
Departamento de Lenguajes y Sistemas Informáticos

Escuela Politécnica Superior

Similarity Learning and
Stochastic Language Models for

Tree-Represented Music

Jose Francisco Bernabeu Briones

Tesis presentada para aspirar al grado de

DOCTOR POR LA UNIVERSIDAD DE ALICANTE

DOCTORADO EN INFORMÁTICA

Dirigida por

Dr. José Manuel Iñesta Quereda
Dr. Jorge Calera Rubio

Para Carla, Chloe, Roćıo y Neo,
por sus risas y ocurrencias,

además de su infinito cariño.

Agradecimientos

Antes de empezar decir que han sido muchas las personas a las que quisiera
dar las gracias, si alguien se me olvida estoy seguro de que lo entenderá.

Aun recuerdo a mi abuelo calentando un clavo hasta ponerlo incandes-
cente con el objetivo de hacer unos agujeros en un bote de plástico vaćıo,
donde antes hab́ıa helado. Seguidamente pasaba un cordel por esos agujeros
y finalmente me lo colgaba a mi, obsequiándome con un par de palos, cortados
de forma similar, procedentes de una escoba vieja. Posiblemente aquel fue
el inicio de la pasión que siento por la bateŕıa en particular y la música en
general. Sin duda alguna, para él queda una mención especial en esta tesis,
por todo lo que me enseñó y por todos aquellos momentos que pasamos
juntos.

Como otro acontecimiento importante queda el d́ıa en que mis padres
tuvieron que salir a una reunión del colegio y yo me tuve que quedar sólo
en casa. No os podéis imaginar la cara que pusieron cuando regresaron y
se encontraron todas las cajas de zapatos puestas por el sofá mientras yo
apaleaba aquellas cajas y el mismo sofá con un par de agujas de punto. Por
esa y otras tantas trastadas que me han aguantado además de ayudarme y
apoyarme siempre en todas mis locuras. A ellos junto a mi hermano pequeño,
muchas gracias por todo.

En cuanto a mis dos directores. Sin duda alguna, la persona que consiguió
fusionar mi pasión por la música y fascinación por el aprendizaje y la res-
olución de problemas ha sido José Manuel Iñesta. Quiero agradecerle desde
aqúı, tanto sus aportaciones a esta tesis como el darme la oportunidad de
entrar a formar parte del Grupo de Reconocimiento de Formas e Inteligencia
Artificial del Departamento de Lenguajes y Sistemas Informáticos de la
Universidad de Alicante, aśı como su infinita paciencia. Y a Jorge Calera,
por resolver todas mis dudas y responder a todas mis preguntas acerca de
la tesis, además de enseñarme miles de cosas en paralelo a la realización de
esta tesis.

Agradecer, en especial, a los que hemos formado el grupo de jotas de
estos últimos años Jose Oncina (gracias también por llevarme de paseo),
Jorge Calvo, Jose Javier Valero (gracias por esos ánimos y por acompañarme
en todos los papeleos) y José Manuel Iñesta viéndonos las caras de sueño
y contando las batallas mañaneras. Que haŕıa yo sin ellas! Por supuesto
a Luisa Micó, a la que echábamos mucho de menos en esos desayunos, por
ayudarme y aconsejarme siempre que ha sido necesario.

Gracias a David Rizo por poner el punto de inicio de esta tesis y
contagiarme de su entusiasmo y su trabajo en este campo. Sin duda alguna,
sin David esta tesis no creo que hubiese ni siquiera nacido.

III

Miles de gracias a este señor que tengo detrás de mi, Javier Sober .
Muchas gracias por esas risas que nos pegamos y por no poner muy fuerte el
aire acondicionado ;-)

Y en general agradecer a todo el Departamento de Lenguajes y Sistemas
Informáticos de la Universidad de Alicante por haberme proporcionado un
ambiente de trabajo envidiable. En especial a mis compañeros del Grupo
de Reconocimiento de Formas e Inteligencia Artificial, Pierre León, Antonio
Pertusa, Carlos Pérez-Sancho, Tomás Pérez, Javi Gallego, Juan Ramón Rico,
José Luis Verdu, Alicia Garrido, Paco Moreno, Eva Gómez, porque de una
manera o de otra me habéis ayudado a realizar esta tesis.

A Leo Becerra, Aurélien Bellet, Marc Sebban y Amaury Habrard por su
gran hospitalidad cuando estuve de estancia en el Laboratoire Hubert Curien
UMR 5516, F-42023, Saint-Etienne, France.

El conjunto de publicaciones que soportan este trabajo de investigación
ha sido financiado a lo largo de los años por los proyectos:

• TIMuL: Tecnoloǵıas interactivas para el aprendizaje de música. Min-
isterio de Economı́a y Competitividad. TIN2013-48152-C2-1-R.

• DRIMS: Descripción y recuperación de información musical y sonora.
Ministerio de Ciencia e Innovación. TIN2009-14247-C02-02.

• PASCAL2: Pascal European Network of Excellence. VII Framework
Program.

• MIPRCV: Multimodal Interaction in Pattern Recognition and Com-
puter Vision. Ministerio de Educación y Ciencia (Consolider Ingenio
2010). CSD2007-00018.

• PROSEMUS: Procesamiento semántico de música digital. Ministerio
de Educación y Ciencia. TIN2006-14932-C02-02.

Agradecer también desde aqúı a los amigachos Jijonencos de toda la vida
aśı como a mis compañeros y amigos en Stoneheads, RadioZ y la familia
Mind’s Doors. Gracias por esa paciencia y esos buenos ratos que pasamos
juntos. En especial a César Alcaráz, cuyos consejos y forma de ver la vida
siempre ha sido de gran ayuda.

Por último, el mayor agradecimiento va para mi familia (iaios, abuelos,
tios, tias, cuñados, cuñadas, etc, . . .), por estar ah́ı y ayudarnos siempre
que ha sido necesario. Especialmente para mi gran amor Roćıo, y las dos
princesas Carla y Chloe. Ellas tres juntas hacen que cada d́ıa sea una
experiencia nueva llena de risas, amor y buenos momentos que guardo en
lo más profundo de mi ser. Gracias por estar ah́ı!

IV

Contents

1 Introduction 1
1.1 Music Information Retrieval (MIR) 1
1.2 The Melodic and Rhythmic Dimensions 3

1.2.1 Pitch . 3
1.2.2 Rhythm . 4

1.3 Tree Representation . 5
1.4 Objectives and the Approach in this Thesis 7

1.4.1 Machine Learning. 8
1.4.2 Improving the Similarity. Tree Edit Similarity Learning. 9
1.4.3 Similarity as a Probability to Belong to a Tree Language. 12

1.5 Structure of this Thesis . 14

2 Technical Background 17
2.1 Supervised Learning . 17

2.1.1 Typical Setting . 17
2.1.2 Finding a Good Hypothesis 19
2.1.3 Surrogate Loss Functions 20

2.2 Deriving Generalization Guarantees 21
2.2.1 Uniform Convergence 22
2.2.2 Uniform Stability . 23

2.3 Metrics . 24
2.3.1 Definitions . 25
2.3.2 Some Metrics between Structured Data 27

3 Melody Tree Representation 31
3.1 Introduction . 31
3.2 Tree Representation of Monophonic Metered Music 32
3.3 Melody Tree Representation Used 33
3.4 Corpora . 36

3.4.1 Pascal Database . 36
3.4.2 Essen Corpora . 36

4 Tree Similarity Learning 39
4.1 Introduction . 39

4.1.1 Metric Learning from Structured data 40
4.2 Background . 44

4.2.1 Framework for Learning with Good Similarity Functions 45
4.3 Good Edit Similarity Learning for tree-structured data 48

4.3.1 Tree Edit Script Based Similarity 49

V

CONTENTS

4.3.2 Learning Good Similarity Functions 49
4.3.3 Classifier Learning: Automatic Selection of the Rea-

sonable Trees . 52
4.4 Tree-structured Representation of Melodies and Theoretical

Guarantees . 53
4.5 Experiments in Melody Recognition 54

4.5.1 Pascal database . 55
4.5.2 Experimental setup . 55
4.5.3 Results and edit cost analysis 56
4.5.4 Reasonable points analysis 58

4.6 Conclusions . 58

5 Tree Automata 61
5.1 Introduction . 61
5.2 Stochastic k-testable Tree Models 62

5.2.1 Trees and Tree Automata 63
5.2.2 Stochastic Tree Automata 64
5.2.3 Locally Testable Tree Languages 65

5.3 Classification . 69
5.3.1 Introduction . 70
5.3.2 Smoothing Methods 70

5.4 Results . 78
5.5 Conclusions . 82

6 Tree grammars 85
6.1 Introduction . 85
6.2 Probabilistic Context-Free Grammars 86

6.2.1 Definitions . 87
6.2.2 Defining Probabilistic Context-Free Grammars 89
6.2.3 Parsing and Probability of a String 90

6.3 Stochastic k-testable Tree Grammars 94
6.3.1 Smoothing . 98

6.4 Classification . 102
6.5 Results . 104
6.6 Conclusions . 106

7 Conclusions and Future Work 109
7.1 Conclusions . 109
7.2 Future works . 113

VI

CONTENTS

A Corpora 115
A.1 Pascal corpus . 115
A.2 ESSEN synthetic corpus example 117

B Publications 119

C Resumen en castellano 121
C.1 Recuperación de información musical (MIR) 121
C.2 La dimensión melódica y ŕıtmica 124

C.2.1 Altura o tono . 124
C.2.2 Ritmo . 125

C.3 La representación de árbol . 125
C.4 Objetivos y enfoque en esta tesis 127
C.5 Conclusiones . 128
C.6 Publicaciones . 133

Bibliography 135

VII

List of Figures

3.1 Duration hierarchy for note figures in binary meters. From top
to bottom: whole (4 beats), half (2 beats), quarter (1 beat),
and eighth (1/2 beat) notes. 33

