
Incremental Unsupervised Domain-Adversarial Training of Neural
Networks

Antonio-Javier Gallegoa,∗, Jorge Calvo-Zaragozaa, Robert B. Fisherb

aDepartment of Software and Computing Systems, University of Alicante,
03690 Alicante, Spain

bSchool of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK

Abstract

In the context of supervised statistical learning, it is typically assumed that the training set comes

from the same distribution that draws the test samples. When this is not the case, the behavior of

the learned model is unpredictable and becomes dependent upon the degree of similarity between

the distribution of the training set and the distribution of the test set. One of the research topics

that investigates this scenario is referred to as domain adaptation. Deep neural networks brought

dramatic advances in pattern recognition and that is why there have been many attempts to provide

good domain adaptation algorithms for these models. Here we take a different avenue and approach

the problem from an incremental point of view, where the model is adapted to the new domain

iteratively. We make use of an existing unsupervised domain-adaptation algorithm to identify the

target samples on which there is greater confidence about their true label. The output of the model

is analyzed in different ways to determine the candidate samples. The selected set is then added

to the source training set by considering the labels provided by the network as ground truth, and

the process is repeated until all target samples are labelled. Our results report a clear improvement

with respect to the non-incremental case in several datasets, also outperforming other state-of-the-art

domain adaptation algorithms.

Keywords: Domain Adaptation, Unsupervised learning, Neural Networks, Convolutional Neural

Networks, Incremental labelling, Machine learning

1. Introduction

Supervised learning is the most considered approach for dealing with classification tasks. This

paradigm is based on a sufficiently representative training set to learn a classification model. This

level of representativeness is usually defined by two criteria: on the one hand, the training samples

must be varied, which allows the algorithm to generalize instead of memorizing; on the other hand,

∗Corresponding author
Email addresses: jgallego@dlsi.ua.es (Antonio-Javier Gallego), jcalvo@dlsi.ua.es (Jorge Calvo-Zaragoza),

rbf@inf.ed.ac.uk (Robert B. Fisher)

Preprint submitted to arXiv January 14, 2020

ar
X

iv
:2

00
1.

04
12

9v
1

 [
cs

.L
G

]
 1

3
Ja

n
20

20

the application of the trained model is assumed to be carried out on samples that come from the

same distribution as those of the training set [11].

Building a training set fulfilling these conditions is not always straightforward. Although obtain-

ing samples might be easy, assigning their correct labels is costly. This is why there are efforts to

alleviate the aforementioned requirements. However, while the conflict between memorization and

generalization has been well studied, and there exist established mechanisms to deal with it such as

regularization or data augmentation [15], learning a model that is able to correctly classify samples

from a different target distribution remains open to further research. This problem is generally called

transfer learning (TL) [26], and when the classification labels do not vary in the target distribution

it is usually referred to as domain adaptation (DA) [35].

Within the context of supervised learning, deep learning represents an important breakthrough

[19]. This term refers to the latest generation of artificial neural networks, for which novel mecha-

nisms have been developed that allow training deeper networks, i.e., with many layers. These deep

neural networks represent the state of the art in many classification tasks, and have managed to

break the existing glass ceiling in many traditionally complex tasks. In turn, deep learning often

requires a large amount of data, which makes the study of DA even more interesting.

As we will review in the next section, there are several alternatives to attempt DA, both general

strategies and using deep neural networks. In this work we take a different avenue and study an

incremental approach. We propose to use an existing DA algorithm for deep learning to classify

those samples of the target domain for which the model is confident. Assuming the assigned labels

as ground truth, the model is retrained. This added knowledge allows the network to refine its

behavior to correctly classify other samples of the target set. This incremental process is repeated

until the entire target set is completely annotated. We will show that this incremental approach

achieves noticeable improvements with respect to the underlying DA algorithm. In addition, it is

competitive on different benchmarks compared to other state-of-the-art DA algorithms.

The rest of the paper is structured as follows: we outline in Section 2 the existing literature

about DA, with special emphasis to that based on deep neural networks; we present in Section 3

the proposed incremental methodology, as well as the underlying DA model that we consider in this

work; we describe our experimental setting in Section 4, while the results are reported in Section 5;

finally, the work is concluded in Section 6.

2. Background

Since the beginning of machine learning research, there exists the idea of exploiting a model

beyond its use over unknown samples of the source distribution. In the literature we can find two

main topics that pursue this objective: the aforementioned TL and DA strategies.

2

In TL, some knowledge of the model is used to solve a different classification task. For example,

a pre-trained DNN model can be used as initialization [28, 17] or its feature extraction process can

be considered as the basis of another classification model [37]. As a special case of TL, the DA

challenge typically assumes that the classification task of the target distribution is the same (i.e.,

the set of labels is equal). In this work we focus on the latter case.

In a DA scenario, we can also distinguish between semi-supervised and unsupervised approaches.

While semi-supervised DA considers that some labeled samples of the target distribution are available

[8, 36, 25], unsupervised DA works with just unlabeled samples [18]. We will revisit in this section

unsupervised DA techniques, as it is the case of the proposed approach.

Performing unsupervised DA is still considered an open problem from both theoretical and prac-

tical perspectives [5]. Most approaches consider that the key is to build a good feature representation

that becomes invariant to the domain [4]. A good example is the Domain Adaptation Neural Network

(DANN) proposed by Ganin et al. [13], which simultaneously learns domain-invariant features from

both source and target data and discriminative features from the source domain. Following this line

of research, many approaches have been proposed more recently: Virtual Adversarial Domain Adap-

tation (VADA) proposed by Shu et al. [27] added a penalty term to the loss function to penalize class

boundaries that cross high-density feature regions. The Deep Reconstruction-Classification Networks

(DRCN) [14] consists of a neural network that forces a common representation of both the source and

target domains by sample reconstruction, while learning the classification task from the source sam-

ples. The Domain Separation Networks (DSN) proposed by Bousmalis et al. [6] are trained to map

input representations onto both a domain-specific subspace and a domain-independent subspace, in

order to improve the way that the domain-invariant features are learned. Haeusser et al. [16] pro-

posed Associative Domain Adaptation (ADA), which is another domain-invariant feature learning

approach that reinforces associations between source and target representations in an embedding

space with neural networks. The Adversarial Discriminative Domain Adaptation (ADDA) strategy

[33] follows the idea of Generative Adversarial Networks, along with discriminative modeling and

untied weight sharing to learn domain-invariant features, while keeping a useful representation for

the discriminative task. Drop to Adapt (DTA) [21] makes use of adversarial dropout to enforce

discriminative domain-invariant features. Damodaran et al. [10] proposed the Deep Joint Distri-

bution Optimal Transport (DeepJDOT) approach, which learns both the classifier and aligned data

representations between the source and target domain following a single neural framework with a

loss functions based on the Optimal Transport theory [34].

