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Abstract

We propose a new algorithm which allows for the identification of any stochastic
deterministic regular language as well as the determination of the probabilities of
the strings in the language. The algorithm builds the prefix tree acceptor from the
sample sat and merges systematically equivalent states. Experimentally, it proves
very fast and the time needed grows only linearly with the size of the sample set.

1 Introduction

Identification of stochastic regular languages (SRL) represents a highly interesting ques-
tion within the field of grammatical inference. Indeed, most of realistic situations involve
examples provided by a random source. The assumption of stochastic behaviour has
important consequences on the learning process. Gold[1] introduced the criterion of iden-
tification in the limit for successful learning of a language. He also proved that regular
languages cannot be identified if only text (i.e., only strings in the language) is given,
but they can be identified if a complete presentation (where all strings are classified as
belonging or not to the language) is provided. However, Angluin[2] proved that a wide
range of distribution classes, including the SRL, are identifiable from posttive samples
(text) with probability one. '

With this aim, some attempts to find suitable learning procedures have already been
done. Maryanski and Booth[3] used a chi-square test in order to filter regular grammars
provided by heuristic methods. Although convergence to the true one was not guaranteed,
acceptable grammars were always found. The approach of van der Mude and Walker[4]
merges variables in a stochastic regular grammar, where Bayesian criteria are applied. In
that paper{4}, convergence to the true grammar was not proved and the algorithm showed
too slow for application purposes.

*Work partially supported under grant TIC93-0633-C02-02 from CICYT (Programa Nacional de
Tecnologias de la Informacién y de las Comunicaciones)
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In the last years, neural network models were used in order to identify regular languages
[5, 6, 7, 8] and they have been applied to the problem of stochastic samples[9]. However,
these methods share the serious drawback that long computational times and vast sample
sets are needed. Hidden Markov models are used by Stolcke and Omohundro[10] in order
to maximize the probability of the sample, but they include @ prieri probabilities in order
to penalize the size of the automaton.

Ou the other hand, an algorithm is available[11] which allows for the correct identifi-
cation in the limit of any regular language if a complete presentation is given. Moreover,
the time needed by this algorithm in order to output an hypothesis grows at most as s°,
being s the size of the sample. Experimentally, its behaviour is in average linear in s. In
the present paper, we will follow the same guidelines and present an algorithm (ALERGIA)
which builds the prefix tree acceptor (PTA} from the sample and evaluates at every node
the relative probabilities of the transitions coming out from the node. Next, it tries to
merge couples of nodes, following a well defined order (essentially, that of the levels in the
PTA or lexicographic order). Merging is performed if the resulting automaton is —within
statistical uncertainty-— equivalent to the PTA. The process ends when further merging
is not possible. We will introduce some definitions in section 2, and comment on the diffi-
culties related to stochastic regular languages identification in section 3. A more detailed
description of ALERGIA can be found in sections 4 and 5. Finally, results and discussion
will be presented in section 6.

2 Preliminaries

Let A be a finite alphabet, .4* the set of all strings on .A and A the empty string such
that for every symbol a in A satisfies e = Aa = a. If w and z are strings of symbols in
A* and w = ra, then we will also write £ = wa™!. A stochastic finite automaton (SFA),
A= (A,Q, P, q), consists of an alphabet A, a finite set of nodes @ = {¢1,¢z,...¢n}, with
¢ the initial node, and a set P of probability matrices p;;(a) giving the probability of a
transition from node ¢, to node ¢; led by the symbol ¢ in the alphabet. If we call p;; the
probability that the string ends at node g;, the following constraint applies:

pir+ 2 2 pila) =L (1)

g;EQ a€A

The probability p(w) for the string w to be generated by A is defined by:

p(w) = 3 pij(w)psy
Q}EQ

pii{w) = 3 Y pi(wa™)pii(a) (2)

gEQ acA

and the language generated by the actomaion A is defined as:

L={we A :pw) #0} (3)

Those languages generated by means of a SFA are called stochastic regular languages. In
case the SFA contains no useless nodes', it generates a probability distribution for the