3.2 Tree representation of a one-bar melody with an example of
how pitch labels are propagated. 34

3.3 Representation of a |M |-bar melody. 35

4.1 An optimal edit script according to Selkow tree edit distance
algorithm (Selkow, 1977). The script begins by the deletion
of the subtree c(a, b(c)), then it considers the substitution of
two labeled nodes (d, b) and terminates with the insertion of
the one node subtree c. Following this script between the two
trees, the non zero entries of the corresponding matrix # of
Section 4.3.1 are: #

(a,$)

, #
(b,$)

, #
(c,$)

, #
($,c), and #

(d,b); all
these entries receive the value 1 since they are exactly used
once in the script. 45

4.2 Linear separator ↵ learned from a training set of trees
{(A, +1), (B, +1), (C, +1), (D, +1), (E,�1), (F,�1), (G,�1), (H,�1)}
thanks to an (✏, �, ⌧)-good similarity function. A, B and E
are reasonable trees. The good linear separator is learned in
the 3D-space of the similarities to that reasonable points with
respect to K. 51

4.3 Learned edit costs by GESL and SEDiL algorithms. 57

5.1 Left: set of 3-forks in a(a(a(ab))b). Right: 2-root (in grey)
and 2-subtrees (black dashed). 62

5.2 Representation of a |M |-bar melody with the temporal model
depicted. 78

5.3 Success rates as a function of the number of classes retrieved
as the most probable ones (Pascal). 81

5.4 Success rates for K = 3 model as a function of the number of
training samples (Pascal). 82

6.1 Parse tree for the leftmost derivation S) SS) aSbS)
aabbS) aabbab. 88

6.2 Example of a probabilistic tree grammar for k = 2, and k = 3. 98
6.3 Parsing example . 100
6.4 Schema of a unique combined grammar that merge the

di↵erent k-grammars. 100

IX

LIST OF FIGURES

6.5 Example of how the k � 1 rules are changed in a model with
K = 3. 101

6.6 Example of G0 for K = 3. 102
6.7 Success rate behaviour in function of the number of symbols

processed for several values for the discount parameter �. . . . 105
6.8 Success rate when the proper class is in the best i classes. . . . 106
6.9 Success rate when the proper class is in the best i classes

(Essen-Lied) . 107
6.10 Success rate when the proper class is in the best i classes

(Essen-Kinder). 108

A.1 Incipit of the Schubert’s Ave Maria used as query. 116
A.2 Three di↵erent interpretations of the Schubert’s Ave Maria

used for training (scores rendered using the MakeMusic Inc.
Finale package from the MIDI files). 117

A.3 Theme K1605 as present in the ESSEN corpus. 117
A.4 Distorted theme from melody shown in A.3 (score rendered

using the MakeMusic Inc. Finale package from the MIDI file). 118

X

List of Tables

4.1 Success rates (%) and standard deviation obtained from the
five edit similarities in 1NN and linear classifications on the
Pascal corpus. 56

4.2 Number of reasonable points used to learn a linear classifier
between classical and children’s music. 59

5.1 Success rates (%) with the di↵erent approaches used using
Pascal corpus. 79

5.2 Success rates (%) and comparison with the tree edit distance
(Pascal) using the heuristically established parameter values. . 80

5.3 Success rates (%) and comparison with the stochastic edit
distance (Pascal) using Good-Turing estimation for parameter
values. 81

5.4 Success rates (%) using the time model approach and compar-
ison with tree edit distance for Essen-Kinder and Essen-Lied
corpus. 82

6.1 Success rates with the di↵erent approaches used. 105

7.1 Results summary for success rates (%) and comparison with
the tree edit distance learning approach using linear classifiers
and k-testable tree automata for the (Pascal) corpus. 110

XI

1
Introduction

One of the main concerns in music information retrieval (MIR) tasks is how
to assess melodic similarity in a similar way to how humans do. We are
very good at recognizing previously known patterns, even if our perceived
inputs are distorted, they are presented just partially, or in the presence of
noisy data. This happens in music comparison in a number of situations,
for example, when comparing di↵erent cover versions of a given melody or
when searching in databases using a query that will be, by its own definition,
partial and can be distorted or even wrong. Two issues are concerned to this
problem: the similarity computation and the representation structure.

The term music similarity is ambiguous or at least it can be judged
from di↵erent points of view (Selfridge-Field, 1998). It may refer to the
resemblance between the melodic line of two musical fragments, the similarity
of their rhythmic patterns, or even their harmonic coincidence. In order to
disambiguate this concept for the span of this dissertation, we will consider as
ground-truth that the most similar sequences are di↵erent interpretations of
the same song or those produced by the variation compositional form. This
statement implies that the similarity is measured upon a trade-o↵ between
the melodic and rhythmic dimensions.

1.1 Music Information Retrieval (MIR)

Music information retrieval (MIR) is a field of research devoted to the
extraction of meaningful information from the content of music sources (Orio,
2006), (Typke et al., 2005).

Traditionally, this research has been divided into the audio and symbolic
domains. Digital audio files contain a digitized audio signal coming from a
sound recording, and can be found in compressed (MP3) or uncompressed
(WAV) formats. On the other hand, symbolic music files contain digital
scores, i.e. the music notation and instructions necessary for a computer

1

CHAPTER 1. INTRODUCTION

or synthesizer to play the song. These files can be sequenced (MIDI) or
structurally represented (MusicXML).

With the widespread use of portable music players, most computer users
today have to deal with large digital music database. Plenty of software
tools (e.g. iTunes) are available to play, retrieve, and store huge quantities
of audio files. These files contain richer information than symbolic ones,
because they bring together all the di↵erent elements that take part in a
musical work: pitch, harmony, rhythm, timbre, lyrics, etc. However, this
richness results in a bigger complexity, because all this information is mixed
in the audio signal and it is very di�cult to isolate each one of these elements
from the others. For working with audio files it is necessary to use digital
signal processing techniques in order to extract some features representing the
musical content. For example, one of the most common features used for this
purpose are Mel frequency cepstral coe�cients, which provide information on
the timbre of the piece (Aucouturier and F., 2004). Other works use features
regarding rhythm (Lidy and Rauber, 2005), texture (Tzanetakis and Cook,
2002), or pitch (Tzanetakis et al., 2003). However, these features only provide
unaccurate descriptions of the musical content and are di�cult to interpret.

Because of the sudden huge popularity of portable audio players, research
about algorithms that sort, retrieve, and suggest music have become really
important recently. In this framework, arises the need to transform the audio
files in a format that provide very accurate information on the actual content
of a musical work - the score - including pitch, harmony, rhythm, and lyrics,
but lack some important features that can be only found in the audio files,
such as timbre and performance and production issues. The format which
get this is symbolic music files (data), and the process to transform audio
data to symbolic data is the transcription.

However, state-of-the-art transcription algorithms are not reliable today.
Hence, most of the music models today do not consider the musical structure
at all. They mostly rely on local properties of audio signal, such as texture,
or short term frequency analysis. For instance, in most current approaches
for transcription or pitch tracking, the algorithms have to rely on strong
assumptions about timbre or the number of simultaneous notes to decide
how many notes are simultaneously played, and to identify these notes. The
general applicability of these algorithms is thus limited.

However, very little research has been done to model symbolic music
data compared to the important e↵orts deployed to model audio data.
There are some works that use symbolic data to improve the results using
only audio data. An example of this is the approach in the context of
genre classification is proposed by (Lidy T., 2007) where audio features
and symbolic features are combined to lead to better classification results.

2

1.2. THE MELODIC AND RHYTHMIC DIMENSIONS

Another example is the work of (Paiement, 2008) where accurate symbolic
music models could dramatically improve the performance of transcription
algorithms applied in more general contexts. They would provide “musical
knowledge” to algorithms that currently only rely on basic sound properties
to take decisions. In the same way, natural language models are commonly
used in speech transcription algorithms (Rabiner and Schafer, 1978). As a
simple example, suppose that a transcription algorithm knows the key of a
particular song and tries to guess the last note of a song. The prior probability
that this note would be the tonic would be very high, since most of the songs
in any corpus end on the tonic.

Another advantage of symbolic music data is that it is much more
compressed than audio data. For instance, the symbolic representation of
an audio file of dozens of megabytes can be just a few kilobytes large. These
few kilobytes contain most of the information that is needed to reconstruct
the original audio file. Thus, we can concentrate on essential psychoacoustic
features of the signal when designing algorithms to capture long term
dependencies in symbolic music data. Finally, the most interesting advantage
of dealing directly with symbolic data is the possibility of designing realistic
music generation algorithms. Most of the probabilistic models presented in
this thesis are generative models. Thus, these models can be sampled to
generate genuine musical events, given other musical components or not.
However, the generation of new music is out of the scope of this thesis.

1.2 The Melodic and Rhythmic Dimensions

Depending on the application domain, musical content is said to contain
di↵erent attributes. In the psychoacoustics domain, (Levitin, 1999) uses
pitch, rhythm, tempo, contour, timbre, loudness, and spatial location. In
the MIR domain, (Downie, 1999) considers seven facets: pitch, temporal,
harmonic, timbral, editorial, textural, and bibliographic. Other authors also
include more elaborated features like thematic information obtained from
the raw data (Hsu et al., 1998). For comparison based on musical content,
the most used and directly available properties are pitch and rhythm. In
this dissertation those two attributes will be used to describe musical notes,
therefore the reader should known its definition.

