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Abstract. Optical Music Recognition is a field of research that auto-
mates the reading of musical scores so as to transcribe their content into
a structured digital format. When dealing with music manuscripts, the
traditional workflow establishes separate stages of detection and classifi-
cation of musical symbols. In the latter, most of the research has focused
on detecting musical glyphs, ignoring that the meaning of a musical sym-
bol is defined by two components: its glyph and its position within the
staff. In this paper we study how to perform both glyph and position
detection of handwritten musical symbols in early music manuscripts
written in white Mensural notation, a common notation system used
for the most part of the XVI and XVII siecles. We make use of Con-
volutional Neural Networks as the classification method, and we tested
several alternatives such as using independent models for each compo-
nent, combining label spaces, or using both multi-input and multi-output
models. Our results on early music manuscripts provide insights about
the effectiveness and efficiency of each approach.
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1 Introduction

Music constitutes one of the main vehicles of cultural heritage. A large number
of musical manuscripts are preserved in historical archives. Occasionally, these
documents are transcribed to a digital format for its easier access and distri-
bution, without compromising their integrity. However, in order to make these
heritage really useful, it is necessary to transcribe the sources to a structured
format such as MusicXML [3], MEI [10], or MIDI. This has been typically done
manually by experts in early music notation, making the process very slow and
costly [REF?]. Conveniently, Optical Music Recognition (OMR) techniques can
help automating the process of reading music notation from scanned music scores
[1].

Typically, the transcription of historical music documents is treated differ-
ently with respect to conventional OMR methods due to their specific features;
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for instance, the use of specific notation systems, or the state of preservation
of the original document. Although there exist several works focused on early
music documents transcription [7, 4], the specificity of each type of manuscript,
or its overall writing style makes it difficult to generalize these developments.

In this context, a music transcription system is one that performs the task of
obtaining a digital structured representation of the musical content in a scanned
music manuscript. The workflow to accomplish such a task could be summarised
as follows: First, a document layout analysis step isolates document parts con-
taining music, mostly music staffs. Then, a OMR system detects music symbols
contained in these parts, typically producing a sequence or graph of music sym-
bols and their positions with respect to the staff. From this representation, a
semantic music analysis step assigns musical meaning to each symbol, as this
often depends on the specific location of the symbol in the sequence. Finally,
this intermediate music representation is translated by a coding stage into a
structured representation in the desired output format.

Unlike other domains, in the particular case of music notation symbols to be
classified have two components: glyph and position in the staff. Traditionally,
OMR systems use supervised learning to predict the glyph [8, 2, 5], whereas the
position is determined by heuristic strategies [11]. Since these OMR systems
usually perform a pre-process that normalizes the input images (binarization,
deskewing, and so on), these heuristics strategies tend to be quite reliable. How-
ever, since our approach skips most of those pre-processing steps, traditional
heuristics will not work correctly. This is why we propose to deal with the iden-
tification of the glyph position by means of supervised learning as well. To this
end, we study the best approach to perform classification of a pre-segmented
symbol image into its pair of glyph and position. Specifically, we propose differ-
ent deep learning architectures that make use of Convolutional Neural Networks
(CNN) in order to fully classify a given music symbol. We aim to analyze which
architecture gives us the best performance in terms of accuracy and efficiency.

The rest of this paper is organized as follows: Sect. 2 presents the methodol-
ogy considered for the aforementioned task; Sect. 3 describes our experimental
setup; Sect. 4 presents and analyzes the results: Sect. 5 concludes the present
work and introduces some ideas for future research.

2 Methodology

Our work assumes a segmentation-based approach, in which the locations of
symbols that appear in the input music score have already been detected in a
previous stage. This can be achieved under an interactive environment where the
user manually locates the symbols [9], but can also be automated with object
detection techniques [6]. Either way, the task is to fully classify the symbols in
order to retrieve their musical meaning.

We consider that all musical symbols are defined by two components: glyph
and position with respect to the staff lines. This is obvious in the case of notes,
as these components indicate the duration and the pitch, respectively. We can
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generalize this to any type, as all symbols are located in a specific position with
respect to the lines of the staff. Let G be the label space for the different glyphs
and P the label space for the different positions. Therefore, a music symbol is
fully defined by a pair (g, p), s ∈ G, p ∈ P. A graphical example is given in Fig. 1.

Fig. 1. Example of handwritten music symbols in white Mensural notation, showing
its glyph, position, and combined label. Note that position labels refer to the vertical
placement of a glyph: Ln and Sn denote symbol positions over or between staff lines,
respectively.

