

7

) (0:2)

2 : q

0

= Æ

5

(S; q

4

; q

1

; q

5

; q

0

; q

7

) (0:2)

3 : q

0

= Æ

2

(S; q

8

; q

1

) (0:6)

4 : q

1

= Æ

3

(E; q

1

; q

9

; q

2

) (0:3)

5 : q

1

= Æ

1

(E; q

2

) (0:7)

6 : q

2

= Æ

3

(T; q

2

; q

10

; q

3

) (0:2)

7 : q

2

= Æ

1

(T; q

3

) (0:8)

8 : q

3

= Æ

1

(F; q

11

) (0:9)

9 : q

3

= Æ

1

(F; q

1

) (0:1)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

10 : q

4

= Æ

0

(i) (1:0)

11 : q

5

= Æ

0

(t) (1:0)

12 : q

6

= Æ

0

(e) (1:0)

13 : q

7

= Æ

0

(f) (1:0)

14 : q

8

= Æ

0

(p) (1:0)

15 : q

9

= Æ

0

(+) (1:0)

16 : q

10

= Æ

0

(�) (1:0)

17 : q

11

= Æ

0

(n) (1:0)

(4)

The �rst number identi�es the rule, the number in parenthesis is the transition probability and

terminals appear in typewriter font. Moreover, r(q

i

) is one if i = 0 and zero otherwise. In

this way, the sentenes that an be generated are parse trees of onditional strutures suh as

if...then...else...endif, if...then...endif and language ommands as print together

with numerial expressions (n) linked with sum or produt operators. For instane, the sentene

"i n t p n e p n f" has a derivation tree:

S(iE(T (F (n)))tS(pE(T (F (n))))eS(pE(T (F (n))))f)

An alternative representation for this tree is the string of rules applied in its (rightmost) deriva-

tion:

1; 13; 3; 5; 7; 8; 17; 14; 12; 3; 5; 7; 8; 17; 14; 11; 5; 7; 8; 17; 10

where eah number identi�es one rule in the grammar. Of ourse, in this representation, the

probability of the tree is easily obtained by simply multiplying the rule probabilities. In the string

arithmeti enoder (deoder), the input is enoded (deoded) aording to the probabilities the

model predits for every ontinuation after a pre�x. In the ase of trees, our model predits

what rules an be applied at a given point in the rightmost derivation and generates the odes

aording to this probability distribution (exept for the very the �rst symbol, whih is predited
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Figure 4: Compressed �le size. Long dashed: gzip; short dashed: string arithmeti enoding;

ontinuous: tree arithmeti enoding.

aording to r(q

i

)). This proedure beomes more eÆient when the grammar is LL(1) [1℄. In

suh ase, both enoding and deoding an be implemented in a sequential way.

In �gure 4, we show the ompressed size of the �les generated with the example grammar

after our arithmeti enoders are applied and ompare it to the size obtained with a standard

ompressor as GNU's gzip. The model used for the arithmeti oding is inluded as a header

in the ompressed �le. As seen in the �gure, the string model gives ompression rates around

12 that are lose to those obtained with gzip. However, the tree model redues the size of the

ompressed �le by a fator of two (between 25 and 30 times the original one). We have heked

that in all ases the results are onsistent with the entropi lower limit of the ompressed

�le [5, 2℄:

X

t2F

log

2

p(tjA

0

) (5)

where F is the sample �le and p(tjA

0

) is the probability that our model A

0

assigns to the tree

t. Indeed, all enoders perform lose to the bounds given by (5). However, both gzip and the

string enoder are not able to use the a priori knowledge that the tree model inorporates: that

is, that the �le ontains trees. This fat is responsible for the additional ompression obtained

with the tree model.

Although the size of the model is relatively small for large �les, tree inferene would be

ompletely useful if an inremental method was used. This would avoid oding the model as

part of the ompressed �le. Finally, it should be remarked that arithmeti enoders ould be

also used for on-line ompression if an a priori model is available, while gzip annot ompress

isolated trees.

4 Conlusions

We have implemented two arithmeti enoders based upon the inferene models we developed

previously for stohasti languages. The �rst one learns from string samples while the seond



one learns from tree samples. In ase the �le to be ompressed inludes strutural information

(that is, the information is desribed as trees), the string models provide similar results to the

Lempel-Ziv ompression methods. However, tree models allow for higher ompression rates.

Then, an inremental method whih avoids oding the model would be of interest.
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