1.2.1 Pitch

Pitch is the perceived frequency of a sound (Krumhansl, 1979). The
frequency content of an idealized musical note is composed of a fundamental

3

CHAPTER 1. INTRODUCTION

frequency and integer multiples of that frequency. Human pitch perception is
logarithmic with respect to fundamental frequency. Thus, we normally refer
to the pitch of a note using pitch classes. In English, a pitch class is defined
by a letter. For instance, the note with the fundamental frequency of 440
Hz is called A. In the Western music culture, the chromatic scale is the most
common method of organizing notes. When using the equal temperament,
each successive note is separated by a semitone. Two notes separated
by a semitone have a fundamental frequency ratio of 21/12 (approximately
1.05946). Using this system, the fundamental frequency is doubled every
12 semitones. The interval between two notes refers to the space between
these two notes with regard to pitch. Two notes separated by 12 semitones
are said to be separated by an octave, and have the same pitch-class. For
instance, the note with fundamental frequency at 880 Hz is called A, one
octave higher than the note A with the fundamental frequency at 440 Hz.
We say that the interval between these two notes is an octave. Note that
the note corresponding to 440 Hz is A

4

and A
5

corresponds to 880 Hz while
its pitch class are the same, in this case A. The symbol ’]’ (sharp) raises
a note by one semitone. Conversely, the symbol ’[’ (flat) lowers a note by
one semitone. Most of the pitch classes are separated by one tone (i.e. two
semitones), except for notes E and F, as well as B and C, that are separated
only by one semitone.

In this system, A] and B[refer to the same note. Two pitch classes that
refer to the same pitch are called enharmonics. In this thesis, we consider
enharmonics to be completely equivalent.

1.2.2 Rhythm

In most music notations, rhythm is defined relatively to an underlying beat
that divides time in equal parts. The speed of the beat is called the tempo.
For instance, when the tempo is 120, we count 120 beats per minute (BPM),
or two beats per second. Meter is the sense of strong and weak beats that
arises from the interaction among hierarchical levels of sequences having
nested periodic components. Such a hierarchy is implied in Western music
notation, where di↵erent levels are indicated by kinds of notes (whole notes,
half notes, quarter notes, etc.) and where bars (or alternatively measures)
establish segments containing an equal number of beats (Handel, 1989).
Kinds of notes are defined relatively to each other. Whole notes have always
twice the length of half notes, which have twice the length of quarter notes,
and so on. The number of beats per bar is usually defined in the beginning
of a song by the time signature. Also, depending on the meter definition,
kinds of notes can last for variable number of beats. For instance, in most

4

1.3. TREE REPRESENTATION

four-beat meters, a quarter note lasts one beat. Hence, an eight note lasts
for half a beat, a half note lasts for two beats, and a whole note lasts for four
beats. If the tempo is 120, we play one half note per second and there is two
half notes per bar.

1.3 Tree Representation

A number of works have addressed the problem of how to represent symbolic
music in such a way that the comparison task can be both e↵ective and
e�cient. E↵ectiveness can be measured in terms of their ability to cope with
di↵erent aspects of human perception of melodic similarity. This is a di�cult
task and it mainly relies on both what are the data contained in the training
sets of the carried out experiments and the comparison algorithms. On the
other hand, e�ciency is mainly related to time and memory complexities.
This aspect assess to what extent the considered approach can be scaled to
real world scenarios with hundreds or even thousands of music data.

Music melodies have been compared by di↵erent algorithms that use a
variety of representations in the literature. String codings along with edit
and alignment distances on a number of pitch and rhythm representations
were used in (Grachten et al., 2005; Lemström, 2000; Mongeau and Sanko↵,
1990) and n-gram model based algorithms were used in (Doraisamy, 2004;
Downie, 1999; Uitdenbogerd, 2002). Also, a graph encoding was proposed
in (Pinto and Tagliolato, 2008) in which the rhythm information was not
represented. Other approaches for representation are less abstract and try
to map melody pitches and durations into 2D plots, in a sort of piano roll,
turning the melody matching problem into a geometric one (Aloupis et al.,
2006; Tanur, 2005; Typke, 2007; Ukkonen et al., 2003; Wiggins et al., 2002).

The tree structure is an alternative representation between strings and
graphs. On the one hand, its expressive capacity is higher than the strings
and allow describing naturally hierarchical structures in which relations
between its components are given. On the other hand, its management from
the theoretical point of view is much simpler and e�cient than that of graphs.
Trees have been used by a number of authors in the literature with di↵erent
aims. Formal language theory uses trees in a natural way and Lee (Lee,
1985) tried to interpret rhythms by using grammars. Something similar
did Bod (Bod, 2002), but aiming to learn how to automatically segment
melodies, using the tree approach provided by parsing the melody. In the
work of Conklin (Gilbert and Conklin, 2007), monodies were parsed into tree
structures using a probabilistic context-free grammar to perform melodic
reductions that were used also in a segmentation task.

5

CHAPTER 1. INTRODUCTION

In the context of assisted musical composition, trees have been used as a
way to conceptually represent music (Balaban, 1996; Smaill et al., 1993).
Under this approach, the Wind in the Willows system (Högberg, 2005)
used tree transducers to generate music. The renowned tool for assisted
composition OpenMusic (Assayag et al., 1999) uses trees as a natural way
for representing the hierarchical nature of duration subdivision of musical
figures and groupings like tuplets.

For representing musicological analyses, the tree representation was used
in the Generative Theory of Tonal Music (GTTM) (Lerdahl and Jackendo↵,
1983) and in a number of works based on the Schenkerian analysis (Kirlin
and Utgo↵, 2008; Marsden, 2001, 2005, 2007; Smoliar, 1979).

Finally, trees have been also used not as a means to represent music,
but as an intermediate data structure for other goals like building document
structures for indexing (Blackburn, 2000; Drewes and Högberg, 2007; Skalak
et al., 2008).

In this work, a tree encoding of melodies introduced in (Rizo, 2010; Rizo
et al., 2003) has been employed that uses the tree structure to encode rhythm
implicitly. In this structure, leaves contain pitches. Duration is represented
by the level of the tree: the shorter a note is, the deeper it appears in the tree
and an in-depth tree traversal represents the time sequence of music. This
representation has proven to be e↵ective in a number of melodic similarity
computation in tasks (Habrard et al., 2008; Rizo, 2010). In Chapter 3 this
encoding is described in more detail.

One of the main advantages of melodic trees is that, unlike linear
representations in which both melodic dimensions: time (duration) and
pitch are coded by explicit symbols, they implicitly represent time in their
structure, making use of the fact that note durations are multiples of basic
time units in a binary (sometimes ternary, depending on meter and some
figures like triplets, etc.). This way, they are less sensitive to melody coding
issues, since only pitch codes are needed to be established, so there are less
degrees of freedom for coding and, therefore, less parameters to be tuned.

However, this representation has some main drawbacks: its tight de-
pendency on the meter structure of the input source, and its di�culty to
represent ties, dots, and syncopations. The first problem can be overcome
through an a priori metrical analysis of the work (Eck and Casagrande, 2005;
Meudic, 2002) in the case that the meter metadata is not present in the data
source. The second drawback, from the representation point of view, can
be solved by the addition of a special symbol that encodes the concept of
note continuation. For the comparison task, this is not a problem as other
authors point out (Hanna et al., 2008; Mongeau and Sanko↵, 1990; Pardo
and Sanghi, 2005). One derived problem is the excessive growth of trees

6

1.4. OBJECTIVES AND THE APPROACH IN THIS THESIS

when very short notes and performance imprecisions are found in the case of
real time sequenced data. This problem has been addressed by tree pruning
methods and advanced quantization algorithms (Agon et al., 1994; Cemgil
et al., 2000). Finally, as we explain in the next section, the methods to
compare this kind of structures are costly, in some cases become almost
intractable and more e�cient methods are needed.

1.4 Objectives and the Approach in this Thesis

Due to the advantages of the tree structure, described previously, our
motivation to do this dissertation is trying to built a system that allowed to
classify and generate melodies using the information from the tree encoding,
capturing the inherent dependencies which are inside this kind of structure,
and improving the current methods in terms of accuracy and running time.
In this way, we are trying to find more e�cient methods that is key to use
the tree structure in large datasets.

First, we study the possibilities of the tree edit similarity to classify
melodies using a new approach for estimate the weights of the edit operations.
Focusing on tree similarity learning problem, we investigate a new framework
for learning tree edit distances thanks to a convex optimization problem
based on the framework called GESL for Good Edit Similarity Learning and
described in (Bellet et al., 2012), originally developed for strings.

Once the possibilities of the cited approach are studied, an alternative
approach is used. For that a grammatical inference approach is used to infer
tree languages. The inference of these languages give us the possibility to
use them to classify new trees (melodies). Moreover, this approach could be
used to generate new samples even though this question is out of the scope
of this thesis.

In order to carry out this research we focus in two di↵erent approaches.
On the one hand, the formalism of tree automata is used to infer the models
and classify melodies represented as trees. For this, the k-testables tree
languages will be used. On the other hand, tree grammars are inferred from
the tree automata. In this way, the grammars inferred using tree data in
training are used to classify new melodies represented as strings. As we
explain throughout this dissertation the last approach is needed to solve the
problem when the duration information is not available in the samples that
have to be classified.

7

CHAPTER 1. INTRODUCTION

1.4.1 Machine Learning.

The tasks cited above will be faced in the context of methods able to learn
or infer the models from data examples. The field that deals with studying
this kind of systems is called machine learning.

Machine learning is a subfield of artificial intelligence which seeks to
answer the scientific question of how we can build computer systems that
are able to learn. Analysing these systems and trying to find general laws
which govern learning processes is also of interest to the field.

The utility and applications of such computer systems are vast. Such
systems are already being used nowadays in a variety of areas such as
natural language processing, bioinformatics, robotics, stock market analysis
and others.

