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Abstract

Mic6, M.L., I. Oncina and E. Vidal, A new version of the Nearest-Neighbour Approximating and Eliminating
Search Algorithm (AESA) with linear preprocessing time and memory requirements, Pattern Recognition Letters
15 (1994)9-17.

The Approximating and Eliminating Search Algorithm (AESA) can currently be considered as one of the most
efficient procedures for finding Nearest Neighbours in Metric Spaces where distance computation is expensive.
One of the major bottlenecks of the AESA, however, is its quadratic preprocessing time and memory space require-
ments which, in practice, can severely limit the applicability of the algorithm for large sets of data. In this paper a
new version of the AESA is introduced which only requires linear preprocessing time and memory. The perform-
ance of the new version, referred to as ‘Linear AESA’ (LAESA), is studied through a number of simulation exper-
iments in abstract metric spaces. The results show that LAESA achieves a search performance similar to that of the
AESA, while definitely overcoming the quadratic costs bottleneck.

Keywords. Metric spaces, triangle inequality, fast nearest-neighbours searching algorithms, pattern recognition.

1. Introduction

Nearest-Neighbours (NN} techniques have be-
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come increasingly popular in Pattern Recognition
(Fukunaga (1990), Dasarathy (1991) ). These tech-
niques become especially important if no reasonable
vector space exists where the objects or points can be
adequately represented, though a convenient proce-
dure is available for computing an appropriate dis-
similarity measure or distance between every pair of
points. In this case, there are many problems of
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(practical) interest in which the distance computa-
tion 1s particularly expensive. (Isolated) Word Rec-
ognition through Dynamic Time Warping (Rabiner
and Levinson (1984), Casacuberta and Vidal
(1987)), Attributed Graph Maitch Searching
(Sanfeliu and Fu (1983), Shapiro and Haralik
(19835)) or best-match String Edit searching (Marzal
and Vidal (1992)), to name but a few, are examples
of these problems. While Nearest-Neighbours tech-
niques are perhaps the only available in these cases,
the large costs of distance computing drastically limit
the size of the problems that can be afforded.
afforded.

In order to alleviate the computational burden in
these cases many techniques for fast Nearest-Neigh-
bour Searching have been proposed in the last few
years (Dasarathy {1991)). Particularly efficient is the
algorithm known as ‘Approximating and Eliminating
Search Algorithm’ (AESA), which achieves NN
search with an querage constant number of distance
computations, i.e., a number of distance computa-
tions that does not depend on the size of the set con-
sidered. This algorithm was introduced by Vidal
(1986) and has been very successfully applied since
then to moderately sized practical problems of Speech
Recognition (Vidal et al. (1988}, Vidal and Lloret
(1988)).

Given a set P of profotypes and a test sample x, the
AESA searches for a prototype in P which is a Near-
est Neighbour of x through a best-first Branch and
Bound strategy (Vidal (1994)). This strategy relies
on a tight, Triangle-Inequality-based, lower bound
function both for successively selecting candidate
prototypes for distance computation (‘Approximat-
ing’) and for pruning-out those prototypes with lower
bound values greater than the best (smallest) dis-
tance found so far (‘Eliminating’). The proposed
lower bound function relies on a direct application of
the Triangle Inequality that makes extensive use of
previously computed distances. In particular, all dis-
tances between every pair of prototypes need be
available during the search process. Obviously, this
entails quadratic memory space requirements for
storing these distances and a corresponding qua-
dratic preprocessing time for their computation, Un-
fortunately, these quadratic costs severely limit the
size of the problems the AESA can be practically ap-
plied to.
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While very satisfactory solutions to this problem
have been obtained by Ramasubramanian (1991)
and Ramasubramanian and Paliwal (1990, 1992) for
regular vector-space represented data, the problem
remained open so far in the most general (and inter-
esting ) setting of Metric-Space data representations.