A different strategy to DA consists in learning how to transform features from one domain

to another. Following this idea, the Subspace Alignment (SA) method [12] seeks to represent the

source and target domains using subspaces modelled by eigenvectors. Then, it solves an optimization

problem to align the source subspace with the target one. Also, Sun and Saenko proposed the Deep

3

Correlation Alignment (D-CORAL) approach [31], which consists of a neural network that learns

a nonlinear transformation to align correlations of layer activations from the source and target

distributions.

While the methods outlined above seek for new ways to achieve the desired characteristics of a

proper DA method, our proposed approach takes a different avenue. Specifically, we build upon the

existing DANN approach, and we propose novel ways to improve its ability to adapt to the target

domain by performing the adaptation incrementally.

3. Methodology

3.1. Preliminaries

Let X be the input space and Y be the output or label space. A classification task assumes that

there exist a function f : X → Y that assigns a label to each possible sample of the input space. For

supervised learning, the goal is to learn a hypothesis function h that models the unknown function

f with the least possible error. We refer to h as label classifier. Quite often, the approach is to

estimate a posterior probability P (Y |X) so that the label classifier follows a maximum a posteriori

decision such that h(x) = arg maxy∈Y P (x|y). This is the case with neural networks.

In the DA scenario, there exist two distributions over X × Y : DS and DT , which are referred

to as source domain and target domain, respectively. We focus on the case of unsupervised domain

adaptation, for which DA is only provided with a labeled source set S = {(xi, yi)}ni=1 ∼ (DS)n and

a completely unlabeled target domain T = {(xi)}n
′

i=1 ∼ (DT)n
′
.

The goal of a DA algorithm is to build a label classifier for DT by using the information provided

in both S and T .

3.2. Domain Adaptation Neural Network

Given its importance in the context of our work, we further describe here the operation of DANN,

which will be considered as the backbone for our incremental approach.

DANN is based on the theory of learning from different domains discussed by [3, 2]. This suggests

that the transfer of the knowledge gained from one domain to another must be based on learning

features that do not allow to discriminate between the two domains (source and target) of the

samples to be classified. For this, DANN learns a classification model from features that do not

encode information about the domain of the sample to be classified, thus generalizing the knowledge

from a source labeled domain to a target unlabeled domain.

More specifically, the proposed neural architecture includes a feature extractor module (Gf) and

a label classifier (Gy), which together build a standard feed-forward neural network that can be

trained to classify an input sample x into one of the possible categories of the output space Y .

4

The last layer of the label classifier Gy uses a “softmax” activation, which models the posterior

probability P (x | y), ∀y ∈ Y of a given input x ∈ X.

DANN adds a new domain classifier module (Gd) to the neural network, that classifies the

domain to which the input sample x belongs. This classifier is built as a binary logistic regressor

that models the probability that an input sample x comes from the source distribution (di = 0 if

x ∼ DS) or the target distribution (di = 1 if x ∼ DT), where di denotes a binary variable that

indicates the domain of the sample.

The unsupervised adaptation to a target domain is achieved as follows: the domain classifier

Gd is connected to the feature extractor Gf (which is shared with the label classifier Gy) through

the so-called gradient reversal layer (GRL). This layer does nothing at prediction. However, while

learning through back-propagation, it multiplies the gradient by a certain negative constant (λ).

In other words, the GRL receives the gradient from the subsequent layer and multiplies it by −λ,

therefore changing its sign before passing it to the preceding layer. The idea of this operation is to

force Gf to learn generic features that do not allow discriminating the domain. In addition, since this

training is carried out simultaneously with the training of Gy (label classifier), the features must

be adequate for discriminating the categories to classify, yet unbiased with respect to the input

domain. According to the DA theory, this should cause Gy to be able to correctly classify input

samples regardless of their domain, given that the features from Gf are forced to be invariant.

The DANN training simultaneously updates all modules, providing samples for both Gy and

Gd. This can be done by using conventional mechanisms such as Stochastic Gradient Descent, from

batches that include half of the examples from each domain. During the training process, the learning

of Gf pursues a trade-off between appropriate features for the classification (Gy) and inappropriate

features for discriminating the domain of the input sample (Gd). The hyper-parameter λ allows

tuning this trade-off. The training is performed until the result converges to a saddle point, which

can be found as a stationary point in the gradient update defined by the following equation:

θf ← θf − µ
(
∂Ly

∂θf
− λ∂Ld

∂θf

)
(1)

where θf denotes the weights of Gf , µ denotes the learning rate, and Ly and Ld represent the loss

functions for the label classifier and the domain classifier, respectively.

A graphical overview of the DANN architecture is depicted in Fig. 1.

3.3. Incremental DANN

Our main contribution within the context of DA is to propose an incremental approach to DANN

(iDANN). This strategy is explained below.

Once the DANN model is trained as explained in the previous section, we can use both the

feature extractor Gf and the label classifier Gy to predict the category of samples from both the

5

feature extractor (Gf)

features f

domain classifier (Gd)

label classifier (Gy)input
x

GRL domain
label d

class
label y

loss Ld

loss Ly

∂Ld
∂θf

-λ

∂Ld
∂θd

λ

∂Ly
∂θy

∂Ly
∂θf

Figure 1: Graphical overview of the DANN architecture, consisting of three blocks: feature extractor (Gf), label

classifier (Gy), and domain classifier (Gd). The GRL circle denotes the gradient reversal layer that multiplies the

gradient by a negative factor.

target domain and the source domain (Gy(Gf (x))). The “softmax” activation used at the output of

this classifier returns the posterior probability that the network considers x to belong to any of the

classes of the output space Y .

Our main assumption is that we can use the subset of samples from the target domain for which

Gy is more confident, and then add them to the source labeled domain assuming the prediction as

ground truth. These samples are thereafter considered as samples of the source domain completely.

Afterwards, we can retrain the DANN network to fine-tune its weights using the new training set.

This process is repeated iteratively, moving the labeled samples with greater confidence from the

target domain to the source domain after each iteration. We stop when there are no more samples

to move from the target domain.

The intuitive idea behind our approach is that by adding target domain information to the source

(labeled) domain, the DANN learns new domain-invariant features that better fit the eventual clas-

sification task, thereby becoming more accurate for other target domain samples. In each iteration,

however, the task increases its complexity because it deals first with the simplest samples to classify

(for which the DANN is more confident), leaving those that have more dissimilar features in the

unlabeled target set. When the DANN is retrained with labeled samples that include target domain

information, the domain classifier Gd needs to be more specific. This forces the feature extraction

module Gf to forget the features that differentiate more complex samples from the target domain.

