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Abstra
t

In this paper, we explore the appli
ability to 
ompression tasks of the algorithms for

regular language inferen
e from sto
hasti
 samples. We 
ompare two arithmeti
 en
oders

based upon two di�erent kinds of formal languages: string languages and tree languages. The

experiments show that tree-based methods outperform the predi
tive 
apability of string-

based methods when they are applied to �les 
ontaining stru
tural information and, then,

they allow for better 
ompression rates.
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1 Introdu
tion

Sto
hasti
 samples are 
olle
tions of examples that have been generated following a probabilisti


distribution. There are di�erent reasons that make inferring languages from sto
hasti
 samples

an interesting issue:

1. Inferen
e methods usually tend to overgeneralize the input data. There exist di�erent

ways to over
ome this bias: for instan
e, one 
an assume that the examples are randomly

generated from a given unknown stationary sour
e. This assumption allows one to avoid

using 
ounter-examples whi
h are usually s
ar
e or not representative. For instan
e, not

all sounds whi
h are not an \a" 
an appear in spee
h. It is not unusual, however, that the

examples used to learn a language 
ome from a random or noisy sour
e.

2. Improving the results in predi
tion or data 
ompression tasks requires a

urate sto
hasti


models of the sour
e generating the data.

On the other hand, there exist situations (as handwritten 
hara
ter re
ognition) where the

string representation does not 
apture the ri
hness of the input. Indeed, other te
hniques, as

using trees to represent the inputs, are more adequate be
ause they allow one to des
ribe hier-

ar
hi
al relations between the 
omponents and they in
orporate in a natural fashion stru
tural

information, i.e., information about how the representation was generated. Another point worth

to be remarked is that any method used to identify regular tree languages 
an be used to identify


ontext-free languages if the samples 
ontain stru
tural information [13℄.

In this paper we des
ribe, in se
tion 2, how to integrate both requirements (sto
hasti
 identi�-


ation and tree des
ription) and explore, in se
tion 3, its appli
ability to information 
ompression

in tasks where the data are hierar
hi
ally stru
tured.

�
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algorithm 1

input:S (sample set)

output:
(�

�

) (set of strings)


(�

�

) = ;

x

1

= �, m = 1

do while i � m

if 
(x

i

) = x

i

then

add x

i

to 
(�

�

)

for j = 1 to j�j

if x

i

a

j

is a pre�x in S then

m = m+ 1, x

m

= x

i

a

j

endif

endfor

endif

i = i+ 1

end do

Figure 1: Algorithm 
omputing 
(�

�

).

2 Identifying sto
hasti
 regular languages

In previous work, we developed a 
olle
tion of methods to identify regular languages, both for

string representations [4℄ and tree representations [3℄, when samples are sto
hasti
ally generated.

They are brie
y des
ribed in this se
tion.

2.1 String languages

In the 
ase of string regular languages, our method is an extension of the method des
ribed

by Lang [9℄ for deterministi
 �nite-state automata (DFA) based, in turn, in a previous one by

Trakhtenbrot and Barzdin [12℄ and extended by On
ina, Gar
��a and Vidal [11℄ to a more general


lass of �nite state ma
hines (Mealy extended ma
hines that perform translation tasks).

Given the alphabet � = fa

1

; a

2

; :::; a

j�j

g, we denote with �

�

the universal language of strings

obtained by 
on
atenation of symbols in �. The spe
ial symbol � represents a string of length

zero (the empty string) and # denotes the end of string. The 
anoni
al order is the relation

order in �

�

su
h that x < y means one of the following: either x is shorter than y or both

have same length and x pre
edes y alphabeti
ally. Given any DFA [8℄ M = (Q;�; Æ; q

I

; F ), it

is possible to identify every node q 2 Q in the automaton with a single string in �

�

: the �rst

string (following 
anoni
al order) leading from the initial state q

I

to node q. In parti
ular, for

w 2 �

�

, let 
(w) be the string 
hara
terizing node Æ(q

I

; w). It is straightforward to prove that

the stru
ture of the DFA is 
ompletely de�ned on
e fun
tion 
 is known, as the set 
(�

�

) is

isomorphi
 to Q [4℄ and the transition fun
tion Æ is then de�ned by Æ(w; a) = 
(wa).