The goal of machine learning is to automatically figure out how to perform
tasks by generalizing from examples. A machine learning algorithm takes
a data sample as input and infers a model that captures the underlying
mechanism (usually assumed to be some unknown probability distribution)
which generated the data. Data can consist of features vectors (e.g., the
age, body mass index, blood pressure, ... of a patient) or can be structured,
such as strings (e.g., text documents) or trees (e.g., XML documents). A
classic setting is supervised learning, where the algorithm has access to a
set of training examples along with their labels and must learn a model
that is able to accurately predict the label of future (unseen) examples.
Supervised learning encompasses classification problems, where the label set
is finite (for instance, predicting the label of a character in a handwriting
recognition system) and regression problems, where the label set is continuous
(for example, the temperature in weather forecasting). On the other hand,
an unsupervised learning algorithm has no access to the labels of the training
data. A classic example is clustering, where we aim at assigning data
into similar groups. The generalization ability of the learned model (i.e.,
its performance on unseen examples) can sometimes be guaranteed using
arguments from statistical learning theory. Relying on the saying birds
of a feather flock together, many supervised and unsupervised machine
learning algorithms are based on a notion of metric (similarity or distance
function) between examples, such as k-nearest neighbors or support vector
machines in the supervised setting and K-Means clustering in unsupervised
learning. The performance of these algorithms critically depends on the
relevance of the metric to the problem at hand for instance, we hope that it
identifies as similar the examples that share the same underlying label and as
dissimilar those of di↵erent labels. Unfortunately, standard metrics (such as
the Euclidean distance between feature vectors or the edit distance between

8

1.4. OBJECTIVES AND THE APPROACH IN THIS THESIS

strings) are often not appropriate because they fail to capture the specific
nature of the problem of interest.

For this reason, a lot of e↵ort has gone into metric learning, the research
topic devoted to automatically learning metrics from data. In this thesis,
we focus on supervised metric learning, where we try to adapt the metric to
the problem at hand using the information brought by a sample of labeled
examples. Many of these methods aim to find the parameters of a metric
so that it best satisfies a set of local constraints over the training sample,
requiring for instance that pairs of examples of the same class should be
similar and that those of di↵erent class should be dissimilar according to the
learned metric. A large body of work has been devoted to supervised metric
learning from feature vectors, in particular Mahalanobis distance learning,
which essentially learns a linear projection of the data into a new space
where the local constraints are better satisfied. While early methods were
costly and could not be applied to medium-sized problems, recent methods
o↵er better scalability and interesting features such as sparsity. Supervised
metric learning from structured data has received less attention because it
requires more complex procedures. Most of the work has focused on learning
metrics based on the edit distance. Roughly speaking, the edit distance
between two objects corresponds to the cheapest sequence of edit operations
(insertion, deletion and substitution of subparts) turning one object into the
other, where operations are assigned specific costs gathered in a matrix. Edit
distance learning consists in optimizing the cost matrix and usually relies
on maximizing the likelihood of pairs of similar examples in a probabilistic
model.

1.4.2 Improving the Similarity. Tree Edit Similarity
Learning.

Searching in the literature we can find many applications require to deal
with hierarchical information represented as trees such as Web/XML data
processing in web information retrieval, syntactic analysis in natural language
processing, structured databases, structured representations in images or
symbolic representations in music information retrieval. In these areas,
many pattern recognition algorithms are used to perform classification or
clustering tasks. A lot of them rely on a notion of distance or similarity such
as k-Nearest-Neighbors, k-means or SVM-based classifiers. In the context
of tree-structured data, tree edit distance (TED) (Bille, 2005) is admitted
to be a relevant measure. TED is defined as the least costly set of basic
operations to transform one tree into another. These basic operations are

9

CHAPTER 1. INTRODUCTION

based on the substitution, insertion or deletion of nodes. There are two
main variants of the TED di↵ering in the way the insertion and deletion
of the nodes are handled. In the Selkow variant, insertion and deletion
operations are restricted to the leaves of the tree or, in other words, these
two operations can only be applied to full subtrees. In the other variant,
deletion or insertion operations can be applied directly to internal nodes, the
corresponding distance can be evaluated by the Zhang and Shasha algorithm
(Zhang and Shasha., 1989) for example. TED-based approaches generally
use a priori fixed costs for these edit operations. However, using a distance
tailored to a specific task is key to the success of many algorithms.

Following this idea, some research e↵ort has been devoted into learning
the edit costs from a learning data. The first existing approach (Neuhaus
and Bunke, 2004) proposes to learn a (more general) graph edit distance,
where each edit operation is modeled by a Gaussian mixture density whose
parameters are learned using an EM-like algorithm. In (Zigoris et al., 2006),
the authors make use of a variant of SVM to learn a parameterized tree
alignment model for extracting fields from HTML search results. Their
learning method is based on an optimization problem solved thanks to very
time-consuming EM-like algorithm which becomes intractable when the trees
become large. Another strategy has been proposed in (Bernard et al., 2008)
by learning a stochastic version of the tree edit distance under the form of
a stochastic edit transducer. The associated learning algorithm is also an
EM-based approach tailored to the Selkow variant. This method has been
extended to the Zhang and Shasha algorithm in (Boyer et al., 2007). The two
previous approaches are limited by the fact that they model distribution on
tree edit scripts rather than on trees themselves (unlike the case of strings).
The method presented in (Dalvi et al., 2009) has proposed a solution to
overcome this problem by using a more complex conditional transducer using
again an EM-like stratergy to infer the parameters. The learning algorithm
used in (Mehdad, 2009) proposes a rather di↵erent method based on the
Particle Swarm Optimization. The edit costs are learned via an iterative
process which may not induce a true metric and is not provably e↵ective.
Recently, the approach (Emms, 2012) points out a theoretical limitation
of (Boyer et al., 2007) coming from the fact the factorization used in this
paper can turns out to be incorrect in some cases. The author provides a
correct factorization when using the Vitervi edit script (i.e. the tree edit
script of highest probability). However, this approach still su↵ers from many
drawbacks including overfitting.

From this short survey, we can note that few methods have been proposed
in the literature. The most striking limitation is essentially due to algorithmic

10

1.4. OBJECTIVES AND THE APPROACH IN THIS THESIS

constraints coming from the underlying complexity of evaluating the tree
edit distance. Indeed, computation of tree edit distance is generally costly:
For example, the Zhang and Shasha algorithm requires cubic time while
Selkow’s variant involves a quadratic time complexity. This high complexity
is increased when the learning procedure is based on the EM algorithm due to
the iterations this procedure requires. In this context, tree distance learning
becomes almost intractable and more e�cient methods are needed.

Following these works, we propose to consider a new framework for
learning edit similarities addressing the main drawbacks described above.
This approach, called GESL for Good Edit Similarity Learning and described
in (Bellet et al., 2012), is tailored to binary classification, originally designed
for string-structured data. It proposes to optimize the costs of the edit
operations involved in the classical string edit distance (also called the
Levenshtein distance (Levenshtein, 1966)) to fulfill a criterion of good
similarity according to the theory of (✏, �, ⌧)-good similarity functions
presented in (Balcan et al., 2008). This theory bridges the gap between
the property of a good similarity function and its performance in linear
classification and thus its discriminative power. GESL has shown that this
framework is well suited to edit similarity learning. Indeed, it provides a
procedure having three main advantages. First, the learning algorithm is very
e�cient: The Levenshtein edit scripts need to be computed only once and the
edit costs are then assessed by solving an optimization program defined as
convex quadratic program that can be very e�ciently solved. Second, GESL
has strong theoretical guarantees in the form of a generalization bound which
is independent from the size of the alphabet making the approach suitable
for problems with high alphabet. Finally, this generalization bound justifies
that this similarity can be used to learn low-error classifiers for the task at
hand. This approach seems thus very appropriate to learn powerful edit
similarity. However, this approach has never been applied in the context of
tree-structured data.

We provide two contributions about this. First, we are trying to prove
experimentally that the methodology of GESL can be successfully used with
tree-structured data. We also are providing evidence that this method can
be easily used with various distances by considering both Selkow and Zhang-
Shasha variants. On the other hand, we are trying to show that this type
of model is very interesting for music information retrieval tasks. Indeed,
the edit measure directly works on the structure of the data and thus on the
melody structure itself. Edit operations used to discriminate some musical
pieces can then provide a valuable understandable knowledge. For example,

11

CHAPTER 1. INTRODUCTION

in music analysis, one can wonder what are the most common changes among
the possible variations of musical tunes that make the tune still recognizable.
Our hypothesis is that those changes must have small edit costs, in opposition
to high valued edit operations which then may correspond to information
used to discriminate some pieces. We will show in our experiments how this
knowledge can be interpreted.

1.4.3 Similarity as a Probability to Belong to a Tree
Language.

However, GESL has some drawbacks: on the one hand, if new samples are
collected to train the models, GESL needs to train the costs with all the
samples including the new ones, consuming in this way an important quantity
of time. On the other hand, GESL is to compare trees by trees or strings by
strings but if we want classify an string using the information inside the tree
structure, it is not possible.

To try to solve these problems we propose use another way to compare
trees. This is using grammatical inference to learning a tree language.
Then the probability of a tree (melody) to belong to a language can be
calculated and use this to classify the melody. Language modeling has been
also selected for the experiments in this thesis because it allows to study
the paralelism between music and natural language, studying the ability of
language models built from a training corpus to predict the classification of
new songs. Moreover, these models could be used as a generative model to
create new genuine musical events.