We formalize the process in Algorithm 1, where e and b represents the number of epochs and the

batch size considered, respectively, einc denotes the number of epochs for the incremental stage of

the algorithm, r indicates the size of the subset of target domain samples to select in each iteration,

and β is a constant that allows us to modify this size after each iteration.

In this algorithm, the samples of the target domain (B̂) are classified using the label classifier

Gy, and then it proceeds to select a subset B̂r of size r to be moved from the target domain to the

source domain. For this purpose, two selection criteria are proposed, which are described in the next

section.

6

Algorithm 1: Incremental DANN (iDANN)

Input : S ← {(xi, yi) ∼ DS}

T ← {(xi) ∼ DT }

e, einc, b, r, λ, β ← Initial hyper-parameters values

Output: Gf , Gy,CNN

1 while T 6= ∅ do

2 Gf , Gy ← Fit DANN with {S, T, e, b, λ}

3 B̂r ← selection policy(Gf , Gy, T, r)

4 S ← S ∪ B̂r

5 T ← T\B̂r

6 e← einc

7 r← β r

8 end while

9 T̂ ← {(xi, yi) | xi ∼ DT , yi = Gy(Gf (xi))}

10 Fit CNN with {T̂ , e, b}

Once the iterative stage of the algorithm ends, the label classifier Gy is used to classify the entire

original target domain (see line 9 of Algorithm 1). This labeled target set is used to then train

a neural network from scratch, which is therefore specialized in classifying target domain samples

(more details in Section 3.5).

3.4. Selection policies

Below we describe in detail the two proposed policies to select samples during the iterative stage

of Algorithm 1 (selection policy). One policy is directly based on the confidence level that the

network provides to the prediction, while the other is based on geometric properties of the learned

feature space.

3.4.1. Confidence policy

As mentioned above, the output of the label classifier Gy uses a softmax activation. Let L denote

the number of labels. Then, the standard softmax function σ : RL → RL is defined by Equation 2.

σ(z)i =
ezi∑L
j=1 e

zj
for i = 1, . . . , L and z = (z1, . . . , zL) ∈ RL (2)

This function normalizes an L-dimensional vector z of unbounded real values into another L-

dimensional vector σ(z), for which values range between [0, 1] and add up to 1. This can be in-

terpreted as a posterior probability over the different possible labels [7]. In order to turn these

7

probabilities into the predicted class label, we simply take the argmax-index position of this output

vector, following a Maximum a Posteriori probability criterion.

Taking advantage of this interpretation, the first policy for selecting samples to move from the

target domain to the source is based on the probability provided by the label classifier Gy, which

can be seen as a measure of confidence in such classification.

With this criterion, we will keep the maximum predicted probability value for each sample of

the target set among the possible labels. Then, we will order all samples based on this value—from

highest to lowest—in order to select the first r samples to build the subset B̂r.

Algorithm 2 presents the algorithmic description of this process, where Gp
y refers to the proba-

bilistic output of the label classifier after the softmax activation, before applying argmax to select a

label. The function sortr is used to sort the set in decreasing order.

Algorithm 2: Confidence policy

Input : T ← {(xi) ∼ DT }

Gf , Gy ← Feature extractor and label classifier

r← Size of the selected samples subset

Output: B̂r

1 B̂ ← Gp
y(Gf (T))

2 B̂r ← {∅}

3 foreach (xi, yi) ∈ sortr(B̂) do

4 B̂r ← B̂r ∪ (xi, yi)

5 if |B̂r| = r then

6 break

7 end if

8 end foreach

Figure 2 shows an example of a set of probabilities obtained after predicting the target samples

with DANN. The figure on the left shows the maximum probability values obtained for the classi-

fication of each sample—without sorting—while in the figure on the right the sorted set is shown,

where the threshold r has been highlighted.

3.4.2. kNN policy

As in the previous case, once the network has been trained, we use the label classifier Gy to

predict the labels of the whole target domain and then we sort them based on the confidence given

by the network. However, in this case, instead of directly selecting a subset of samples according to

this confidence, we will also evaluate the geometric properties of the feature space. This is performed

following the k-nearest neighbor rule.

8

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
u
tp

u
t

P
ro

b

Samples

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
u
tp

u
t

P
ro

b

Samples

r = 100

Figure 2: Example of probabilities obtained with DANN. Left: maximum probability of each sample. Right: ordered

set of maximum probabilities, where the threshold r has been highlighted.

We first obtain the feature set FS from the source set S (using Gf (S)). We then proceed to

iterate the target set samples sorted by their level of confidence. Given a target sample, if the label

of the k-nearest samples of the source domain matches the label assigned by the label classifier Gy,

then we will select the prototype. Otherwise, we will discard it. Therefore, samples are selected

based on both the confidence provided by the DANN in their label and the extent they match the

distribution of the source domain.

Algorithm 3 describes this process algorithmically. The kNN(q, FS , k) function receives as pa-

rameters the query sample q, the set FS and the value k to be used, and yields the predicted label

l and the number of samples m within its k-nearest neighbors from S that have the same label.

The idea of this policy is to select the samples of the target domain whose features are within the

cluster of the source domain for the same class. An illustrative example of this condition is shown

in Fig. 3 with k = 5. The example shows two labels of the source domain as green circles and blue

squares. The red stars denote the target domain examples that are being evaluated to determine if

they are selected. For instance, the star on the left would be selected if, and only if, the network

classified it as a green circle, since its 5-nearest neighbors are green circles. Similarly, the star on

the right would be selected if, and only if, the network classified it as a blue square. However, the

central star would always be discarded because its 5-neighbors belong to two different classes.

If we increase k, the red star of the left would still be selected (if labeled as green circle) because

it is located in the middle of the cluster. However, the red start of the right is closer to label

boundaries, and so it would eventually be discarded.

3.5. Training a CNN with the new labeled target set

As described in Algorithm 1, once the iterative stage of the iDANN algorithm is completed, we

use the label classifier Gy to annotate the entire original target set T from scratch. Then, a new

CNN is trained by conventional means considering the same neural architecture of Gy(Gf (·)). This

allows us to eventually get a neural network that is directly specialized in the classification of the

9

Algorithm 3: kNN policy

Input : S ← {(xi, yi) ∼ DS}

T ← {(xi) ∼ DT }

Gf , Gy ← Feature extractor and label classifier

r← Size of the selected samples subset

k ← Number of neighbors to consider

Output: B̂r

1 FS ← Gf (S)

2 B̂ ← Gp
y(Gf (T))

3 B̂r ← {∅}

4 foreach (xi, yi) ∈ sortr(B̂) do

5 f
(i)
T ← Gf (xi)

6 l,m← kNN(f
(i)
T , FS , k)

7 if yi = l and m = k then

8 B̂r ← B̂r ∪ (xi, yi)

9 if |B̂r| = r then

10 break

11 end if

12 end if

13 end foreach

target domain.