In order to evaluate 
(�

�

), one 
an use the algorithm in Fig. 1. Note that there is an

impli
it loop when 
he
king 
(x

i

) = x

i

whose index j ranges from 1 to i � 1 and looks for

the �rst string x

j

equivalent to x

i

, that is, looks for x

j

< x

i

su
h that x

j

= 
(x

i

). Sto
hasti


regular languages are de�ned by a sto
hasti
 DFA M = (Q;�; Æ; p) where for every transition

Æ(q

i

; a) the automaton also in
ludes a transition probability p(q

i

; a) normalized in su
h way that

all transition probabilities with the same starting node (end of string symbol in
luded) sum up

to one:

X

a2�[f#g

p(q

i

; a) = 1 (1)



a

b c

a

b c

Figure 2: Labelled tree.

Fun
tion 
 
an also be de�ned for sto
hasti
 automata in the following way: let x

j

be a 
an-

didate string for 
(x

i

). Then, for all symbols a in the alphabet, the probability P (x

i

a�

�

jx

i

�

�

)

of the strings starting with x

i

a 
onditioned to the fa
t that they 
ontain the pre�x x

i

must


oin
ide with the probability P (x

j

a�

�

jx

j

�

�

) of the strings starting with x

j

a 
onditioned to the

pre�x x

j

; moreover, 
(x

i

a) = 
(x

j

a).

Using the former de�nition, it is possible to obtain from an experimental sample S an

approximate fun
tion whi
h approa
hes 
 with in
reasing a

ura
y as the number n of examples

in S in
reases. For this purpose, it is enough to apply a sto
hasti
 test to the experimental

frequen
ies (in pra
ti
e, the true probabilities are unknown) whose 
on�den
e level 1 � �

n

depends on the size of the sample in a way su
h that

P

n

n�

n

< 1. This is a 
onsequen
e of

the Borel-Cantelli lemma [7℄, as the expe
ted number of sto
hasti
 
he
ks that the algorithm

performs 
annot grow faster than linearly with the sample size (note that the re
ursion in 


stops if the string is not a pre�x of the sample).

2.2 Tree languages

With the given alphabet � it is possible to build obje
ts with a ri
her stru
ture than strings: for

instan
e, labelled trees. We will denote with �

T

the set of all di�erent labelled trees that 
an

be build using the symbols in � for the node labels. These trees 
an be 
oded using fun
tional

notation: every node is represented as a fun
tion whose name is the node label and whose

arguments are the subtrees generated by the siblings of the node. For instan
e, the tree in

�g. 2 is des
ribed in fun
tional notation as a(b(a(b
))
). Our algorithm needs to de�ne an order

relation between trees 
onsistent with the depth of the trees

1

, that is, shallow trees must pre
ede

deeper trees.

Regular tree languages are those languages that 
an be re
ognized by deterministi
 tree

automata (DTA). A DTA is a generalization of a DFA and is able to pro
ess (bottom-up)

labelled trees: a state is assigned to ea
h node in the tree depending on its label and depending

also on the states tied to the siblings of the node. In a way parallel to DFA, the analysis

ends when the last position is rea
hed (in this 
ase, the root of the tree) and the type of node

(a

epting or non-a

epting) de�nes the output of the automaton. Note that it is not ne
essary

to introdu
e an initial state as the analysis starts simultaneously from all leaves and only their

label determines the state tied to the leaf.

In order to use a DTA as a sto
hasti
 model, it is ne
essary to assign a probability to every

state transition and also to every node q. Formally, a sto
hasti
 DTA is A = (Q;�; Æ; p; r),

where

� Q = fq

1

; q

2

; :::; q

jQj

g is a �nite set of states;

� � = fa

1

; a

2

; :::; a

j�j

g is the �nite set of labels;

1

The depth of a tree is given by the maximum distan
e between a leaf and the root of the tree.



algorithm 2

input:S (sample set)

output:
(�

T

) (set of subtrees)


(�

T

) = ; for i = 1 to j�j

x

i

= a

i

endfor

m = j�j

do while i � m

if 
(x

i

) = x

i

then

add x

i

to 
(�

T

)

do 8t = f(t

1

; :::t

k

) subtree in S not in fx

1

; :::; x

m

g

if (t

1

; :::; t

k

) 2 
(�

T

)

k

then

m = m+ 1, x

m

= t

endif

end do

endif

end do

Figure 3: Algorithm 
omputing 
(�

T

).

� Æ = fÆ

0

; Æ

1

; :::Æ

n

g is a set of transition fun
tions;

� p = fp

0

; p

1

; :::p

n

g is the set of transition probabilities;

� r : Q! [0; 1℄ is the probability that the tree is of type q.