Considering the above, the complete classification of a music-notation sym-
bol consists in predicting both its glyph and its position. This opens up several
possibilities as regards this dual process, given that the two components are not
completely independent. As a base classification algorithm, we resort to Convolu-
tional Neural Networks (CNN), since they represent the state of the art for image
classification. These neural networks comprise of one or more convolutional lay-
ers, which benefits from local connections, tied weights and pooling operations
in order to learn a suitable data representation for the task at hand [12]. The
convolutional layers are typically followed by one or more fully connected layers
that perform the final prediction stage.

The classical use of CNN is to consider a single image as input, that must
be associated with a single class label. However, since we want to know the
glyph of a symbol as well as its position within the staff simultaneously, we
shall consider different architectures with shared layers, and multi-output and
multi-input models, in order to determine which is the best way to obtain the
corresponding full symbol classification.

Below we first introduce how to represent the input for classification, after
which we propose the neural architectures that allow us to perform the combined
glyph and position classification of music symbols.



4 Nuñez-Alcover et al.

2.1 Input scheme and preprocessing

Two region-based image inputs are used in this approach. Fig 2 shows a part of
a music staff from a Mensural notation score. These images are pre-segmented,
either manually or automatically, by defining a bounding box around each music
symbol in the staff, as shown in Fig. 3 (left). Thus, each bounding box defines
an image instance containing a music symbol. These appropriately annotated
images can be used to train and evaluate a music glyph classification model.
However, in general these instances do not span vertically as to contain all staff
lines. Therefore, they do not convey information about the music symbol posi-
tion. For example, the symbol labeled as ’A’ in Fig. 3 (left) is indistinguishable
from symbol ’B’ in the same image in spite of appearing at different staff posi-
tions. This type of images will be referred as glyph inputs.

In order to produce models able to correctly classify music symbol positions,
a second image set is constructed by enlarging the bounding box frame vertically
to a fixed height large enough to contain all staff lines, as shown in Fig. 3 (right).
This type of images will be referred as enlarged inputs in the following sections.

Fig. 2. A sample of a Mensural notation staff.

Fig. 3. Left: Glyph bounding boxes. Right: Enlarged glyph bounding boxes.

2.2 CNN Architectures

Given the aforementioned inputs and targets, we intend to classify every region
as one of the available symbols. To accomplish this, we try different approaches
that perform the different classifications either simultaneously or independently.
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Independent glyph and position models Our first approach would be to
create two different CNN models: one processes a glyph input xg, and tags it
with a glyph label g ∈ G. The other one processes a enlarged inputs xp, and tags
it with a position label p ∈ P. These two models are depicted in Fig. 4.

Fig. 4. Left: Glyph classification model. Right: Position classification model.

Category output model Another approach uses a single enlarged input xp,
and tags it by considering as the label set the Cartesian product of G and P.
We shall refer to the combined label of a symbol as its category, denoted by C.
Therefore the model tags each input xp as a pair c = (g, p), such that g ∈ G and
p ∈ P. This approach is depicted in Fig. 5.

Fig. 5. Category output model

Category output, multiple inputs model This model uses both glyph and
enlarged input images, yet predicting directly the combined category c.
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Fig. 6. Category output, multiple inputs model.

Multiple outputs model This model takes enlarged inputs and predicts the
glyph g and position p labels separately, as shown in Fig. 7. The model shares
the intermediate data representation layers as input to both final fully connected
classification layers.

Fig. 7. Multiple outputs model.

Multiple inputs and outputs model Our last model takes both glyph and
enlarged inputs xg and xp, and predicts glyph g and position p labels as two
different outputs, as depicted in Fig. 8.
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Fig. 8. Multiple inputs and outputs model.

3 Experimental setup

3.1 Network configuration

Given the proposed general topologies, this section describes the CNN architec-
tures for each model.

The input to a convolutional layer is a m × n × r image, where m is the
height, n is the width of the image and r is the number of channels, being in this
case r = 3 since we are working with RGB images. Models with one input share
the same feature extractor and classification stage. However, they have different
inputs and outputs. Their architecture consists of the repeated application of
two 3×3 convolutions with 32 filters, each one followed by a rectified linear unit
and a 2×2 max-pooling operation with stride 2 for downsampling, then followed
by a dropout of 0.25. At the next stack of convolutional layers and max-pooling,
we double the number of filters. Finally, after flattening, a fully connected layer
with 256 units followed by a dropout of 0.25 and a softmax activation function
layer is used for the classification stage.

Models with two inputs have parallel feature extractor for each input, and
they are concatenated in their corresponding last stack, after the flattening op-
eration.

Models with two outputs in their classification stages, the model is forked
into two different outputs after the last fully connected layer.

3.2 Dataset

Labeled music symbol image samples from three different manuscripts of hand-
written music scores in Mensural notation were available for our experiments.
A summary of the number of samples, and glyph and position classes is shown
in Table 1. Combined classes are the result of the Cartesian product of glyph
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and position classes, as stated above. It is worth noting that most combinations
of glyph and position do not appear in our ground-truth, so they have been
removed from the set of combined classes.