However, we assume that some part of the iterative annotation of the target set will contain

noise at the label level. To mitigate the possible efects of this noise, we consider label smoothing

[32]. This is an efficient and theoretically-grounded strategy for dealing with label noise, which also

makes the model less prone to overfitting.

Compared to classical one-hot output representation, label smoothing changes the construction

of the true probability to

y′i = (1− ε)yi +
ε

L
, (3)

where ε is a small constant (or smoothing parameter) and L is the total number of classes. Hence,

instead of minimizing cross-entropy with hard targets (0 or 1), it considers soft targets.

10

Figure 3: Example of sample selection using the kNN policy with k = 5. Green circles and blue squares represent

samples of two different classes from the source domain. Red stars represent the samples of the target domain that

are evaluated to determine whether they are chosen.

4. Experimental setup

4.1. Datasets

The proposed approach will be evaluated with two different classification tasks, that are common

in the DA literature. The first one is that of digit classification, for which we consider the following

datasets:

• MNIST [20]: this collection contains 28× 28 images representing isolated handwritten digits.

• MNIST-M [13]: this dataset was synthetically generated by merging MNIST samples with

random color patches from BSDS500 [1].

• Street View House Numbers (SVHN) [24]: it consists of images obtained from house numbers

from Google Street View. It represents a real-world challenge of digit recognition in natural

scenes, for which several digits might appear in the same image and only the central one must

be classified.

• Synthetic Numbers [13]: images of digits generated using WindowsTM fonts, with varying

position, orientation, color and resolution.

In addition, we also evaluate our approach for traffic sign classification with the following datasets:

• German Traffic Sign Recognition Benchmark (GTSRB) [30]: this dataset contains images of

traffic signs obtained from the real world in different sizes, positions, and lighting conditions,

as well as including occlusions.

• Synthetic Signs [23]: this dataset was synthetically generated by taking common street signs

from Wikipedia and applying several transformations. It tries to simulate images from GTSRB

although there are significant differences between them.

11

Table 1 summarizes the information of our evaluation corpora, including the domain to which

they belong, the number of labels, the image resolution, the number of samples, and the type of image

indicating whether they are in color or grayscale format. Figure 4 shows some random examples

from each of these datasets.

Table 1: Description of the datasets used in the experimentation.

Set # labels Domain Resolution (px) Gray/Color # samples

Numbers 10

MNIST 28× 28 Gray 65,000

MNIST-M 28× 28 Color 65,000

SVHN 32× 32 Color 99,289

Syn. Numbers 32× 32 Color 488,953

Traffic

signs
43

GTSRB [25× 25, 225× 243] Color 51,839

Syn. Signs 40× 40 Color 100,000

(a) MNIST (b) MNIST-M (c) SVHN

(d) Syn. Numbers (e) GTSRB (f) Syn. Signs

Figure 4: Random examples from the datasets used in experimentation.

The images of each classification task were rescaled to the same size: the digits to 28 × 28

pixels, and the traffic signs to 40× 40 pixels. Concerning the pre-processing of the input data, the

images were normalized within the range [0, 1]. The train and test partitions were those proposed

by the authors of each dataset, in order to ensure a fair comparison with the results obtained in the

literature.

12

4.2. CNN architectures

To evaluate the proposed methodology, the same three CNN architectures used in the original

DANN paper have been tested. Table 2 reports a summary of these architectures.

As the authors pointed out, these topologies are not necessarily optimal and better adapta-

tion performance might be attained if they were tweaked. However, we chose to keep the same

configuration to make a fairer comparison.

As the activation function, a Rectifier Linear Unit (ReLU) was used for each convolution layer

and fully-connected layer, except for the the output layers. L neurons with softmax activation were

used as output of the label classifier. For the output of the domain classifier, a single neuron with

a logistic (sigmoid) activation function was used to discriminate between two possible categories

(source domain or target domain).

Model 1 was used for all the experiments with digit datasets, except those using SVHN. This

topology is inspired by the classical LeNet-5 architecture [20]. Model 2 was used to evaluate the

experiments with digits that include SVHN. This architecture is inspired by [29]. Finally, Model 3

was used for the experiments with traffic sings. In this case, the single-CNN baseline obtained from

[9] was used.

Table 2: CNN network configurations considered. Notation: Conv(f, w, h) stands for a layer with f convolution

operators with a kernel of size w× h pixels, MaxPool(w, h) stands for the max-pooling operator of dimensions w× h

pixels—with a 2 × 2 in all cases—and FC(n) represents a fully-connected layer of n neurons. In the output layer of

the label classifier a fully-connected layer of L neurons with softmax activation is added, where L denotes the number

of categories of the dataset at issue.

Feature extractor

Model Layer 1 Layer 2 Layer 3 Label classifier Domain classifier

1
Conv(32, 5, 5)

MaxPool(2, 2)

Conv(48, 5, 5)

MaxPool(2, 2)

FC(100)

FC(100)

FC(L)

FC(100)

FC(1)

2
Conv(64, 5, 5)

MaxPool(3, 3)

Conv(64, 5, 5)

MaxPool(3, 3)
Conv(128, 5, 5)

FC(3072)

FC(2048)

FC(L)

FC(1024)

FC(1024)

FC(1)

3
Conv(96, 5, 5)

MaxPool(2, 2)

Conv(144, 3, 3)

MaxPool(2, 2)

Conv(256, 5, 5)

MaxPool(2, 2)

FC(512)

FC(L)

FC(1024)

FC(1024)

FC(1)

4.3. Training stage

To ensure a fair comparison with the original DANN algorithm, we set the same training config-

uration: Stochastic Gradient Descent with a learning rate of 0.01, decay of 10−6, and momentum of

0.9, as well as the same number of epochs (300).

13

For the iterative stage of iDANN, we set einc to 25. This value was determined empirically. We

observed that it allowed the network weights to be tuned with the new knowledge without taking

too long to perform a new iteration. In each training iteration, the greater improvement occurs in

the first epochs, after which the accuracy of the label classifier is stabilized.

Concerning the size of the subset to select from the target set (r), we decided to consider a

percentage of the remaining samples rather than a fixed value. Initially, we set it to 5%, and it

was increased after each iteration by 150% (β = 1.5) until all target domain samples are selected.

This value was also obtained empirically, by observing better results and more stable training if few

samples are added in the first iterations.

Different values for both the batch size b and λ are evaluated, as will be reported in the experi-

mentation section.

5. Results

In this section we evaluate the proposed method using the datasets, topologies, and settings

described in Section 4. We first study the different hyper-parameterization, as well as the two

prototype selection policies proposed. Next we show the performance results obtained over the

datasets and, finally, we compare with other state-of-the-art methods.

5.1. Hyper-parameters evaluation

In this section, we start by analyzing the influence of the batch size and the value of λ on the per-

formance of the method, as these hyper-parameters are those that affect the training stage the most.