The last fun
tion satis�es

P

q2Q

r(q) = 1. Be
ause the number of siblings of a node is not �xed,

we need a set of transition fun
tions (rather than a single one) Æ = fÆ

0

; Æ

1

; :::Æ

n

g, where n is the

maximum number of siblings allowed in the language. Every fun
tion Æ

k

takes as arguments a

symbol in � and k states (one for every sibling of the node) and returns a new state, that is,

Æ

k

: ��Q

k

! Q.

For instan
e, if t is a leaf subtree with label a, then k = 0 and the state tied to t is Æ(t) = Æ

0

(a).

However, if t is a subtree labelled f with two siblings generating subtrees t

1

and t

2

respe
tively,

then t = f(t

1

; t

2

) and the state tied to t is Æ(t) = Æ

2

(f; Æ(t

1

); Æ(t

2

)). By 
onvention, unde�ned

transitions lead to invalid trees.

The normalizing 
ondition for the set of fun
tions p

k

: ��Q

k

! [0; 1℄ is that all probabilities

of transitions leading to the same state q must sum up to one. That is, for all q 2 Q

X

f2�

n

X

k=0

X

q

1

;q

2

;:::;q

k

2Q

q=Æ(f;q

1

;q

2

;:::;q

k

)

p

k

(f; q

1

; :::; q

k

) = 1: (2)

On
e the fun
tions p

k

are given, the probability that a tree t is generated is the produ
t of all

transition probabilities used while analyzing t. In order to ensure that the sum of probabilities

for all trees is one, this result has to be multiplied by r(q), being q = Æ(t) the state tied t, that

is, p(tjA) = r(Æ(t)) �(tjÆ(t)), where �(tjÆ(t)) represents the probability that t is generated from

state q = Æ(t), a number that 
an be re
ursively 
omputed. For instan
e, for a tree t = f(t

1

; t

2

),

one gets:

�(tjÆ(t)) = p

2

(f; Æ(t

1

); Æ(t

2

)) �(t

1

jÆ(t

1

)) �(t

2

jÆ(t

2

)): (3)

In a way similar to sto
hasti
 DFA, the stru
ture of the sto
hasti
 DTA is de�ned (see

algorithm 2) by a fun
tion 
(t) = s giving the �rst tree s su
h that Æ(s) = Æ(t). Sear
hing for

a tree x

j


andidate to 
(x

i

) requires the following 
he
ks:



1. The relative frequen
y in the sample of trees with root type x

j

must be similar to the

relative frequen
y of trees with root type x

i

.

2. The relative frequen
y in a given 
ontext t

j

= f(s

1

; :::; x

j

; :::; s

k

) of x

j

-type nodes must be

similar to the relative frequen
y of x

i

-type nodes in the same 
ontext t

i

= f(s

1

; :::; x

i

; :::; s

k

);

moreover 
(t

i

) = 
(t

j

).

The meaning of the word similar in the former paragraph is given by a statisti
al 
he
k applied

to the experimental frequen
ies. On
e more, if we 
hoose a the 
on�den
e level 1��

n

satisfying

P

n

n�

n

<1, the number of mistakes as n (the sample size) grows is �nite.

In this work, we have improved the inferen
e algorithms des
ribed in this se
tion in order

to reuse the information 
arried by the states whi
h are found to be equivalent to another one.

Note that in the previous des
ription we negle
t the information about the strings (or trees)


ontaining a pre�x (subtree) x

j

equivalent to a previous one x

i

. However, this information 
an

speed up the 
onvergen
e of the identi�
ation pro
ess. Therefore, we have introdu
ed a state

merging te
hnique that improves the eÆ
ien
y although makes implementation 
onsiderably

harder.

3 Appli
ation of the sto
hasti
 models to tree 
ompression

We implemented two arithmeti
 en
oders[6, 10℄ and their 
orresponding de
oders based upon

the inferen
e methods des
ribed in former se
tion and applied them to �les 
ontaining data

stru
tured as trees. For this purpose we used the following tree grammar:

1 : q

0

= Æ

7

(S; q

4

; q

1

; q

5

; q

0

; q

6

; q

0

; q

7

) (0:2)

2 : q

0

= Æ

5

(S; q

4

; q

1

; q

5

; q

0

; q

7

) (0:2)

3 : q

0

= Æ

2

(S; q

8

; q

1

) (0:6)

4 : q

1

= Æ

3

(E; q

1

; q

9

; q

2

) (0:3)

5 : q

1

= Æ

1

(E; q

2

) (0:7)