Grammatical Inference One branch of machine learning is Grammatical
Inference (GI). In GI the problem is to learn formal language representations
from information about an unknown target formal language. Formal
languages are simply (possibly infinite) sets of strings and a representation
of a formal language L is any finite model which is able to generate or
exactly describe L. Typical formal language representations take the form
of grammars or automata. Therefore, the hypothesis space in GI is most
often some class of grammars or automata (e.g. regular automata or
context-free grammars) which contains all the possible models that can be
learned. GI can be applied wherever grammars or automata serve as good
models for some task. For example, in Natural Language Processing (NLP),
Probabilistic Context-Free Grammars (PCFGs) serve as good models for
assigning probabilities to sentences and describing the structure of sentences

12

1.4. OBJECTIVES AND THE APPROACH IN THIS THESIS

(where these tasks can prove very useful for speech recognition, machine
translation and other NLP related tasks). Thus, GI can be used to induce
such grammars from corpora of unstructured raw natural language sentences.
Another example is Bioinformatics, where Hidden Markov Models (HMMs)
and PCFGs have proven to be good descriptors for DNA, RNA and protein
structures. Practical GI learning algorithms that infer finite state automata
include (Lang et al., 1998) (Adriaans and Jacobs, 2006) (Coste and Nicolas,
1998) (Heule and Verwer, 2010), and for the context-free case ((Sakakibara
et al., 1994) ; (Nakamura and Ishiwata, 2000) (Stolcke, 1994) (Petasis et al.,
2004) (Adriaans et al., 2000) (Zaanen, 2001) (Clark, 2001).

The reader is referred to (de la Higuera, 2010) for a comprehensive review
of the grammatical inference field.

Our contribution in this subject is prove that grammatical inference
is suitable to learn a tree language from music represented as trees.
Then, these models can be used to classify new music. First, to learn a
language using tree data we use probabilistic k-testable tree models (Rico-
Juan et al., 2005), a generalization of the k-gram models. These models
are easy to infer from samples and allow incremental updates. They
can be used for data categorization if a model is inferred for each class
and the new samples are assigned a probability by each model, taking a
maximum likelihood decision. These models have been used in a number
of applications, like structured data compression (Rico-Juan et al., 2005) or
information extraction from structured documents (like HTML or XML, for
example) (Kosalaa et al., 2006), but here they are applied to music data,
focusing on the aforementioned inherent structured nature.

These models build a stochastic tree automata that parses a tree from the
leaves (initial states) to its root (final states), assigning probabilities to the
transitions. In this process, the similarity between a melody and a reference
model is computed as a probability.

However, probabilistic k-testable tree models have a limitation. These
models only work with tree data and therefore they does not work when
the duration information is not available for the input data. We propose
a solution when we have melodies represented by trees for the training but
the duration information is not available for the input data. For that, we
infer a probabilistic context-free grammar using the information in the trees
(duration and pitch) and classify new melodies represented by strings using
only the pitch. The case study in this work is to identify a snippet query
among a set of songs stored in symbolic format. For it, the utilized method
must be able to deal with inexact queries and e�cient for scalability issues.

13

CHAPTER 1. INTRODUCTION

For it, we use probabilistic tree grammars (Verdu-Mas et al., 2005).
These grammars can be obtained from probabilistic k-testable tree mod-
els (Rico-Juan et al., 2005). The duration information implicit in the tree
representation is captured by the grammar and this is used for classifying the
new melodies represented by strings that only have the pitch information.
This is a solution when duration information is not available or unreliable
for the input data.

Moreover, symbolic music retrieval from queries has been extensively
studied in the MIR literature. In order to search a query in a dataset of
songs, we can apply any of the well-known pattern matching algorithms
like local string editing to each of the songs in the dataset, and retrieve a
ranking of most similar items. The main problem here is the e�ciency when
using large datasets, but with the advantage that it can find a partial or
approximate occurrence of the query in any part of the dataset. On the
other hand, a previous indexation of the dataset, e.g by means of motive
extraction, solves the scalability issue, but motive extraction usually needs
to work with exact repetitions, making very inaccurate to build robust indices
from di↵erent interpretations of the same song. In addition, when searching
only in motives, the music not present in the motives is hidden.

Our proposal is able to solve intrinsically these problems. The probabilis-
tic grammar structure itself encodes both motives and melody variations,
giving more weight to the most repeated themes, without the need to be
exact, and enabling the possibility to learn from di↵erent renderings of the
same song, leaving aside the need to encode motives. Besides, there is no
di↵erence between looking for a whole song or searching a small query in the
dataset.

1.5 Structure of this Thesis

The rest of this manuscript is structured as follows:

Chapter 2: Technical Background. In this chapter the supervised
learning setting and analytical frameworks for deriving generalization guar-
antees are presented. Moreover, some metrics are described.

Chapter 3: Melody Tree Representation. Tree representation review
and presentation of the tree structured used.

14

1.5. STRUCTURE OF THIS THESIS

Chapter 4: Tree Similarity Learning. Learning tree edit similarities
called GESL (for Good Edit Similarity Learning) that relies on a relaxed
version of (✏, �, ⌧)-goodness.

Chapter 5: Tree Automata. Presents the studies carried out for the
Stochastic k-testable tree automata. In this chapter melodies represented as
trees are classified using these models.

Chapter 6: Tree Grammars. Presents the studies carried out for the
Stochastic k-testable tree grammars. The grammars inferred using tree data
in training are used to classify new melodies represented as strings.

Chapter 7: Conclusions and Future Work Conclusions and contribu-
tions of this thesis are summarized here. Future research lines are outlined.

15

2
Technical Background

In this chapter the supervised learning setting and analytical frameworks
for deriving generalization guarantees are presented. Moreover, some metrics
are described. Both of them help us to understand the problems derived and
the solutions proposed in this thesis.

2.1 Supervised Learning

The goal of supervised learning is to automatically infer a model (hypothesis)
from a set of labeled examples that is able to make predictions given new
unlabeled data. In the following, we review basic notions of statistical
learning theory, a very popular framework pioneered by (Vapnik and
Chervonenkis, 1971). The interested reader can refer to (Vapnik, 1998) and
(Bousquet et al., 2003) for a more thorough description.

2.1.1 Typical Setting

In supervised learning, we learn a hypothesis from a set of labeled examples.
This notion of training sample is formalized below.

Definition 1 (Training sample). A training sample of size n is a set T =
{zi = (xi, yi)}n

i=1

of n observations independently and identically distributed
(i.i.d.) according to an unknown joint distribution P over the space Z =
X ⇥ Y , where X is the input space and Y the output space. For a given
observation zi, xi 2 X is the instance (or example) and yi 2 Y its label.
When Y is discrete, we are dealing with a classification task, and yi is called
the class of xi. When Y is continuous, this is a regression task.

Definition 2 (Alphabet and trees). An alphabet ⌃ is a finite nonempty set
of symbols. Let ⌃ be a set of labels and $ be the empty symbol, T

⌃

being the

17

CHAPTER 2. TECHNICAL BACKGROUND

set of all possible trees (including the empty tree $). Let t = �(t
1

, . . . , tn) be
a tree where � is a node and t

1

, . . . , tn is an ordered sequence of (sub)trees. �
is called the root of t. t

1

, . . . , tn are called the children of �. A node with no
child (n = 0) is a leaf. The size of the tree t is denoted by |t| and corresponds
to the number of nodes constituting the tree. In the following, we assume
each node to be labeled by a symbol � coming from a set of labels ⌃. We
denote by T

⌃

the set of trees that can be built from ⌃.

We can now formally define what we mean by supervised learning.

Definition 3 (Supervised learning). Supervised learning is the task of
inferring a function (often referred to as a hypothesis or a model) hT : X ! L
belonging to some hypothesis class H from a training sample T , which best
predicts y from x for any (x, y) drawn from P . Note that the decision space
L may or may not be equal to Y .

In order to choose hT , we need a criterion to assess the quality of an
arbitrary hypothesis h. Given a nonnegative loss function l : H ⇥ Z ! R+

measuring the degree of agreement between h(x) and y, we define the notion
of true risk.

Definition 4 (True risk). The true risk (also called generalization error)
Rl(h) of a hypothesis h with respect to a loss function l is the expected loss
su↵ered by h over the distribution P :

Rl(h) = Ez⇠P [l(h, z)].

The most natural loss function for binary classification is the 0/1 loss
(also called classification error):

l
0/1

(h, z) =

⇢
1 if yh(x) < 0,
0 otherwise.

Rl0/1(h) then corresponds to the proportion of time h(x) and y agree in sign,
and in particular to the proportion of correct predictions when L = Y .

The goal of supervised learning is then to find a hypothesis that achieves
the smallest true risk. Unfortunately, in general we cannot compute the
true risk of a hypothesis since the distribution P is unknown. We can only
measure it empirically on the training sample. This is called the empirical
risk.

18

2.1. SUPERVISED LEARNING

Definition 5 (Empirical risk). Let T = {zi = (xi, yi)}n
i=1

be a training
sample. The empirical risk (also called empirical error) Rl

T (h) of a hypothesis
h over T with respect to a loss function l is the average loss su↵ered by h on
the instances in T :

Rl
T (h) =

1

n

nX

i=0

l(h, zi).

Under some restrictions, using the empirical risk to select the best
hypothesis is a good strategy, as discussed in the next section.

2.1.2 Finding a Good Hypothesis

This section focuses on classic strategies for finding a good hypothesis in the
true risk sense. The derivation of guarantees on the true risk of the selected
hypothesis will be studied in Section 2.2.

Simply minimizing the empirical risk over all possible hypotheses would
obviously be a good strategy if infinitely many training instances were
available. Unfortunately, in realistic scenarios, training data is limited and
there always exists a hypothesis h, however complex, that perfectly predicts
the training sample, i.e., Rl

T (h) = 0, but generalizes poorly, i.e., h has a
nonzero (potentially large) true risk. This situation where the true risk of
a hypothesis is much larger than its empirical risk is called overfitting. The
intuitive idea behind it is that learning the training sample by heart does not
provide good generalization to unseen data.

There is therefore a trade-o↵ between minimizing the empirical risk and
the complexity of the considered hypotheses, known as the bias-variance
trade-o↵. There essentially exist two ways to deal with it and avoid
overfitting: (i) restrict the hypothesis space, and (ii) favor simple hypotheses
over complex ones. In the following, we briefly present three classic strategies
for finding a hypothesis with small true risk.