1A node ¢; is useless if there are no strings z,y € A* such that ¥ 1l @)pis (y)psis # 0.
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strings in 4*:
2 plw)=1. (4)
wed*
Finally, two SRL are said to be equivalent if they provide identical probability distri-
butions over A*. Note that it is not enough that two languages L, and L3 include the
same strings for them to be equivalent, also the probability of every string must be equal:

L1 = L, <= p1(w) = py(w) Vuw € A, (5)

In this work we will limit ourselves to deterministic stochastic finite automata (DSFA).
This means that for every node ¢; € Q and symboal a € A, there exists at most one node
such that p;;(a) # 0. In such cases, a transition function k = 4(4,a) can be defined. This
function gives the final node g« for the transition starting at ¢; and driven by symbol
a. The probability of this single transition will be denoted by pi(a). In contrast to non-
stochastic automata, determinism is an effective restriction. Indeed, it is not generally
possible to find a stochastic DFA equivalent to a given non-deterministic SFA_

3 Identifying Regular Languages

A complete sample S consistent with L consists of two subsets: 54 with strings in L
(positive ezamples) and S. with strings not in L (negative ezamples). If only 5, is
presented, then S is a positive sample or tezt. The algorithm identifies in the limit L if
adding new examples to § may only produce a finite number of changes of hypothesis.
Negative examples play a relevant role, since they may be necessary in order to reject a
language L' whose only difference with L layson L/ — I (and such languages exist because
an order which respects inclusion is not defined).

However, samples of SRL consist only of positive examples which appear repeatedly,
according to the probability distribution expressed in eq. (2). Nevertheless, the statisti-
cal regularity is able to compensate the lack of negative data. As proved in ref.(2], many
recursively numerable sets of distributions —in particular SRL when probabilities are re-
stricted to rationals— are identifiable with probability one, again by means of enumerative
algorithms.

Enumerative methods are experimentally unfeasible and the search of fast and reliable
algorithms for identification becomes a challenging task.

The aim of this work is to find an algorithm which identifies in the limit stochastic
regular languages and whose complexity does not grow exponentially with the size of S.
Our approach will be based on the one proposed in ref.[11] for the identification of {non-
stochastic) regular languages. For this reason, we will briefly describe it in the following.

Given a language L, the minimum DFA generating L is called the canonical acceptor
M(L). On the other hand, if § is a finite complete sample of I the prefix tree acceptor T
of § is defined as the minimum automaton accepting only the (finite} set of strings S. For
instance, the canonical acceptor of even valued binary strings is plotted in fig, 1 together
with the prefix tree acceptor for the sample § = {A,00,10,110}

If 7 is a partition of the set Q of nodes of T, 7(T') is the automaton obtained by
merging the nodes in the same block of the partition. For instance, in fig. 1, the canonical
acceptor may be obtained from the prefix tree acceptor by merging states labelled with
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numbers in the same block of the partition ¥ = ({1,2,4,6,7}, {3,5}). Indeed, this is a
particular example of a general well known fact: given a large enough sample 5, there
exists a partition % of the nodes in 7', such that #{T') coincides with M (L), the canonical
acceptor. Therefore, the problem of identifying L is reduced to the simpler one of obtaining
the partition 7.

The language Lo accepted by the PTA is always finite and coincides with the positive
part of the sample set: Ly = S,. Any partition 7 leads to an enlarged accepted language
L, O Lp. Therefore, we are looking for a partition not including negative examples from

S_:

-

L.NS_=40. (6)

The number of possible partitions in T' grows exponentially with its size t = |T'|, but
a reasonable way to look for # can be found. First, let us define an order of the nodes
of T. The numerable set .A* —and therefore any language contained in A*— may be
lexicographically ordered?. This allows one to define a similar order for the nodes of the
automaton, as each node may be assigned the (lexicographically) first string leading from
g, to that node. We will assume that the subindex ¢ in ¢; corresponds to this lexicographic
order, as in fig. 1. Now, in order to find #, proceed as follows: merge (only if (6) still
holds) nodes g; and ¢;, varying the subindex j from 2 to ¢ and then, for every 7, changing
¢ from 1 to j — 1. In this way at most 3¢(t — 1} comparisons are done while convergence to
the canonical acceptor is guaranteed. For a formal proof, see [11]. Convergence is achieved
whenever S_ is large encugh to reject any wrong merge and then, M(L) is produced as
output. Thus, once S, and S_ are large enough, the hypothesis automaton cannot be
changed by adding new examples to S and identification is reached.