In this paper a new Metric-Space NN Search algo-
rithm is introduced which definitely overcomes the
AESA quadratic bottleneck. This algorithm, called
‘Linear AESA’ (LAESA) (Micé etal. (1991)), only
requires preprocessing time and memory space that
grow linearly with the number of prototypes and
achieves a search efficiency which 1s very close to that
of the original AESA. It is based on similar (but in-
dependently developed ) ideas as in Ramasubraman-
ian and Paliwal {1990), but if offers the increased
generality of not requiring the data to be represented
in any vectorial form. The basic idea of LAESA is to
attempt an AESA-like search for NN's, while relying
only on the distances from a (small) subset of *Base
Prototypes’ 10 the remaining prototypes. For this pur-
pose, LAESA requires a preprocessing procedure that
not only computes the required distances, but also se-
lects the corresponding Base Prototypes in linear time.
The search procedure, on the other hand, consists of
a direct extension of the best-first Branch and Bound
formulation of the AESA (Vidal {(1994)), in which
only a subset of interprototype distances is available.
This entails the need for an appropriate Base-Proto-
type management policy since, in principle, these
prototypes are candidates for both selection (ap-
proximation) and pruning (elimination) like any
other non-Base Prototype.

The proposed algorithms and experiments assess-
ing their good performance will be presented in the
following sections.

2. Selection of base prototypes

Since the search strategy will fully rely on the dis-
tances from all the prototypes to those selected as the
set of Base-Prototypes (BP), making a good choice
of this set is of particular concern. Obviously, search
efficiency will depend not only on the amount of BPs
selected, but also on their actual location with respect
to the other prototypes. This last issue was already
discussed in an early work by Shapiro (1977) with
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regard to a previous NN (best-match file) search al-
gorithm {Burkhard and Keller {1973) ). The results
of this work suggest that certain improvements could
be achieved by locating reference points far away from
data clusters, Following such a suggestion, a greedy
procedure can be proposed that attempts finding BPs
which are maximally separated.

Starting with an arbitrarily selected BP, the pro-
posed procedure computes the distances to ail the re-
maining prototypes. The computed distances are re-
stored in an array for their future use by the search
procedure and are also accumulated in an accumula-
tor array. The next BP is selected as that for which
the (accumulated) distance is the largest. The pro-
cedure continues computing the distances from the
successively selected BPs to the other prototypes,
storing the computed distances, accumulating them
into the accumulator array, and selecting the next BP
as the one for which the accumulated distance to the
other already selected BPs is maximum. The stop
condition is reached when a prespecified number of
BPs and the corresponding distances have been ob-
tained. A formal description of this procedure is given
as the BP-Selection Algorithm below.

Algorithm BP-Selection

Input. Pc E; melN; {finite set of prototypes and
number of BPs}
Output: B P, |B|=m; {set of m Base Prototypes
(BPs)}

DeR/PIxI81. 1 P|-| B| interprototype distances}
Function: d: EXE—R; {distance function}
Variables: AeR'"; {distance accumulator array}

b, b’ eP, maxelR;

begin
b’ =arbitrary_element{P); B:={b"}; 4=[0];
while |B| <mdo
max =0; b:=b";
for every pe P— B do
D[b, pl:=d(b,p);
A[p)=A[p]+DI[b, pl;
if (4[p]>max) then b’ =p; max=A[p]; endif
endfor

B:=Bu{b'},
endwhile
end
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The computational burden of this algorithm is
clearly seen 10 be n-m steps (each involving one dis-
tance computation and other elementary unit-cost
operations), where n=|P| is the number of proto-
types and m=| 8| is the given number of Base Pro-
totypes. It should be noted, however, that this pro-
cedure does not guarantee a strict optimality
(maximum separation of BPs). Nevertheless, as will
be shown later, good results are obtained with BPs
selected in this way, therefore making fairly unnec-
essary the {otherwise probably infeasible) search for
a truly optimal set of BPs.

3. The searching algorithm

Once a matrix of distances from BPs to the remain-
ing prototypes is available, the Lincar AESA
(LAESA) NN searching strategy is similar to that of
the original AESA. More specifically, the LAESA can
be derived as a Branch and Bound algerithm quite in
the same way as AESA was in Vidal (1994). The main
difference is that, now, the bounding function ¢an no
longer rely on the whole set of interprototype dis-
tances and it should rather be based on BPs distances
alone.