Empirical Risk Minimization The idea of the Empirical Risk Mini-
mization (ERM) principle is to pick a restricted hypothesis space H ⇢ LX

(for instance, linear classifiers, decision trees, etc.) and select a hypothesis
hT 2 H that minimizes the empirical risk:

hT = arg min
h2H

Rl
T (h).

19

CHAPTER 2. TECHNICAL BACKGROUND

This may work well in practice but depends on the choice of hypothesis space.
Essentially, we want H large enough to include hypotheses with small risk,
but H small enough to avoid overfitting. Without background knowledge on
the task, picking an appropriate H is di�cult.

Structural Risk Minimization In Structural Risk Minimization (SRM),
we use an infinite sequence of hypothesis classes H

1

⇢ H
2

⇢ . . . of increasing
size and select the hypothesis that minimizes a penalized version of the
empirical risk that favors simple classes:

hT = arg min
h2H

c

,c2N
Rl

T (h) + pen(Hc).

This implements the Occam’s razor principle according to which one
should choose the simplest explanation consistent with the training data.

Regularized Risk Minimization Regularized Risk Minimization (RRM)
also builds upon the Occam’s razor principle but is easier to implement: one
picks a single, large hypothesis space H and a regularizer (usually some
norm ||h||) and selects a hypothesis that achieves the best trade-o↵ between
empirical risk minimization and regularization:

hT = arg min
h2H

Rl
T (h) + �||h||, (2.1)

where � is the trade-o↵ parameter (in practice, it is set using validation data).
The role of regularization is to penalize complex hypotheses. Note that it
also provides a built-in way to break the tie between hypotheses that have
the same empirical risk.

The choice of regularizer is important and depends on the considered
task and the desired e↵ect. Some regularizers are easy to optimize because
they are convex and smooth (for instance, the squared L

2

norm) while others
do not have these convenient properties and are thus harder to deal with.
However, the latter may bring some potentially interesting e↵ects such as
sparsity: they tend to set some parameters of the hypothesis to zero.

Regularization is used in many successful learning methods and, as we
will see in Section 2.2, may help deriving generalization guarantees.

2.1.3 Surrogate Loss Functions

The methods described above all rely on minimizing the empirical risk. How-
ever, due to the nonconvexity of the 0/1 loss, minimizing (or approximately
minimizing) Rl0/1 is known to be NP-hard even for simple hypothesis classes

20

2.2. DERIVING GENERALIZATION GUARANTEES

(Ben-David et al., 2003). For this reason, surrogate convex loss functions
(that can be more e�ciently handled) are often used. The most prominent
choices in the context of binary classification are:

• the hinge loss: lhinge(h, z) = [1� yh(x)]
+

= max(0, 1� yh(x)), used for
instance in support vector machines (Cortes and Vapnik, 1995).

• the exponential loss: lexp(h, z) = e�yh(x), used in Adaboost (Freund
and Schapire, 1995).

• the logistic loss: llog(h, z) = log(1 + ✏�yh(x)),used in Logitboost
(Friedman et al., 2000).

Choosing an appropriate loss function is not an easy task and strongly
depends on the problem, but there exist general results on the relative
merits of di↵erent loss functions. For instance, (Rosasco et al., 2004) studied
statistical properties of several convex loss functions in a general classification
setting and concluded that the hinge loss has a better convergence rate
than other loss functions. (Ben-David et al., 2012) have further shown
that in the context of linear classification, the hinge loss o↵ers the best
guarantees in terms of classification error. In the following section, we present
analytical frameworks that allow the derivation of generalization guarantees,
i.e., relating the empirical risk of hT to its true risk.

2.2 Deriving Generalization Guarantees

In the previous section, we described a few generic methods for learning a
hypothesis hT from a training sample T based on minimizing the (penalized)
empirical risk. However, learning a hypothesis with small true risk is what
we are really interested in. Typically, the empirical risk can be seen as an
optimistically biased estimation of the true risk (especially when the training
sample is small), and a considerable amount of research has gone into deriving
generalization guarantees for learning algorithms, i.e., bounding the deviation
of the true risk of the learned hypothesis from its empirical measurement.
These bounds are often referred to as PAC (Probably Approximately Correct)
bounds (Valiant, 1984) and have the following form:

Pr[|Rl(h)�Rl
T (h)| > ✏]  �,

where ✏ � 0 and � 2 [0, 1]. In other words, it bounds the probability

21

CHAPTER 2. TECHNICAL BACKGROUND

to observe a large gap between the true risk and the empirical risk of an
hypothesis.

The key instruments for deriving PAC bounds are concentration inequal-
ities. They essentially assess the deviation of some functions of independent
random variables from their expectation. Di↵erent concentration inequalities
tackle di↵erent functions of the variables. The most commonly used in
machine learning are Chebyshev (only one variable is considered), Hoe↵ding
(sums of variables) and McDiarmid (that can accommodate any su�ciently
regular function of the variables). For more details about concentration
inequalities, see for instance the survey of (Boucheron et al., 2004).

In this section, we present two theoretical frameworks for establishing
generalization bounds: uniform convergence and uniform stability (for a more
general overview, please refer to the tutorial by (Langford, 2005). Note
that the approach used in our contributions in Chapter 4 make use of these
frameworks.

2.2.1 Uniform Convergence

The theory of uniform convergence of empirical quantities to their mean
(Vapnik and Chervonenkis, 1971) (Vapnik, 1982) is one of the most prominent
tools for deriving generalization bounds. It provides guarantees that hold for
any hypothesis h 2 H (including hT) and essentially bounds (with some
probability 1� �) the true risk of h by its empirical risk plus a penalty term
that depends on the number of training examples n, the size (or complexity)
of the hypothesis space H and the value of �. Intuitively, large n brings high
confidence (since as n ! 1 the empirical risk converges to the true risk by
the law of large numbers), complex H brings low confidence (since overfitting
is more likely), and � accounts for the probability of drawing an unlucky
training sample (i.e., not representative of the underlying distribution P).

When the hypothesis space is finite, we get the following PAC bound in
O(1/

p
n).

Theorem 1 (Uniform convergence bound for the finite case). Let T be a
training sample of size n drawn i.i.d. from some distribution P , H a finite
hypothesis space and � > 0. For any h 2 H, with probability 1 � � over the
random sample T , we have:

Rl(h)  Rl
T (h) +

r
ln|H| + ln(1/�)

2n
.

When H is continuous (for instance, if H is the space of linear classifiers),
we need a measure of the complexity of H such as the VC dimension (Vapnik

22

2.2. DERIVING GENERALIZATION GUARANTEES

and Chervonenkis, 1971), the fat-shattering dimension (Alon et al., 1997) or
the Rademacher complexity (Koltchinskii, 2001) (Bartlett and Mendelson,
2002). For instance, using the VC dimension, we get the following bound.

Theorem 2 (Uniform convergence bound with VC dimension). Let T be
a training sample of size n drawn i.i.d. from some distribution P , H a
continuous hypothesis space with VC dimension VC(H) and � > 0. For any
h 2 H, with probability 1� � over the random sample T , we have:

Rl(h)  Rl
T (h) +

s
V C(H)(ln 2n

V C(H)

+ 1) + ln(4/�)

n
.

A drawback of uniform convergence analysis is that it is only based
on the size of the training sample and the complexity of the hypothesis
space, and completely ignores the learning algorithm, i.e., how the hypothesis
hT is selected. In the following, we present an analytical framework
that explicitly take into account the algorithm and can be used to derive
generalization guarantees for hT specifically, in particular in the regularized
risk minimization setting 2.1.

2.2.2 Uniform Stability

Building on previous work on algorithmic stability, (Bousquet and Elissee↵,
2001) (Bousquet and Elissee↵, 2002) introduced new definitions that allow
the derivation of generalization bounds for a large class of algorithms.
Intuitively, an algorithm is said stable if it is robust to small changes in
its input (in our case, the training sample), i.e., the variation in its output
is small. Formally, we focus on uniform stability, a version of stability that
allows the derivation of rather tight bounds.

Definition 6 (Uniform stability). An algorithm A has uniform stability k/n
with respect to a loss function l if the following holds:

8T, |T | = n, 8i 2 [n] : sup
z

|l(hT , z)� l(hT i , z)|  k

n
,

where k is a positive constant, T i is obtained from the training sample T
by replacing the ith example zi 2 T by another example z0i drawn i.i.d. from
P , hT and hT i are the hypotheses learned by A from T and T i respectively.

(Bousquet and Elissee↵, 2001) (Bousquet and Elissee↵, 2002) have shown
that a large class of regularized risk minimization algorithms satisfies this

23

CHAPTER 2. TECHNICAL BACKGROUND

definition. The constant k typically depends on the form of the loss function,
the regularizer and the regularization parameter �. Making a good use of
McDiarmid’s inequality, they show that when Definition 6 is fulfilled, the
following bound in O(1/

p
n) holds.

Theorem 3 (Uniform stability bound). Let T be a training sample of size n
drawn i.i.d. from some distribution P and � > 0. For any algorithm A with
uniform stability k/n with respect to a loss function l upper-bounded by some
constant B, with probability 1� � over the random sample T , we have:

Rl(hT)  Rl
T (hT) +

k

n
+ (2k + B)

r
ln(1/�)

2n
,

where hT is the hypothesis learned by A from T .

The main di↵erence between uniform convergence and uniform stability
is that the latter incorporates regularization (through k and hT) and does not
require any hypothesis space complexity argument. In particular, uniform
stability can be used to derive generalization guarantees for hypothesis
classes that are di�cult to analyze with classic complexity arguments,
such as k-nearest neighbors or support vector machines that have infinite
VC dimension. It can also be adapted to non-i.i.d. settings (Mohri and
Rostamizadeh, 2007) (Mohri and Rostamizadeh, 2010). We will use uniform
stability in the contributions presented in Chapter 4.