A similar procedure for stochastic languages, preserving the properties of identification
and polinomial time complexity, is desirable. This is the subject of the next section.

Figure 1: A prefix tree and the canonical acceptor for the regular set (0 + 1)*0. Final
states are doubled circled. Numbering of nodes follows the lexicographic order

-

2Sorted by length and then by alphabetical order within every length.
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algorithm ALERGIA

input:
5 : sample set of strings
a @ 1-confidence level
cutput:
stochastic DFA
begin

A = stochastic Prefix Tree Acceptor from S
do (for j = successor( first node(A)) to lastnode(A))
do(for ¢ = firstnode(A) to j)
if compatible(s, )
merge(A,z,;)
determinize(Ad)
exit (i-loop)
end if
end for
end for
return A
end algorithm

Figure 2: Algorithm ALERGIA.

4 The Algorithm

In the case of SRL, there are no negative examples in S, but the probability of appearance
of every string follows a well defined distribution. Qur algorithm ALERGIA takes advantage
of this feature and performs merging of states when the resulting automaton is compatible
with the observed frequencies of the strings in S.

The algorithm first builds the prefix tree T from S and evaluates at every node the
relative frequencies of the outgoing arcs, incorporating this information in T' (see fig. 9).
We will write as n; the (experimental) number of strings arriving at node ¢;, fi(a) the
number of strings following arc 6;(a), and f;(#) the number of strings ending at node ¢;.
The quotients fi(a)/n, and fi(#)/n; estimate the probabilities pi(a) and p;; respectively.

Later, the algorithm compares couples of nodes {¢i,¢;), varying j from 2 to ¢ and &
from 1 to 7 — 1. Two nodes in the same block of the partition 7 are said to be equivalent
(9 = ¢;). As T is built, equivalent nodes have equal outgoing transition probabilities for
every symbol a € A and the destination nodes must be equivalent too;

6.(3) = 6.()).

This provides a criterion in order to reject equivalence of nodes. However, experimental
data are subjected to statistical fluctuations and equivalence must be accepted within a
confidence range. In such case, the nodes will be called compatible,

A confidence range for a Bernoulli variable with probability p and observed frequency

g =¢; = VaeA{pi(a) ri{a) (7)
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f out of n tries is given by the Hoeffding bound(14]:

/ < ﬁi log 2 with probability larger than (1 — a). {8)
n 2n o

}p'—_

ALERGTA will reject equivalence if two estimated probabilities differ in an amount larger
than the sum of confidence ranges (see fig. 3). In this way, the probability of a wrong
rejection is kept below 2a because at least one of the estimations must lay out of its
confidence range for them to be considered different. The check is done for the termina-
tion frequencies fi{#) and for the frequencies of the outgoing arcs fi(a). Thts, |A} +1
comparisons are done at every node, being |A| the size of the alphabet. If two nodes
are found to be similar, all destination nodes are checked recursively, as shown in fig. 4
(algorithm compatible).

algorithm different

input:

n,n’;: number of strings arriving at each node

f,f’ :number of strings ending/following a given arc
output:

boolean
begin

return |£ - f,;| > V%logﬁ (71; + 11;*)

end algorithm

Figure 3: Algorithm different checks similitude of observed frequencies.

Recursion in algorithm compatible involves only a finite number of calls. Indeed,
due to the order followed within the merging process, when (g;,¢;) are compared, ¢; is
always the root of a subtree of the PTA and therefore, the language it generates is finite.
In other words, there is no loop in the g;-subtree and the recursion takes always a finite
time. Another important point concerns indeterminism. When ¢; and ¢; are found to
be compatible, ¢; and ¢; are merged and the resulting automaton could in principle be
indeterministic. In practice, this is not the case because the successors responsible for the
indetermination are merged too. The reason for this comes from the recursive character
of compatible: the respective a-successors of two compatible nodes are also compatible.
This feature also ensures that the defined (lexicographic) order of the nodes is preserved
during the merging process, as the automaton remains deterministic. Finally, every time
a merge is performed, the frequencies f; and the numbers n; are recalculated, consistently
with the fact that more information is available at each node. A schematic representation
of ALERGTA is shown in fig. 2. A detailed example showing how the whole process works
can be found in the Appendix.