For this, we consider the batch sizes of {16, 32, 64, 128, 256, 512} and λ of {10−1, 10−2, 10−3, 10−4}.

This means that each result comes from a total of 336 experiments (14 combinations of dataset pairs

× 6 batch values × 4 values of λ). The rest of hyper-parameters are set as indicated in Section 4.3,

that is: e = 300 (as in the original DANN paper), einc = 25, and r = 5%, which were empirically

determined to favor stable training and obtain good results. In addition, we evaluate the results

using only the prototype selection policy based on network’s confidence, as next section will be

devoted to comparing the two proposed policies with the best hyper-parameters found.

As we are dealing with an unsupervised method, we mainly focus on analyzing the trend when

modifying these parameters. Table 3 shows the results of this experiment, where each figure rep-

resents the average of the 14 possible combinations of source and target domain of the datasets

considered and all the iterations performed by the iDANN algorithm.

The first thing to remark is that some of the hyper-parameter combinations evaluated in these

experiments do not converge (h = 32/64, λ = 101 for traffic signs). This could be detected automat-

ically, since the accuracy is abruptly reduced to a value approximately equal to a random guess, for

both the training set and evaluation set and for both the source and the target domain. However,

14

these results have been kept in order to observe the general trend of the method and how these

parameters affect it.

It can also be observed that the best performance is achieved with λ = 10−2 in the two types of

corpora, while a batch size of 64 and 32 are better for the digits and traffic signs, respectively. On

average, better results are reported with low λ values and batch sizes between 32 and 256. When λ

is greater (e.g., 10−1), the training becomes highly unstable, especially if combined with small batch

sizes.

Table 3: Influence of hyper-parameter setting on the performance (accuracy, in %) of the iDANN algorithm. Figures

report classification accuracy over the target set, averaging with the respective datasets and iterations of the algorithm.

Numbers Traffic signs

λ λ

Batch 10−4 10−3 10−2 10−1 10−4 10−3 10−2 10−1

16 58.74 56.21 58.65 47.54 89.67 88.65 90.08 48.16

32 66.13 65.82 61.67 49.78 93.58 93.63 94.50 24.02

64 65.26 66.41 66.82 62.54 91.27 91.16 91.67 31.41

128 64.23 66.04 66.79 52.89 88.56 89.36 89.60 66.78

256 64.55 63.94 64.24 59.36 87.34 87.73 88.67 91.39

512 62.55 62.61 62.75 50.67 84.34 84.45 84.09 84.60

Next, we analyze the influence of these parameters with respect to the iteration of the iDANN

algorithm. Table 4 shows the average result obtained by grouping all combinations of datasets

(numbers and traffic signs) and hyper-parameters considered. As in the previous analysis, better

results are also observed for low λ values and batch sizes between 32 and 256 (see column ‘Avg.’). In

this case, it can also be seen that low λ values are more appropriate in the first iterations, whereas

greater λ values are more appropriate in the last iterations. It might happen that a more stable way

of proceeding (low λ) is preferred in the first iterations, even at the cost of being less aggressive in

the domain adaptation. Therefore, we propose to start with a low λ and increase its value gradually

(+10−4 after each epoch).

Additionally, it is observed that each iteration of the algorithm leads to a better result than the

previous one (except for λ ≥ 10−1), yielding the higher leap in the first iterations and reducing this

difference towards the last iterations. Including all cases, the results improve by 5.19% between the

first and the last iteration, on average. If we ignore those settings that do not converge, the average

improvement obtained increases to 10.29%.

5.2. Model analysis

We now evaluate the effect of the incremental training process on the domain adaptation ap-

proach. Figure 5 shows the evolution of the accuracy obtained over the target test set during the

training process for the case Syn Numbers → MNIST-M combination of datasets, with a batch

size of 64 and λ = 10−2. The training epochs are represented with the horizontal axis, while the

15

Table 4: Influence of hyper-parameter setting on the performance of the iDANN algorithm with respect to number of

iterations. Figures report classification accuracy over the target set, averaging with the respective datasets.

Iterations

λ Batch 1 2 3 4 5 6 7 8 9 Avg.

10−4

16 58.46 59.71 61.46 62.81 63.91 64.86 65.39 65.78 66.04 63.16

32 65.20 67.85 69.37 69.91 70.73 71.14 71.89 72.11 72.24 70.05

64 63.88 67.11 68.33 68.75 69.35 70.30 70.71 71.13 71.22 68.97

128 62.67 65.52 67.09 67.68 68.19 68.84 69.46 69.88 70.06 67.71

256 62.82 65.20 66.92 67.83 68.65 68.84 69.57 70.09 70.34 67.81

512 61.51 63.28 64.32 65.45 65.97 66.93 67.60 67.87 68.03 65.66

10−3

16 56.65 57.70 59.65 60.72 61.43 62.25 62.75 63.15 63.31 60.85

32 63.95 67.42 68.68 69.93 70.59 71.26 71.79 72.19 72.33 69.79

64 64.66 67.39 68.78 69.89 70.41 71.32 72.06 72.44 72.57 69.95

128 63.75 66.59 68.61 69.07 69.93 70.82 71.44 72.00 72.14 69.37

256 62.38 65.08 66.67 67.44 67.69 68.52 69.10 69.49 69.71 67.34

512 61.36 63.46 64.72 65.48 66.25 66.96 67.42 67.84 68.08 65.73

10−2

16 56.73 61.57 63.37 65.13 65.81 66.31 62.94 63.13 63.26 63.14

32 62.07 64.75 66.01 66.68 67.46 67.78 68.23 68.47 68.80 66.69

64 64.78 67.77 69.44 70.20 71.21 71.92 72.35 72.74 72.95 70.37

128 64.49 67.27 69.02 69.75 70.71 71.58 72.00 72.72 72.87 70.05

256 63.16 65.55 66.75 67.49 68.32 68.76 69.51 69.81 70.21 67.73

512 61.61 63.49 64.82 65.57 66.10 66.81 67.52 68.01 68.28 65.80

10−1

16 46.48 50.71 52.12 53.35 53.78 42.41 42.98 43.35 43.52 47.63

32 50.09 53.07 47.66 42.61 43.12 44.06 44.39 44.91 44.96 46.10

64 61.64 64.02 64.24 54.01 54.48 55.44 55.96 56.47 56.59 58.09

128 55.72 57.10 57.16 57.01 52.95 53.15 53.63 53.50 53.69 54.88

256 60.13 62.26 62.60 63.53 64.25 64.93 65.57 66.04 66.14 63.94

512 53.54 54.39 54.63 55.01 55.69 56.04 56.57 56.84 56.95 55.52

Average 60.32 62.84 63.85 63.97 64.46 64.63 65.03 65.42 65.59 –

iterations (i.e., when new training samples are added) are highlighted with blue lines and marked

above. It can be observed that in the first iteration (spanning 300 epochs), the accuracy slowly

improves until around 150 epochs, after which becomes stable. In the subsequent iterations, the

accuracy further improves, especially during iterations 2, 3 and 4. Then, the performance increase

is gradually reduced until it is hardly noticeable.