A major drawback of this ground-truth dataset is the high ratio of label
imbalance. Therefore, we took this into account while training our models by
weighting the loss for each label according to its relative frequency in the dataset.

Furthermore, since the symbol images can vary drastically in size, and for the
sake of creating a dataset suitable for training CNN models, the input images
are resized to a fixed size. We resized images to 40× 40 pixels for glyph inputs,
and to 40× 112 pixels for enlarged inputs.

Quantity

Glyph classes 37
Position classes 14
Combined classes 157
Total symbols 14373

Table 1. Distribution of classes and samples in the Mensural notation symbols dataset.

3.3 Evaluation

In order to evaluate our proposed models, we conducted a 5-fold cross-validation
scheme for the six models that were considered. Each fold was created by pre-
serving class imbalance in the original dataset.

Moreover, a grid search was carried out in order to tune hyperparameters.
Consequently, we trained every architecture for 15 epochs and a batch size of
32. Additionally, a RMSprop optimizer was used.

Given that our purpose is to evaluate the correct recognition of music cat-
egories, we should consider our models’ accuracy taking into account that the
glyph and position of a given input are being labeled correctly at once. More
precisely, given an input series x = {x1, x2, . . . , xn} we need to calculate the accu-
racy of the three different outputs of a symbol: position as p = {p1, p2, . . . , pn},
glyph as g = {g1, g2, . . . , gn} and category as c = {c1, c2, . . . , cn}, for every
model.

Another important factor to consider is the complexity of each model since
we aforementioned the necessity of good effectiveness and efficiency in the appli-
cation of these models in a real scenario. In order to provide a value of efficiency
that does not depend on the underlying hardware used in the experiments, we
consider the number of (trainable) parameters of the neural model as a measure
of its complexity.
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4 Results

Table 2 presents average and standard deviations achieved by the different clas-
sification schemes for the five folds, as well as the complexity of each model.

The best results in terms of accuracy are obtained by the model with mul-
tiple inputs and outputs, then without almost no significant difference, by the
model with multiple outputs, followed by the model with independent glyph
and position. Moreover, the worst results are obtained by the category output,
multiple inputs model.

Table 2. Error rate (average ± std. deviation) and complexity with respect to the
neural architecture considered for music symbol classification. The complexity of each
model is measured as millions of trainable parameters.

Error rate (%)

Model Glyph Position Category Complexity (106)

Independent glyph and position 3.0 ± 0.3 6.7 ± 0.8 9.0 ± 0.9 1.71 + 4.66

Category output 4.2 ± 0.5 6.8 ± 0.8 10.0 ± 1.0 4.66

Category output, multiple inputs 5.2 ± 0.6 7.0 ± 0.8 10.5 ± 0.9 6.37

Multiple outputs 3.0 ± 0.4 6.5 ± 0.6 8.6 ± 0.7 4.66

Multiple inputs and outputs 3.0 ± 0.3 6.2 ± 0.7 8.2 ± 0.8 6.37

Another factor for evaluation is the correlation between complexity and ac-
curacy. The models with multiple inputs share the same complexity as well as
models with only one input. The best model, with multiple inputs and outputs,
has high complexity compared to the second best one, which is relevant, as both
perform comparably well.

Contrary to expectation, it is interesting to point out that models with mul-
tiple outputs are performing better. Since glyph and position are dependent
features for most instances, we could expect that models predicting combined
classes would produce better results. However, we are aware that this outcome
might be produced by the possibility of not having enough data to train.

5 Conclusions

In this work, we proposed different segmentation-based approaches to recog-
nize glyph and position of handwritten symbols, since traditional OMR systems
mostly focuses on recognizing the glyph of music symbols, but not their position
with respect to a staff. Therefore, we propose to classify glyph and position in
the same workflow. Our approach is based on using different CNN architectures
where we predict glyph, position, or their combination by training independent
models, multi-input and multi-output models.
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Experimentation was presented by using a dataset of handwritten music
scores in Mensural notation where we evaluated each model by their accuracy on
labelling glyph, position, and their combination, and their complexity in order
to estimate the best model for our purpose.

The results suggest that in order to obtain the best accuracy, models should
predict glyph and position labels separately, instead of predicting the combina-
tion of both as a single class. We can conclude that interesting insight has been
gained with regard to achieving a complete system for extracting the musical
content of a score.

Going forward, these models must be integrated on a fully-automated tran-
scription system, provided that tools are developed for locating music symbol
regions, a prerequisite for our method, and then use semantic analysis tools to
assign actual musical meaning to the output of the proposed models.
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