———ra o ———
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algorithm compatible

input:

1,7 : nodes
output:

boolean
begin

if different (n,, Fi(#),m;, ()
return false
endif
do(Va c A)
if different (n,, fi(a),n;, f;{a))
return false
end if
if not compatible((i,a},5(},q))
return false
end if
end do
return true
end algorithm

Figure 4: Algorithm compatible checks ¢; = q;-

5 Convergence of the Algorithm

In this section we will discuss the convergence of the algorithm. To this respect, the key
point is the probability of finding the correct partition 7 leading to the canonical acceptor.
There are two different kinds of error where the algorithm could fail when looking for #:

L. (type a) rejection of compatibility between two equivalent nodes,
- 2. (type B) merge of two non-equivalent nodes.

Assume that S has a size s = || large enough in the sense of section 3, while T —the
prefix tree acceptor of S— is of size ¢ = |T| and the target (canonical} acceptor M has
size m = |M|. Starting from T the algorithm should perform ¢ — m merges in order to
successfully output M. Therefore, the global probability o, for the first kind of error is
bounded by the product 2a(|A4| + 1)¢, being « the parameter used in different (fig. 3).
If one wants to keep a, negligibly small as the size of the sample becomes large, one may
take o = kt~! with k a small constant. The value of * has a smooth influence on the
results, as eq. (8} depends on log k.

On the other hand, two non-equivalent nodes can (incorrectly) be found to be com-
patible if the difference of the observed frequencies is smaller than the confidence range.
Once errors of type o are negligible, the resulting automaton must be a partition of M.
In particular, the partition will be the trivial one and ALERGIA will output M if for every
couple of blocks B; and B; of the partition # of T there exist two incompatible nodes
g € B: and ¢; € B;. Therefore, an upper bound for 3, is given by the probability that



146

an error occurs when comparing representatives of each block. For this purpose, we may
just select the first (in lexicographic order) rode of the block as its representative, In
this way, at most sm(m — 1)(JA] + 1) evaluations are needed in order to give an upper
limit for 8;, each of those may contribute to 3, but all of them decrease with the size s.
Therefore, 3, tends to zero as s grows. Recall that the error range behaves like:

1 2/(1 t
- 510g3(ﬁ+ﬁ) ©)

where n and n’, the number of strings arriving at each node, grow linearly with s. There-
fore, € tends to zero ag s grows, even if, as proposed here, o changes with t, as t cannot
grow faster than s. i

It is not difficult to write an upper bound for 8,. When comparing fi = f1/n, and
fg = fa/n, the expected value and variance of the difference § f = fl - fz are:

E(6}f) = 5P=P1—P2 . (10}
Var(6f) = Var(fi) + Var(fy) =

= ml-p) p(l-py) 1 1

T T tT St ty

On the other hand, the probability g = p(jé fl < €) that the observed difference is
compatible with zero is smaller than p(l6f — ép| > |6p] — €). Thus, using Chebychev’s
inequality{15], 8 < B with:
B { ([6p] — €)"2Var(6f) ife< |6p| and Var(éf) < (6p — €)? (12)
1

otherwise

where B vanishes with $, because Var(6f) tends to zero (and so does €). This bound B
has to be evaluated less than imlm - 1)(A+1) times, and in all of them it tends to zero
as the sample grows. Therefore, A3, vanishes in the limit of large sample sets.

It is also possible to choose a different functional dependence of e on ¢ so that a, also
vanishes. However, this slows down tonvergence and the samples needed become larger.
On the other hand, even if Qg is not very small, one obtains automata which are more
complicated but equivalent {in the sense that the language is correctly identified) to the
canonical one.

6 Results and Discussion

The performance of the algorithm has been tested with a variety of grammars. For each
grammar, different samples were generated by the canonical stochastic automaton of the
grammar and given as input for ALERGTA. For instance, the Reber grammar[16] of fig. 5
has been used in order to compare ALERGIA with previous works on neural networks which
used this grammar as check[9].