To provide further analysis, we also examine the representation space learned by the network in

each of these iterations, using the same combination of datasets and training parameters. We use

the t-Distributed Stochastic Neighbor Embedding (t-SNE) [22] projection to visualize the samples

according to their representation by the last hidden layer of the label predictor. Figure 6 shows

a visualization of the features learned after each of the iterations, where the red color represents

the target domain, the blue color represents the source domain, and the green color represents

the set B̂r (selected samples) using the confidence policy. This representation reveals 10 well-

defined clusters—the 10 possible classes of the datasets considered for this analysis—around an

additional central cluster. This central cluster groups the samples of the target domain (red color)

whose representation does not correspond to any of the existing classes yet. This cluster would

16

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400 450 500

A
cc

Epochs

Iteration 1 2 3 4 5 6 7 8 9

Figure 5: Accuracy curve with respect to training epochs and iterations of the incremental approach.

therefore correspond to target samples whose representation has not been correctly mapped onto

any of the source domain classes. Iteratively, the method is selecting samples (green points) of the

target domain and moving them to the source domain. In the first iterations—until the 6th one,

approximately—the method selects only samples that are well located in one of the source domain

clusters (that is, those samples for which the network is more confident). Due to this process, the

size of the central cluster is reduced. It is important to emphasize that this cluster becomes smaller

although no samples out of it are selected, which indicates that the network is learning to better map

those samples because of the selected samples of previous iterations. Towards the last iterations,

the method begins to select the most complex samples that are still in this additional cluster. In

Fig. 6(*) (which is the same as the Fig. 6(9) but highlighting each class with a different color),

the additional cluster of target samples still appears without being mapped, yet with a very small

size. This cluster contains almost all the classification errors, having mapped only some isolated

prototypes to the actual class clusters incorrectly.

5.3. kNN policy

We compare in this section the two policies proposed for selecting the set of target prototypes

B̂r to be added to the source domain. To this end, we evaluate whether the label assigned to each

of these prototypes is correct. In this case, we make use of the ground-truth of the target domain

just for the sake of analysis.

We show in Fig. 7 a dotted line with the performance of the confidence policy, which may serve

as a baseline here, and eight results for the kNN policy with varying k values. As in the previous

experiments, the reported figures are obtained for all combinations of datasets and hyper-parameters

considered.

It is observed that, as the number of iterations of the algorithm increases, the accuracy of the

additional labels assigned to the selected prototypes decreases. However, the kNN policy generally

17

Figure 6: t-SNE representation of the feature space of the neural network (from the last hidden layer) with respect

to the iteration of the approach. The red color represents the target domain, the blue color represents the source

domain, and the green color represents the set B̂r. Last representation (*) depicts each sample according to its actual

category by using different colors.

obtains better results from the first iteration, obtaining on average (for all iterations) an improvement

of 6.36 % with respect to confidence policy. This improvement is significantly greater in the last

iterations, obtaining an increase up to 24.85 % between the result of the confidence policy and the

best result obtained with kNN policy.

The role of the parameter k is also illustrated in Fig. 7, where better results are attained as k

is increased. It is shown that the impact of this parameter is more noticeable in the last iterations,

where a difference of up to 8.91 % is obtained between k = 3 and k = 150.

Because the kNN selection policy worked better, this policy was used in all following experiments.

5.4. Accuracy on target

In this section, we evaluate the final result obtained through the proposed iDANN method with

the best combination of hyper-parameters previously obtained for each of the dataset pairs. We will

18

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

A
cc

Iterations

k=3
k=7

k=11

k=20
k=50

k=100

k=150
k=200
Conf.

Figure 7: Accuracy of the labels assigned to the selected prototypes set (B̂r) from the target domain according to

the selection policy.

compare this result with that obtained by the original DANN method in order to check the goodness

of the incremental approach.

Table 5 reports the results of the experiment, where rows indicate the dataset pairs (source

and target) and columns represent the DA method. Concerning iDANN, we report two results:

the accuracy of the labels assigned during the iterative process itself (1), as well as the accuracy

using the CNN trained from scratch using only the target samples (once all the target samples have

been assigned a label). In addition to DANN and iDANN methods, we have also added the results

obtained with the neural networks trained just with the source set (‘CNN Src.’), as well as the results

obtained with the neural neural networks directly trained with the target set (‘CNN Tgt.’). The

former serves as baseline, to better assess the impact of the domain-adaptation mechanisms, while

the second represents the upper bound of accuracy.

The first thing to remark is that the worst results obtained by the baseline (‘CNN Src.’) come

from the combinations of single-digit datasets (MNIST, MNIST-M) as source and complex digit

datasets (SVHN, Syn Numbers) as target. Furthermore, the best results from the baseline are

reported for combinations where the source and target are similar (MNIST-M→ MNIST, SVHN→

Syn Numbers).

The original DANN method outperforms the results obtained by using the baseline network

(‘CNN Src.’) by 10.7 %, on average, obtaining the most significant improvement for the combinations

of Syn Numbers→ MNIST (improving by 29.31 %). It is also noticeable the impact of DANN when

the dataset pair consists of similar tasks with the most complex one as target, such as MNIST

→ MNIST-M—improvement of 23 %—or Syn Signs → GTSRB—improvement of 15.49 %. These

results for DANN have been obtained using our own implementation, following the details given

in the original paper. We observed that the accuracy matches approximately that reported by the

authors (for the 4 combinations they considered), and so we assume that our implementation is

19

correct. We can therefore faithfully report the performance in all source-target combinations of our

experiments.

Concerning the labels assigned during the proposed incremental approach iDANN (DT Acc.(1)),

the first thing to note is its improvement with respect to the underlying DANN method, which is

around 16 %, on average. In the best case, this improvement reaches values around 33 %, 35 %

and 36 % for the Syn Numbers → MNIST-M, MNIST-M → Syn Numbers, and MNIST → Syn

Numbers pairs, respectively. This confirms the goodness of our strategy, which uses the same

domain adaptation method in a novel way.

Finally, if the CNN is trained from scratch with the target labels that have been automatically

assigned by the iDANN (DT Acc.(2)), it can further improve the results up to 1.64 %, on average,

and up to 5.5 % in the best case (MNIST-M → Syn Numbers). It should be noted that in some

specific combinations, this approach slightly outperforms the CNN trained with the correct target

labels (for example, MNIST-M → MNIST or Syn Numbers → SVHN). It might happen that the

incorrectly assigned labels of the iDANN process act as a regularizer that alleviates some overfitting.