6 : q

2

= Æ

3

(T; q

2

; q

10

; q

3

) (0:2)

7 : q

2

= Æ

1

(T; q

3

) (0:8)

8 : q

3

= Æ

1

(F; q

11

) (0:9)

9 : q

3

= Æ

1

(F; q

1

) (0:1)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

10 : q

4

= Æ

0

(i) (1:0)

11 : q

5

= Æ

0

(t) (1:0)

12 : q

6

= Æ

0

(e) (1:0)

13 : q

7

= Æ

0

(f) (1:0)

14 : q

8

= Æ

0

(p) (1:0)

15 : q

9

= Æ

0

(+) (1:0)

16 : q

10

= Æ

0

(�) (1:0)

17 : q

11

= Æ

0

(n) (1:0)

(4)

The �rst number identi�es the rule, the number in parenthesis is the transition probability and

terminals appear in typewriter font. Moreover, r(q

i

) is one if i = 0 and zero otherwise. In

this way, the senten
es that 
an be generated are parse trees of 
onditional stru
tures su
h as

if...then...else...endif, if...then...endif and language 
ommands as print together

with numeri
al expressions (n) linked with sum or produ
t operators. For instan
e, the senten
e

"i n t p n e p n f" has a derivation tree:

S(iE(T (F (n)))tS(pE(T (F (n))))eS(pE(T (F (n))))f)

An alternative representation for this tree is the string of rules applied in its (rightmost) deriva-

tion:

1; 13; 3; 5; 7; 8; 17; 14; 12; 3; 5; 7; 8; 17; 14; 11; 5; 7; 8; 17; 10

where ea
h number identi�es one rule in the grammar. Of 
ourse, in this representation, the

probability of the tree is easily obtained by simply multiplying the rule probabilities. In the string

arithmeti
 en
oder (de
oder), the input is en
oded (de
oded) a

ording to the probabilities the

model predi
ts for every 
ontinuation after a pre�x. In the 
ase of trees, our model predi
ts

what rules 
an be applied at a given point in the rightmost derivation and generates the 
odes

a

ording to this probability distribution (ex
ept for the very the �rst symbol, whi
h is predi
ted
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Figure 4: Compressed �le size. Long dashed: gzip; short dashed: string arithmeti
 en
oding;


ontinuous: tree arithmeti
 en
oding.

a

ording to r(q

i

)). This pro
edure be
omes more eÆ
ient when the grammar is LL(1) [1℄. In

su
h 
ase, both en
oding and de
oding 
an be implemented in a sequential way.

In �gure 4, we show the 
ompressed size of the �les generated with the example grammar

after our arithmeti
 en
oders are applied and 
ompare it to the size obtained with a standard


ompressor as GNU's gzip. The model used for the arithmeti
 
oding is in
luded as a header

in the 
ompressed �le. As seen in the �gure, the string model gives 
ompression rates around

12 that are 
lose to those obtained with gzip. However, the tree model redu
es the size of the


ompressed �le by a fa
tor of two (between 25 and 30 times the original one). We have 
he
ked

that in all 
ases the results are 
onsistent with the entropi
 lower limit of the 
ompressed

�le [5, 2℄:

X

t2F

log

2

p(tjA

0

) (5)

where F is the sample �le and p(tjA

0

) is the probability that our model A

0

assigns to the tree

t. Indeed, all en
oders perform 
lose to the bounds given by (5). However, both gzip and the

string en
oder are not able to use the a priori knowledge that the tree model in
orporates: that

is, that the �le 
ontains trees. This fa
t is responsible for the additional 
ompression obtained

with the tree model.

Although the size of the model is relatively small for large �les, tree inferen
e would be


ompletely useful if an in
remental method was used. This would avoid 
oding the model as

part of the 
ompressed �le. Finally, it should be remarked that arithmeti
 en
oders 
ould be

also used for on-line 
ompression if an a priori model is available, while gzip 
annot 
ompress

isolated trees.

4 Con
lusions

We have implemented two arithmeti
 en
oders based upon the inferen
e models we developed

previously for sto
hasti
 languages. The �rst one learns from string samples while the se
ond



one learns from tree samples. In 
ase the �le to be 
ompressed in
ludes stru
tural information

(that is, the information is des
ribed as trees), the string models provide similar results to the

Lempel-Ziv 
ompression methods. However, tree models allow for higher 
ompression rates.

Then, an in
remental method whi
h avoids 
oding the model would be of interest.
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