Let P be the set of prototypes and B< P the set of
BPs. Let x be a test sample and @< Pbe a set of pro-
totypes g for which d(x, g) has already been com-
puted (and stored) in previous steps of the search
procedure. Then for every pe P, the following lower
bound estimation g,(p) of the distance from x to p
can be easily derived from the triangle inequality of
d(s, ) (Vidal (1992)):

d{x,p)>go(p)
0 if QnB=0,

max |d(p, ¢)—d(x,g)] otherwise.
YgeP@nB

(1}

This lower bound can be cheaply computed since both
d(p, q) YpeP, VgeB and d(x, q) Vqe( are readily
available (in constant time). Therefore, we can di-
rectly and efficiently eliminate every prototype, p, for
which the lower-bound {optimistic) estimation (1)
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of its not-yet-computed distance to x is worse than
the best true distance computed so far. On the other
hand, by adopting the lower-bound driven best-first
strategy of Branch & Bound {which is generally rec-
ognized to often lead to the fastest procedures), the
same bounding function can be also used as a conve-
nient estimator of true distances to drive the AESA
‘Approximating Step’ (Vidal (1994)):i.e., select each
next candidate prototype, p, as that for which go(p)
is the smallest. This directly results in a basic version
of LAESA. Nevertheless, some additional details arise
here with regard to the management of BPs. In partic-
ular, since (unlike it happens in the approaches of
Ramasubramanian (1991) and Paliwal) B is a sub-
set of P, BPs should be candidates not only to selec-
tion, but also to elimination or pruning. Early selec-
tion of BPs can be seen as advantageous, since they
can effectively help tightening the lower bounds of
the remaining non-eliminated prototypes. Similarly,
carly elimination of BPs can be considered unfavor-
able. Nevertheless, for each configuration of P and
for each test sample, the usefulness of different BPs
can be diverse and one would also admit (early)
eliminating BPs if they are not likely to help tighten-
ing the lower bounds.

Taking these considerations into account, the pro-
posed algorithm (given below ) makes use of two ge-
neric functions, CONDITION and CHOICE, to allow for
different strategies of BP management. The algo-
rithm repeatedly performs five basic steps until all
prototypes have been ¢liminated: Distance Comput-
ing, Updating the nearest-to-x prototype, Updating
Lower Bounds, Approximating and Eliminating. The
first iteration starts with a Distance Computation from
x to an arbitrarily selected BP and the corresponding
Updating of the Lower Bounds of the remaining pro-
totypes. This last step is executed only for BPs, since
only for these prototypes the distances to the other
prototypes are available in the precomputed matrix,
D. On the basis of these Lower Bounds, the Approxi-
mating step successively selects non-eliminated pro-
totypes from B as long as certain conditions are met;
otherwise, a non-eliminated prototype from P— B is
selected. The cHOICE function helps deciding whether
a base or non-base prototype is to be selected. The
Elimination of PBs, on the other hand, is mainly con-
trolled by the boolean function CONDITION. Some ba-
sic implementations of the CHOICE and CONDITION
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functions are given below and their effectiveness are
compared through simulation experiments. It should
be noted that both Approximating and Efiminating,
as well as Lower Bounds Updating can be integrated
into a single loop ‘for every pe P*. Like in the last AESA
version {Vidal (1994)), this leads to a more clear
presentation of the resulting algorithm and also helps
reducing the overkead (computation not alloted to
distance computations ).

The computational cost of LAESA directly de-
pends on the number of iterations of the main while
loop. Simulation experiments presented below clearly
suggest that, for large data sets and fixed number of
BPs, this number tends to be a small constant on the
average (i.e., independent of the total number of pro-
totypes). Correspondingly, the asymptotical average
number of distance computations will also be con-
stant, as it similarly happens in the previous AESA
versions (Vidal (1986, 1994), Ramasubramanian
{1991}). The overall computing time, on the other
hand, also entails computation not alloted to dis-
tance computations. Such a computation or overhead
is clearly O(n-m), where n=|P} and m=|E|. Ob-
viously, for large data sets and computationally cheap
distances, this linear overhead may effectively out-
weigh the cost of the small (constant) number of dis-
tance computations themselves. While not very im-
portant in a large number of practical applications,
this remaining bottleneck of all AESA-related strate-
gies still prevents their use in very large problems and
future work should obviously address this problem.