Table 5: Accuracy (%) over the the target dataset for different strategies: ‘CNN Src.’ indicates a neural network

trained only with source samples; ‘DANN’ denotes the original DANN strategy; ‘iDANN’ yields two results from the

incremental strategy: DT Acc.(1) refers to the accuracy of the labels assigned to the target samples during the iterative

process, while DT Acc.(2) refers to the classification after training a new CNN from scratch using the labels assigned

to the target samples; and ‘CNN Tgt.’ denotes a CNN trained using the ground truth of the target samples.

Source Target
CNN Src. DANN iDANN CNN Tgt.

DT Acc. DT Acc. DTAcc.(1) DTAcc.(2) DT Acc.

MNIST

MNIST-M 55.71 78.70 96.09 96.67 97.34

SVHN 16.26 31.32 35.83 36.49 90.93

Syn Numbers 32.14 44.66 80.79 84.82 99.34

MNIST-M

MNIST 97.95 98.65 99.04 99.59 98.94

SVHN 32.91 41.41 61.87 61.89 90.93

Syn Numbers 46.34 54.02 89.49 94.99 99.34

SVHN

MNIST 59.04 67.08 82.72 84.50 98.94

MNIST-M 43.49 47.42 66.40 67.62 97.34

Syn Numbers 88.42 89.56 96.43 98.10 99.34

Syn Numbers

MNIST 60.04 89.35 98.13 99.35 98.94

MNIST-M 41.84 54.38 87.10 90.26 97.34

SVHN 85.16 87.24 91.42 91.95 90.93

GTSRB Syn signs 76.39 86.22 98.28 98.57 99.74

Syn signs GTSRB 69.79 85.28 96.31 98.00 97.89

Average 57.53 68.23 84.28 85.91 96.95

20

5.5. Comparison with the state of the art

To conclude the results section, we present below a comparison with other domain adaptation

strategies from the state of the art. In these works, not all possible combinations of source-target

pairs are considered but a few combinations of them. We show in Table 6 the results reported in

the literature1, along with the results obtained by our proposal (iDANN). A brief description of the

competing methods was provided in Section 2. Readers are referred to the corresponding references

for details.

These results reveal that our method yields the best performance in 5 out of 7 source-target pairs.

The performance of iDANN is especially remarkable in the case of MNIST → Syn Num, where the

improvement reaches around 30 % compared to the literature. For the case in which our proposal

does not attain the best result, we observe a dissimilar performance: it is still very competitive for

the MNIST → SVHN pair, whereas it is outperformed for the SVHN → MNIST pair. When all the

results are good, the improvement is relative, but when there is enough margin, the improvement is

quite remarkable (as in the case of MNIST → Syn Num).

Table 6: Comparison of accuracy (%) between state-of-the-art DA approaches and iDANN. The first two rows denote

the source and target dataset, respectively. The best result for each combination (column) is highlighted in bold

typeface. Empty cells indicate that the result is not reported in the literature.

MNIST SVHN Syn Num

Methods MNIST-M SVHN Syn Num MNIST Syn Num MNIST SVHN

SA [12] 56.9 – – 59.32 – – 86.44

DRCN [14] – 40.05 – 81.97 – – –

DSN [6] 83.2 – – 82.7 – – 91.2

DANN [13] 76.66 12.4 22.9 73.85 96.9 87.6 91.09

D-CORAL [31] – 35 55.8 76.3 95.5 89.9 78.8

ADDA [33] – – – 76 – – –

ADA [16] – 12.9 34.8 96.3 95.5 97.1 88.1

VADA [27] – 18.6 45.9 92.9 96.8 96.2 85.3

DeepJDOT [10] 92.4 – – 96.7 – – –

DTA [21] – – – 99.4 – – –

iDANN 96.67 36.49 84.82 84.50 98.10 99.35 91.95

Furthermore, it should be noted that many of the compared methods propose specific CNN

architecture for each combination of datasets and/or focus on optimizing the result for a particular

combination, such as DTA or DeepJDOT. In our case, we utilized the topologies proposed in the

1Unlike the results of the previous section, the DANN values of Table 6 are those reported in the original paper

[13].

21

original DANN paper, so it could be assumed that if we pursue a specific architecture adapted to

each of the source-target pairs, our results will probably improve.

6. Conclusions and Future Work

This paper proposes an incremental strategy to the problem of domain adaptation with artificial

neural networks. Our approach is built upon an existing domain adaptation approach, combined

with a heuristic that, in each iteration, decides which prototypes of the target set can be added to

the training set by considering the label provided by the neural network. To this end, two selection

policies have been proposed: one directly based on the confidence given by the network to the

prediction and another based on geometric properties of the learned feature space. We observed

that the latter reported a better performance, especially in the last iterations of the algorithm. In

addition, we consider a final stage in which the labeled target set is used to train a new neural

network with label smoothing.

Our experiments were performed on various corpora and using several configurations of the neural

network. From the results, we conclude that the incremental approach outperforms the underlying

DANN model, as well as other state-of-the-art methods. It is interesting to note that, in some

cases, the iDANN approach improves the result obtained with the CNN trained directly with the

ground-truth data of the target set, which could indicate that the incremental process also serves as

a regularizer that leads to greater robustness. Furthermore, unlike the classic DANN, our approach

improves results when domains are similar and helps keeping the accuracy for the source domain.

We also observed a greater training stability and less dependence on the hyper-parameters set.

As future work, a primary objective would be to establish a well-principled stop criterion that

allows us to detect when the prediction over the target samples is not reliable. In addition, we want

to extend the experiments to other types of input types (such as sequences), as well as to study

the behavior of the incremental strategy when the underlying DA method is different—given that

there currently exist several architectures for this challenge. Note that our incremental approach is

independent of the underlying DA model considered, and so it could be adopted as a generic strategy

that might improve to the same extent as the underlying DA algorithm improves. Other avenues

to further explore this proposal is to evaluate more neural network architectures, as well as adding

data augmentation to the learning process.

References

[1] Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour detection and hierarchical

image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 ,

898–916. doi:10.1109/TPAMI.2010.161.

22

http://dx.doi.org/10.1109/TPAMI.2010.161

[2] Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010).

A theory of learning from different domains. Machine Learning , 79 , 151–175. doi:10.1007/

s10994-009-5152-4.

[3] Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of representations for

domain adaptation. In NIPS (pp. 137–144).

[4] Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2007). Analysis of representations for

domain adaptation. In B. Schölkopf, J. C. Platt, & T. Hoffman (Eds.), Advances in Neural

Information Processing Systems 19 (NIPS) (pp. 137–144). MIT Press.