In fig. 6 we plot the average number of nodes in the automaton found by ALERGIA as
a function of the size of the sample set generated by the Reber grammar. The number
of states is a measure of the complexity of the hypothesis. As seen in the figure, this
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Figure 5: SFA corresponding to the Reber grammar

number always converges to the right value when the sample is large enough. We also
checked that the structure of the automaton was correctly inferred. For small samples, the
algorithm tends to propose hypothesis which are too complicated. However, when enough
information is available it always finds the correct structure. The number of examples
needed to achieve convergence is relatively small (about five hundred). This number
compares rather favourably with the perfarmance of recurrent neural networks[9] which
cannot guaranty convergence for this grammar even after tens of thousands of examples.

In fig. 7, the time needed by the algorithm is plotied as a function of the number of
examples in S. Although the temporal complexity could be in an extreme case be cubic,
all the experiments showed a linear dependence. The algorithm proves very fast even for
huge sample sets.

7 Conclusions

An algorithm has been proposed which identifies any stochastic regular language. Identi-
fication is achieved from stochastic samples of the strings in the language, and no informa-
tion of the strings not belonging to the language is used. Experimentally, the algorithm
needs very short times and comparatively small samples in order to identify the regular
set. FEven for large samples, only a linear time is needed (about one minute for a sample
containing one million examples running on a Hewlett-Packkard 715). The algorithm is
suitable for recognition tasks where noisy examples or random sources are common. In
this line, applications to speech recognition problems are planned.

Acknowledgments

The authors want to acknowledge useful suggestions from E.Vidal and M.L.Forcada.



148

8 E'oonooou
{ } i;;f!ffiii}ii
HE:
o | [15t _
: i
3 i .
§ ry ‘} 1
i!i
2F & 4
° 00 20 0 P %0

Size of sampla

Figure 6: Number of nodes in the hypothesis for the Reber gra.mma.r as a function of the
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A Appendix

We will present a simple example to show how ALERGIA works. Assume that the automa-
ton depicted in fig. 8 outputs the sample:

S = {110, 2, 4, A, 0, 3,00,00, A, A, A, 10110, A, A, 100}.

Ouly for illustration purposes, the parameter a will be arbitrarily set to 0.8. With this

The algorithm starts by building the PTA, as shown in fig. 9. Each node is labelled with
a number corresponding to its lexicographic order. In brackets, the number of strings
arriving and terminating at that node are plotted. Every arc has a label with the symbol
(0 or 1) inducing the transition, and in brackets appears the number of strings using that
arc. Next, the algorithm checks if nodes ¢, and ¢; (labelled 2 and 1} are equivalent. This
requires a comparison of the probabilities coming from these nodes. For instance, the
termination probabilities are found to be similar:

1

, 1 11
lp— 7| = §—§I—0-26<7(75+ﬁ)—0-55

Also, the outgoing transitions have similar probabilities:

, 2 3.
lp—p| = 3 15| ~ 0.46 < 0.55
In addition, equivalence of ¢, and ¢, also requires (due to the recursive definition) com-
patibility between destination nodes (namely g4 and ¢;). Proceeding in an analogous way,
this is found to be the case and therefore g2 = ¢1. The result after merging these two
states is plotted in fig. 10.

In the next step the algorithm tries to merge the couple (¢a,¢1). However, they are
found to be non-compatible when the termination probabilities are compared (0.6 and 0.0
respectively, whose difference is larger than 0.53)

Afterwards, comparison of g5 and ¢; is done. The following similarities are accepted:
g7 = q1, §8 = ¢3, q10 = s, 2nd g1 = go. After the merges are performed one finds the
automaton in fig. 11.

The merging of nodes gs and ¢ is rejected due to the difference in the transition
probabilities labelled with 0 (0.75 being larger than 0.61). Instead, g¢ = g3z will be
accepted, and the algorithm ends with the automaton plotted in fig. 12 as hypothesis.
The estimated probabilities are shown in fig. 13 to be compared with 8.

The structure is the same but the probabilities have been only roughly estimated, due
to the small size of the sample. Obviously one needs larger samples in order to find more
accurate probabilities and in order to choose a reasonable confidence level («).
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Figure 8: Stochastic finite automaton

A, A, 100},

Figure 10: Prefix tree acceptor after merging gz and ¢;.
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Figure 12: Automaton after merging gg and gs.

24 1(.33
0(.24) 1016) (:33)

Figure 13: The final output.