2.3 Metrics

After having presented the supervised learning setting and analytical frame-
works for deriving generalization guarantees, we now turn to the topic of
metrics, which has a great place in this thesis.

The notion of metric (used here as a generic term for distance, similarity
or dissimilarity function) plays an important role in many machine learning
problems such as classification, regression, clustering, or ranking. Successful
examples include:

• k-Nearest Neighbors (k-NN) classification (Cover and Hart, 2006),
where the predicted class of an instance x corresponds to the majority
class among the k-nearest neighbors of x in the training sample,
according to some distance or similarity.

24

2.3. METRICS

• Kernel methods (Scholkopf and Smola, 2001), where a specific type of
similarity function called kernel (see Definition 9) is used to implicitly
project data into a new high-dimensional feature space. The most
prominent example is Support Vector Machines (SVM) classification
(Cortes and Vapnik, 1995), where a large-margin linear classifier is
learned in that space.

• K-Means (Lloyd, 2006), a clustering algorithm which aims at finding
the K clusters that minimize the within-cluster distance on the training
sample according to some metric.

• Information retrieval, where a similarity function is often used to
retrieve documents (webpages, images, etc.) that are similar to a query
or to another document (Salton et al., 1975) (Baeza-Yates and Ribeiro-
Neto, 1999) (Sivic and Zisserman, 2009).

• Data visualization, where visualization of interesting patterns in high-
dimensional data is sometimes achieved by means of a metric (Venna
et al., 2010) (Bertini et al., 2011).

It should be noted that metrics are especially important when dealing
with structured data (such as strings, trees, or graphs) because they are
often a convenient proxy to manipulate these complex objects: if a metric is
available, then any metric-based algorithm (such as those presented in the
above list) can be used.

In this section, we first give the definitions of distance, similarity and
kernel functions 2.3.1, and then give some examples (by no means an
exhaustive list) of such metrics between structured data 2.3.2.

2.3.1 Definitions

We start by introducing the definition of a distance function.

Definition 7 (Distance function). A distance over a set X is a pairwise
function d : X ⇥X ! R which satisfies the following properties 8x, x0, x00 2
X :

1. d(x, x0) � 0 (nonnegativity),

2. d(x, x0) = 0 if and only if x = x0 (identity of indiscernibles),

3. d(x, x0) = d(x0, x) (symmetry),

25

CHAPTER 2. TECHNICAL BACKGROUND

4. d(x, x00)  d(x, x0) + d(x0, x00) (triangle inequality).

A pseudo-distance satisfies the properties of a metric, except that instead
of property 2, only d(x, x) = 0 is required. Note that the property of triangle
inequality can be used to speedup learning algorithms such as k-NN (e.g.,
(Micó et al., 1994), (Lai et al., 2007), (Wang, 2011)) or K-Means (Elkan,
2003).

While a distance function is a well-defined mathematical concept, there
is no general agreement on the definition of a (dis)similarity function, which
can essentially be any pairwise function. Throughout this thesis, we will use
the following definition.

Definition 8 (Similarity function). A (dis)similarity function is a pairwise
function K : X ⇥ X ! [�1, 1]. We say that K is a symmetric similarity
function if 8x, x0 2 X, K(x, x0) = K(x0, x).

A similarity function should return a high score for similar inputs and
a low score for dissimilar ones (the other way around for a dissimilarity
function). Note that (normalized) distance functions are dissimilarity
functions.

Finally, a kernel is a special type of similarity function, as formalized by
the following definition.

Definition 9 (Kernel function). A symmetric similarity function K is a
kernel if there exists a (possibly implicit) mapping function � : X ! H from
the instance space X to a Hilbert space H such that K can be written as an
inner product in H:

K(x, x0) = h�(x), �(x0)i.

Equivalently, K is a kernel if it is positive semi-definite (PSD), i.e.,

nX

i=1

nX

j=1

cicjK(xi, xj) � 0

for all finite sequences of x
1

, . . . , xn 2 X and c
1

, . . . , cn 2 R.
Kernel functions are a key component of kernel methods such as SVM,

because they can implicitly allow cheap inner product computations in very
high-dimensional spaces (this is known as the ”kernel trick”) and bring
an elegant theory based on Reproducing Kernel Hilbert Spaces (RKHS).
Note that these advantages disappear when using an arbitrary non-PSD
similarity function instead of a kernel, and the convergence of the kernel-
based algorithm may not even be guaranteed in this case.

26

2.3. METRICS

2.3.2 Some Metrics between Structured Data

Hamming distance The Hamming distance is a distance between strings
of identical length and is equal to the number of positions at which the
symbols di↵er. It has been used mostly for binary strings and is defined by

dham(x, x0) = |{i : xi 6= x0
i}|.

String edit distance The string edit distance (Levenshtein, 1966) is a
distance between strings of possibly di↵erent length built from an alphabet
⌃. It is based on three elementary edit operations: insertion, deletion and
substitution of a symbol. In the more general version, each operation has
a specific cost, gathered in a nonnegative (|⌃| + 1) ⇥ (|⌃| + 1) matrix C
(the additional row and column account for insertion and deletion costs
respectively). A sequence of operations transforming a string x into a string
x0 is called an edit script. The edit distance between x and x0 is defined as
the cost of the cheapest edit script that turns x into x0 and can be computed
in O(|x| · |x0|) time by dynamic programming.

The classic edit distance, known as the Levenshtein distance, uses a unit
cost matrix and thus corresponds to the minimum number of operations
turning one string into another. For instance, the Levenshtein distance
between abb and aa is equal to 2, since turning abb into aa requires at least
2 operations (e.g., substitution of b with a and deletion of b).

Using task-specific costs is a key ingredient to the success of the edit
distance in many applications. For some problems such as handwritten
character recognition (Micó and Oncina, 1998) or protein alignment (Dayho↵
et al., 1978), (Heniko↵ and Heniko↵, 1992), relevant cost matrices may be
available. But a more general solution consists in automatically learning the
cost matrix from data.

Sequence alignment Sequence alignment is a way of computing the
similarity between two strings, mostly used in bioinformatics to identify
regions of similarity in DNA or protein sequences (Mount, 2004). It
corresponds to the score of the best alignment. The score of an alignment
is based on the same elementary operations as the edit distance and on
a score matrix for substitutions, but uses a (linear or a�ne) gap penalty
function instead of insertion and deletion costs. The most prominent
sequence alignment measures are the Needleman-Wunsch score (Needleman
and Wunsch, 1970) for global alignments and the Smith-Waterman score
(Smith and Waterman, 1981) for local alignments. They can be computed
by dynamic programming.

27

CHAPTER 2. TECHNICAL BACKGROUND

Tree edit distance Because of the growing interest in applications that
naturally involve tree-structured data (such as the secondary structure of
RNA in biology, XML documents on the web or parse trees in natural
language processing), several works have extended the string edit distance
to trees, resorting to the same elementary edit operations (see (Bille, 2005),
for a survey on the matter). There exist two main variants of the tree edit
distance that di↵er in the way the deletion of a node is handled. In (Zhang
and Shasha., 1989), when a node is deleted all its children are connected
to its father. The best algorithms for computing this distance have an
O(n3) worst-case complexity, where n is the number of nodes of the largest
tree (see (Pawlik and Augsten, 2011), for an empirical evaluation of several
algorithms). Another variant is due to (Selkow, 1977), where insertions and
deletions are restricted to the leaves of the tree. Such a distance is relevant
to specific applications. For instance, deleting a < UL > tag (i.e., a nonleaf
node) of an unordered list in an HTML document would require the iterative
deletion of the < LI > items (i.e., the subtree) first, which is a sensible
thing to do in this context. This version can be computed in quadratic
time. Note that tree edit distance computations can be made significantly
faster (especially for large trees) by exploiting lower bounds on the distance
between two trees that are cheap to obtain (see for instance (Yang et al.,
2005)). A study on the expressiveness of similarities and distances on trees
was proposed by (Emms and Franco-Penya, 2012).

Like in the string case, there exists a few methods for learning the cost
matrix of the tree edit distance (see Section 4.1.1). Note that the edit
similarity learning method presented in Chapter 4, can be used for both
strings and trees edit distances.

In general, trees can be divided in ordered and not ordered trees, and in
evolutionary and not evolutionary trees. As the time dimension of music is
represented implicitly in the left-to-right ordering of trees (see Chapter 3),
we deal only with ordered trees. Regarding the evolutionary trees, they
are often used to conceptually represent the evolutionary relationship of
species or organisms in biology, evolution of works in linguistics, statistical
classifications, or even tracking computer viruses. The metrical trees we use
are not evolutionary trees because they do not have distinct labels, so those
algorithms are not applicable for our problem. In Chapter 4 a similarity
learning approach is described. This uses the two classical edit distances
(Zhang and Shasha., 1989) and (Selkow, 1977) as initial point to learn the
new similarity proposed.

28

2.3. METRICS

Graph edit distance Note that there also exist extensions of the edit
distance to general graphs (Gao et al., 2010), but like many problems on
graphs, in general, computing a graph edit distance is NP-hard, making it
impractical for real-world tasks.

Spectrum, subsequence and mismatch kernels These string kernels
represent strings by fixed-length feature vectors and rely on explicit mapping
functions �. The spectrum kernel (Leslie et al., 2002) maps each string
to a vector of frequencies of all contiguous subsequences of length p and
computes the inner product between these vectors. The subsequence kernel
(Lodhi et al., 2002) and the mismatch kernel (Leslie et al., 2003) extend the
spectrum kernel to inexact subsequence matching: the former considers all
(possibly noncontiguous) subsequences of length p while the latter allows a
number of mismatches in the subsequences.