[5] Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., & Krishnan, D. (2017). Unsupervised

pixel-level domain adaptation with generative adversarial networks. In 2017 IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,

2017 (pp. 95–104).

[6] Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., & Erhan, D. (2016). Domain

separation networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.),

Advances in Neural Information Processing Systems 29 (pp. 343–351). Curran Associates, Inc.

[7] Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification network outputs,

with relationships to statistical pattern recognition. In F. F. Soulié, & J. Hérault (Eds.),

Neurocomputing (pp. 227–236). Berlin, Heidelberg: Springer Berlin Heidelberg.

[8] Cheng, L., & Pan, S. J. (2014). Semi-supervised domain adaptation on manifolds. IEEE

Transactions on Neural Networks and Learning Systems, 25 , 2240–2249. doi:10.1109/TNNLS.

2014.2308325.

[9] Cireşan, D., Meier, U., Masci, J., & Schmidhuber, J. (2012). Multi-column deep neural network

for traffic sign classification. Neural Networks, 32 , 333 – 338. Selected Papers from IJCNN

2011.

[10] Damodaran, B. B., Kellenberger, B., Flamary, R., Tuia, D., & Courty, N. (2018). Deepjdot:

Deep joint distribution optimal transport for unsupervised domain adaptation. In V. Ferrari,

M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer Vision – ECCV 2018 (pp. 467–483).

Cham: Springer International Publishing.

[11] Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification, 2nd Edition. Wiley.

[12] Fernando, B., Habrard, A., Sebban, M., & Tuytelaars, T. (2013). Unsupervised visual domain

adaptation using subspace alignment. In 2013 IEEE International Conference on Computer

Vision (ICCV) (pp. 2960–2967).

23

http://dx.doi.org/10.1007/s10994-009-5152-4
http://dx.doi.org/10.1007/s10994-009-5152-4
http://dx.doi.org/10.1109/TNNLS.2014.2308325
http://dx.doi.org/10.1109/TNNLS.2014.2308325

[13] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., March, M.,

& Lempitsky, V. (2016). Domain-adversarial training of neural networks. Journal of Machine

Learning Research, 17 , 1–35.

[14] Ghifary, M., Kleijn, W. B., Zhang, M., Balduzzi, D., & Li, W. (2016). Deep reconstruction-

classification networks for unsupervised domain adaptation. In B. Leibe, J. Matas, N. Sebe, &

M. Welling (Eds.), Computer Vision – ECCV 2016 (pp. 597–613). Cham: Springer Interna-

tional Publishing.

[15] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning . MIT Press. http://www.

deeplearningbook.org.

[16] Haeusser, P., Frerix, T., Mordvintsev, A., & Cremers, D. (2017). Associative domain adaptation.

In The IEEE International Conference on Computer Vision (ICCV).

[17] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,

NV, USA, June 27-30, 2016 (pp. 770–778).

[18] Kouw, W. M., & Loog, M. (2019). A review of domain adaptation without target labels. IEEE

Transactions on Pattern Analysis and Machine Intelligence, (pp. 1–1).

[19] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521 , 436.

[20] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to

document recognition. In Proc. of the IEEE (pp. 2278–2324). volume 86.

[21] Lee, S., Kim, D., Kim, N., & Jeong, S.-G. (2019). Drop to adapt: Learning discriminative fea-

tures for unsupervised domain adaptation. In The IEEE International Conference on Computer

Vision (ICCV).

[22] van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine

Learning Research, 9 , 2579–2605.

[23] Moiseev, B., Konev, A., Chigorin, A., & Konushin, A. (2013). Evaluation of traffic sign

recognition methods trained on synthetically generated data. In J. Blanc-Talon, A. Kasin-

ski, W. Philips, D. Popescu, & P. Scheunders (Eds.), Advanced Concepts for Intelligent Vision

Systems (pp. 576–583). Cham: Springer International Publishing.

[24] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading digits in

natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and

Unsupervised Feature Learning 2011 .

24

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[25] Saito, K., Kim, D., Sclaroff, S., Darrell, T., & Saenko, K. (2019). Semi-supervised domain

adaptation via minimax entropy. In The IEEE International Conference on Computer Vision

(ICCV).

[26] Shao, L., Zhu, F., & Li, X. (2014). Transfer learning for visual categorization: A survey. IEEE

Transactions on Neural Networks and Learning Systems, 26 , 1019–1034.

[27] Shu, R., Bui, H., Narui, H., & Ermon, S. (2018). A DIRT-t approach to unsupervised domain

adaptation. In International Conference on Learning Representations.

[28] Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image

recognition. In 3rd International Conference on Learning Representations, ICLR 2015, San

Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[29] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:

A simple way to prevent neural networks from overfitting. Journal of Machine Learning Re-

search, 15 , 1929–1958.

[30] Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2012). Man vs. computer: Benchmark-

ing machine learning algorithms for traffic sign recognition. Neural Networks, 32 , 323 – 332.

doi:https://doi.org/10.1016/j.neunet.2012.02.016.

[31] Sun, B., & Saenko, K. (2016). Deep coral: Correlation alignment for deep domain adaptation.

In G. Hua, & H. Jégou (Eds.), Computer Vision – ECCV 2016 Workshops (pp. 443–450).

Cham: Springer International Publishing.

[32] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception

architecture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (pp. 2818–2826). doi:10.1109/CVPR.2016.308.

[33] Tzeng, E., Hoffman, J., Saenko, K., & Darrell, T. (2017). Adversarial discriminative domain

adaptation. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

(pp. 2962–2971).

[34] Villani, C. (2009). Optimal Transport Old and New . Springer.

[35] Wang, M., & Deng, W. (2018). Deep visual domain adaptation: A survey. Neurocomputing ,

312 , 135 – 153.

[36] Yao, T., Pan, Y., Ngo, C.-W., Li, H., & Mei, T. (2015). Semi-supervised domain adaptation with

subspace learning for visual recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition (CVPR) (pp. 2142–2150).

25

http://dx.doi.org/https://doi.org/10.1016/j.neunet.2012.02.016
http://dx.doi.org/10.1109/CVPR.2016.308

[37] Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep

neural networks? In Advances in neural information processing systems (pp. 3320–3328).

26

	1 Introduction
	2 Background
	3 Methodology
	3.1 Preliminaries
	3.2 Domain Adaptation Neural Network
	3.3 Incremental DANN
	3.4 Selection policies
	3.4.1 Confidence policy
	3.4.2 kNN policy

	3.5 Training a CNN with the new labeled target set

	4 Experimental setup
	4.1 Datasets
	4.2 CNN architectures
	4.3 Training stage

	5 Results
	5.1 Hyper-parameters evaluation
	5.2 Model analysis
	5.3 kNN policy
	5.4 Accuracy on target
	5.5 Comparison with the state of the art

	6 Conclusions and Future Work