Finally, with respect to the generic functions
CHOICE and CONDITION, only some basic policies have
been explored in this work. In all of them, a single
cHOICE function has been used which simply consists
of selecting BPs whenever possible; that is:

CHOICE (b, q) = (if b#indeterminate then b
else q endif).

On the other hand, a simple family of boolean func-
tions CONDITION have been considered in which
elimination of BPs is allowed only after having pre-
viously selected a number of (Base) prototypes, sc,
greater than a specified fraction, &, of the original
number of BPs, »; that is:

CONDITION = (nc>m/k) .
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Forvaluesof k=1, 2, ..., o, this function leads to the
BP management policies hereafter referred to as EC1,
EC2, ..., ECoo.

While these simple strategies have been found to
lead to satisfactory results (see Section 4 ), many other
more sophisticated strategies are possible. Some of
these possibilities are currently being explored (Micé
et al. (1992)), and comprehensive results will be re-
ported in future papers.

Algorithm LAESA

Input Pc E, n=|P|; [finite set of prototypes}
Bc P, m=|B|; {set of Base Prototypes}
DeR™ ™, {precomputed nXm array of interpro-
totype distances}
xeFE; {test sample}
Output p*e P, d*eR; {nearest neighbour prototype
and its distance to x}
Functions: d: EXE-R; {distance function}
CONDITION : Boolean; {controls the elimination of
Base Prototypes}
CHOICE : BX (P—B)-P; {selection of Base or
non-Base Prototypes}
Variables: p, q, s, be P,
GeR*”, {lower bounds array}
dxs, gp, g9, gheR;
ncelN; {number of computed distances}

begin
d*= oo, p*:=indeterminate; G:=[0];
s:=arbitrary_element(B); nc:=0;
while | P| >0 do
dxs==d(x,s), P=P={s}; ncr=nc+1,
{distance computing}
if dxs < d* then p*:=s; d*:=dxs; endif
{updating p*, d*}
gr=indeterminate; gg:=oo0; b:=indeterminate;
gh=o0;
for every pe P do {eliminating and approximating
loop}
if se Bthen {updating G, if possible}
Glp]=max(G[p], | D[p, s]—dxs|)
endif
gr=0Gpl;
if pe B then
if (gp=d™ & CONDITION) then P:=P—{p}
{eliminating from B}
else {approximating: selecting from B}
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if gp < gb then gh:=gp, b==p endif
endif
else
if gp=d" then P:=P—{p} {eliminating from
PR
else {approximating: selecting from P— B}
if gp< gq then gg:=gp; g:=p endif
endif
endif
endfor
§:=CHOICE(}, q);
endwhile
end

4, Experiments

The performance of LAESA was determined
through a series of simulation experiments in ab-
stract metric spaces. In all the cases, both prototypes
and test samples were drawn from uniform distribu-
tions in D-dimensional hypercubes. The coordinates
of these data points where never used directly and
they only served to measure interpoint distances, us-
ing an appropriate metric which, in this case, was the
Euclidean D-dimensional norm. Results with other
usual metrics were similar to those reported below and
are omitted here for the sake of brevity.

The experimental procedure to obtain each forth-
coming result was as follows: after having drawn a
random set of n prototypes, the BP-selection algo-
rithm was run to obtain a prespecified number, m, of
Base Protorypes, where m was varied in most of the
experiments. Then, an independent random set of
1000 test points was drawn from the same uniform
distribution and the LAESA was applied to each of
these points. The results (typically number of dis-
tance computations required, nc) were averaged over
the 1000 test points. Moreover, in order to obtain
sound statistical results, the same procedure was al-
ways run 10 times with independent random proto-
type and test sets, and the results were averaged over
these 10 trials. Therefore, each datum plotted in the
figures below corresponds to an overall 10* LAESA
Nearest-Neighbour searches, with 10 different ran-
dom configurations of Prototypes and the corre-
sponding 10 configurations of BPs as selected by the
BP-SELECTION algorithm.

13



Volume 135, Number 1 PATTERN RECOGNITION LETTERS January 1994

The first experiment was devoted to compare the
relative performance of different Base-Prototype
management policies. The experiment involved
n=1024 prototypes and the Euclidean metric in di-
mension D=6, The number of Base Prototypes, /1,
was appropriately varied within the 5 to 100 range.
The results, using the above indicated experimental
procedure, are shown in Figure 1. It is worth noting
that (excluding ECoo) an optimal number of BPs, is
observed for all the policies (ECH, EC2, ...). Also, 2
range of adequate values of m around the optimal one
can be used with nearly optimal performance. This
range tends to broaden as increased freedom is
granted to LAESA to eliminate its Base Prototypes
(EC2,EC3,...), with the broadest region correspond-
ing to ECeo. In this case, Base Prototypes are not dis-
tinguished from ordinary prototypes for elimination
purposes and, obviously, the optimal value tends to
be obtained for m=n, with the same performance as
with the conventional AESA. While having a broad
range of adequate number of BPs is an obvious con-
venient feature, the performance of ECoo is signifi-
cantly worse than that of the other strategies if a small
number of BPs is adopted. Therefore, one should

better use ECk strategies with k < oo, in order to trade
computational performance for freedom in the choice
of the number of BPs. In any case, from the overall
results of Figure 1, it 1s clearly seen that a search ef-
ficiency of LAESA (nc~20) close to that of AESA
(nc=16) can be easily achieved with a very small
aumber of Base Prototypes (m< 100« 1024 =n).

In the second experiment, only the EC1 BP-selec-
tion policy was used but different dimensions were
considered. The number of prototypes was also set in
this case to n=1024 and, following the usual experi-
mental procedure, the results of Figure 2 were ob-
tained. These results indicate a similar behavior for
all the dimensions, with a varying ‘optimal range in
the number of BPs. In particular, the greater the di-
mension, the greater is the optimal number of BPs;
but also the less critical (i.e., the broadest) is the cor-
responding range.

The above experiment was further repeated sev-
eral times, for varying number of prototypes, 1, in
order to establish to which extent the optimal num-
ber of BPs (m*) depends on how large is the problem
considered {n). For this purpose, after running each
whole experiment for a given value of n and different
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Figure 1. Average number of distance computations {nc) required by LAESA with different Base-Prototype management policies, as a
function of the number of Base Prototypes (m), fora random set of n=1024 §-dimensional prototype vectors using the Euclidean Metric.
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Figure 3. ‘Optimal’ number of Base Prototypes (m"*) for EC1-
LAESA, as a function of the size of complete set of prototypes
(n) and different dimensions using the Euclidean Metric.

dimensions, D, the corresponding m* value was de-
termined to obtain the results piotted in Figure 3. It
is very interesting to note in this figure that, for large
sets of prototypes, no significant variation is ob-
served in the optimal number of Base Prototypes.
From a practical point of view, this adds a consider-
able freedom in the choice of an adequate size for the
set of BPs. But, even more important, this behavior,
along with that shown in the next experiment, allows
us to properly claim that, like AESA, the LAESA also
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works with asympiotical average constant number of
distance computations, 1.e., computation neither de-
pendent on the number of prototypes nor on the
number of Base Prototypes.

The next experiment was carried out in order to
directly show the actual dependence of LAESA per-
formance on the number of prototypes, #, for differ-
ent dimensions, D. For this purpose, the number of
base prototypes, m, was fixed to the corresponding
optimal value, m*, determined in the previous exper-
iment for the largest prototype set (n=1024) in every
dimension. Then, using the EC1 BP management
policy, the usual experimental procedure was carried
out for these dimensions and varying numbers of
prototypes, n. The results, displayed in Figure 4,
clearly show the claimed asymptotical constant av-
erage number of distance computations.

For the sake of comparison, some of these results
are also displayed in Figure 5 along with the corre-
sponding results of the conventional AESA. It is clear
from this figure that the new LAESA computes less
than 1.5 times more distances than AESA while re-
quiring a dramatically smaller preprocessing time and
memory space.

The results of Figure 4 may suggest that efficiency
can exponentially decrease as dimension increases.
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Figure 4. Average number of distance computations (nc) re-
quired by EC1-LAESA, as a function of the number of prototypes
{n) and different dimensions, using the Euclidean Metric.
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Figure 5. Comparison of some of the LAESA results of Figure 4
with the corresponding results of the original AESA. LAESA can
consistently find Nearest Neighbours by computing only less than
1.5 more average distances than AESA, while requiring orders of
magnitude less memory space and preprocessing time.

However, one should take into account that, for a
fixed number of uniformly distributed points in D-
dimensional hypercubes, their average distances
(rapidly) grow with dimension. Correspondingly,
given the large tendency of AESA (Vidal (1986))
(and LAESA alike) to require greater number of dis-
tance computations as distances from test samples to
their NN prototypes increase, the apparent efficiency
loss is actually due to the rapid increase of average
distances as the unit hypercube exponentially in-
creases its volume. Like in the conventional AESA
(Vidal (1986)), this behavior is not expected for real,
clustered data, where average distances from test
samples to their corresponding prototypes are not
significantly increased as more features are added to
the representation of objects. Also, one should take
into account that (L)AESA directly works with met-
ric spaces, where only the concept of intrinsic dimen-
sionality (Pettis et al. (1979), Fukunaga (1990),
Baydaletal. (1989)) would properly make sense and,
for adequate distances, the intrinsic dimensionality
does not necessarily increase as larger (and better)
representations of the objects are used.
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5. Conclusions

The results reported in the last section clearly show
that the new Linear Approximating and Eliminating
Search Algorithm (LAESA) can be used for finding
Nearest Neighbours in Metric Spaces with an aver-
age constant number of distance computations. This
is achieved using 2 number of precomputed distances
which only grows linearly with the number of proto-
types. As compared with the quadratic memory re-
quirements of the conventional AESA (Vidal (1986,
1994)), this represents a dramatic reduction of
memory space and corresponding preprocessing time.
From the results reported in this paper, such a mem-
ory cost reduction is achieved at the expense of a small
increase in the number of distance computations with
respect to those required by AESA searching. This
corresponds 1o a particular family of (simple) Base
Prototype management policies, but many other pol-
icies suggest themselves. For instance, BPs can be al-
Jlowed to be eliminated if they are found not to help
improving lower bounds in previous maps (Mico et
al. (1992)). Also, the selection (choice) of a hase or
non-base prototype can be conditioned to the actual
approximate distances {lower bounds) from the pro-
totypes to the test sample. Using (some combination
of ) these policies, the (small) gap between the num-
ber of computation required by LAESA and AESA
searching could perhaps be reduced. Finally, further
improvements could be achieved by taking into ac-
count the ideas introduced in Shasha and Wang
(1990) to take the maximum advantage of all the
distances available.

Apart from these studies, a main issue that de-
serves further investigation concerns the overhead, or
computation that is not strictly applied to distance
computation. While the (L)AESA linear overhead
seems not very important for a number of real-world
applications involving complex (and computation-
ally expensive) distances and moderately large sets
of prototypes, it can in fact become a serious bottle-
neck if the number of prototypes becomes very large;
say, over the millions. In order to reduce the over-
head, the pruning or elimination of prototypes must
be organized in such a way that a (large) number of
prototypes can be eliminated in a single step. One
possibility for this could arise from the so called
‘Spherical Grid’ AESA formulation of Ramasubra-
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manian (1991) and Ramasubramanian and Paliwal
(1992). But perhaps the most direct appreach would
result by organizing the set of prototypes into a tree
structure; like, €.g., that used in Fukunaga and
Narendra (1975). The goal now should be to com-
bine the high approximating and eliminating effi-
ciency of the (L)AESA with the low, typically loga-
rithmic overhead that is possible with a tree
organization of the prototypes.
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