String edit kernels String edit kernels are derived from the string edit
distance (or related measures). The classic edit kernel (Li and Jiang, 2004)
has the following form:

KL&J(x, x0) = e�t·d
lev

(x,x0
),

where dlev is the Levenshtein distance and t > 0 is a parameter. However,
(Cortes et al., 2004) have shown that this function is not PSD (and thus is
not a valid kernel) in the general case for nontrivial alphabets. Thus, one
has to tune t, hoping to make K PSD. Moreover, it su↵ers from the so-called
”diagonal dominance” problem (i.e., the kernel value decreases exponentially
fast with the distance), and SVM is known not to perform well in this
case (Schölkopf et al., 2002). A di↵erent string edit kernel was proposed
by (Neuhaus and Bunke, 2006) and is defined as follows:

KN&B(x, x0) =
1

2
(dlev(x, x

0

)2 + dlev(x0

, x0)2� dlev(x, x0)2),

where x
0

is called the ”zero string” and must be picked by hand. They also
propose combinations of such kernels with di↵erent zero strings. However,
the validity of such kernels is not guaranteed either. (Saigo et al., 2004)
build a kernel from the sum of scores over all possible Smith-Waterman local
alignments between two strings instead of the alignment of highest score
only. They show that if the score matrix is PSD, then the kernel is valid in
general. However, like KL&J , it su↵ers from the diagonal dominance problem.
In practice, the authors take the logarithm of the kernel and add a su�ciently
large diagonal term to ensure the validity of the kernel.

29

CHAPTER 2. TECHNICAL BACKGROUND

Convolution kernels The framework of convolution kernels (Haussler,
1999) can be used to derive many kernels for structured data. Roughly
speaking, if structured instances can be seen as a collection of subparts, then
Haussler’s convolution kernel between two instances is defined as the sum of
the return values of a predefined kernel over all possible pairs of subparts, and
is guaranteed to be PSD. Mapping kernels (Shin and Kuboyama, 2008) are a
generalization of convolution kernels as they allow the sum to be computed
only over a predefined subset of the subpart pairs. These frameworks have
been used to design several kernels between structured data (Collins and
Du↵y, 2002) (Shin and Kuboyama, 2008) (Shin et al., 2011). However,
building such kernels is often not straightforward since they suppose the
existence of a kernel between subparts of the structured instances.

Marginalized kernels When one has access to a probabilistic model
encoding for instance the probability that a string (or a tree) is turned into
another one, marginalized kernels (Tsuda et al., 2002) (Kashima et al., 2003),
of which the Fisher kernel (Jaakkola and Haussler, 1998) is a special case,
are a way of building a kernel from the output of such models.

30

3
Melody Tree Representation

3.1 Introduction

The tree structure is an alternative representation between strings and
graphs. On the one hand, its expressive capacity is higher than the strings
and allow describing naturally hierarchical structures in which relations
between its components are given. On the other hand, its management
from the theoretical point of view is much simpler and e�cient than that
of graphs. Trees have been used by a number of authors in the computer
music literature with di↵erent aims.

Formal language theory uses trees in a natural way and Lee (Lee,
1985) tried to interpret rhythms by using grammars. Something similar
did Bod (Bod, 2002), but aiming to learn how to automatically segment
melodies, using the tree approach provided by parsing the melody. In the
work of Conklin (Gilbert and Conklin, 2007), monodies were parsed into tree
structures using a probabilistic context-free grammar to perform melodic
reductions that were used also in a segmentation task.

In the context of assisted musical composition, trees have been used as a
way to conceptually represent music (Balaban, 1996; Smaill et al., 1993).
Under this approach, the Wind in the Willows system (Högberg, 2005)
used tree transducers to generate music. The renowned tool for assisted
composition OpenMusic (Assayag et al., 1999) uses trees as a natural way
for representing the hierarchical nature of duration subdivision of musical
figures and groupings like tuplets.

For representing musicological analyses, the tree representation was used
in the Generative Theory of Tonal Music (GTTM) (Lerdahl and Jackendo↵,
1983) and in a number of works based on the Schenkerian analysis (Kirlin
and Utgo↵, 2008; Marsden, 2001, 2005, 2007; Smoliar, 1979).

Finally, trees have been also used not as a means to represent music,
but as an intermediate data structure for other goals like building document

31

CHAPTER 3. MELODY TREE REPRESENTATION

structures for indexing (Blackburn, 2000; Drewes and Högberg, 2007; Skalak
et al., 2008).

However, trees had not been used as a method to represent music for
comparison until Rizo and Iñesta propose this approach in (Rizo and Iñesta,
2002). Despite this structure seems to be the most suitable for capturing the
temporal and hierarchical structure, and it is an adequate data structure to
encode and process music in symbolic format for similarity computation.

This dissertation is a continuation of the work did in (Rizo, 2010) where
the metrical trees were defined. Now, we try to outfit the representation
of melodies by trees with new methods to be compared and with inferred
languages that can capture the relations between trees. These approaches
could be used to generate new melodies or help in the composition in future
works. The tree structured used in this dissertation is described in the next
section. For a extended review and more extensive explanation of the tree
structure in music, the reader can refer to (Rizo, 2010).

3.2 Tree Representation of Monophonic Metered
Music

As it was said in Section 1.2, a melody has two main dimensions: rhythm
and pitch. In linear representations, those dimensions are coded by explicit
symbols, but ordered trees are able to implicitly represent time in their
structure, making use of the fact that the whole piece is divided hierarchically
into bars, and note durations are multiples of basic time units, mainly in a
binary (sometimes ternary) subdivision. The left to right ordering of tree
nodes depicts the time flow. This way, trees are less sensitive to the codes
used to represent melodies, since only pitch codes are needed to be established
and thus there are less degrees of freedom for coding. Furthermore, this
hierarchical organization allows to append additional information such as
harmonic descriptors to groups of notes in a natural way. We name this kind
of representation metrical trees (see (Rizo, 2010)).

In the western music from the common practice period, the lapse of time is
usually divided first in bars regularly, then in beats and finally in subdivisions
of those beats. The duration of the bars depends on the meter and tempo.
The duration of the actual figures is designed according to a logarithmic
scale: a whole note lasts twice than a half note, that is two times longer
than a quarter note, etc. (see figure durations hierarchy in Fig. 3.1 at page
33).

32

3.3. MELODY TREE REPRESENTATION USED

���������

HHHHHHHHH

�����

HHHHH

��� HHH ��� HHH

�����

HHHHH

��� HHH ��� HHH

Figure 3.1: Duration hierarchy for note figures in binary meters. From top
to bottom: whole (4 beats), half (2 beats), quarter (1 beat), and eighth (1/2
beat) notes.

This representation has two main drawbacks: its tight dependency on the
meter structure of the input source, and its di�culty to represent tied notes
whose durations are summed, dots (duration is extended in an additional
50%), and syncopations. The first problem can be overcome through an a
priori metrical analysis of the work (Eck and Casagrande, 2005; Meudic,
2002) in the case that the meter metadata is not present in the data
source. The second drawback, from the representation point of view, can
be solved by the addition of a special symbol that encodes the concept
of note continuation. In other words, when a note exceeds the considered
duration, in terms of binary divisions of time, it is subdivided into notes
of binary durations, and the resulting notes are coded in their proper tree
levels. Nodes containing the continuation of another one can be encoded by
appending any special symbol or indication to denote the continuation. For
the comparison task, this is not a problem as other authors point out (Hanna
et al., 2008; Mongeau and Sanko↵, 1990; Pardo and Sanghi, 2005). One
derived problem is the excessive growth of trees when very short notes and
performance imprecisions are found in the case of real time sequenced data.
This problem has been addressed by tree pruning methods and advanced
quantization algorithms (Agon et al., 1994; Cemgil et al., 2000).

3.3 Melody Tree Representation Used

In this dissertation we use a tree-based symbolic representation of melodies
as suggested by previous works for melody classification (Habrard et al.,
2008; Rizo et al., 2009). The representation uses rhythm for defining the
tree structure and pitch information for node labeling. To represent the
note pitches in a monophonic melody M , we use symbols � from a pitch

33

CHAPTER 3. MELODY TREE REPRESENTATION

representation alphabet ⌃p. In this work, the interval from the tonic of the
song modulo 12 is used as a pitch descriptor and the symbol ‘�’ represents
rests (⌃p = {p 2 N | 0  p  11} [{�}). This encoding has the advantage
of being octave invariant, i.e, two melodies belonging to two di↵erent octaves
will be equally encoded. However, it is not able to distinguish between
enharmonic tones (the notes C] and D[are enharmonic). On the other
hand, it can be obtained directly from the absolute pitch just by computing a
modulo 12 on the original MIDI note. This way, in ‘G Major’, any pitch ‘G’ is
mapped to 0. This alphabet permits a transposition invariant representation
and keeps cardinality low. Rests are represented by a special label ‘�’.

In the proposed approach, each melody bar is represented by a tree,
t 2 T

⌃

. Bars are coded by separated trees and then they are linked to a
common root. The level of a node in the tree determines the duration it
represents (see Fig. 3.1). The root (level 1) represents the duration of the
whole bar for a binary meter, the two nodes in level 2 the duration of the
two halves of a bar, etc. In general, nodes in level i represent duration
of a 1/2i�1 of a bar for a binary meters (1/3i�1 for ternary). Therefore,
during the tree construction, nodes are created top-down when needed and
guided by the meter, to reach the appropriate leaf level to represent a note
duration. In that moment, the corresponding leaf node is labeled with the
pitch representation symbol, � 2 ⌃p.

Once the tree has been built, a bottom-up propagation of the pitch labels
is performed to label all the internal nodes (see an example in Fig. 3.2). The
rules for this propagation are inspired on a melodic analysis (Illescas et al.,
2007).

4
4! "# "$ % " "3

"" "

0

0 0

0 0

-1 0

0 5

0 2

2 4

5 7 9

Figure 3.2: Tree representation of a one-bar melody with an example of how
pitch labels are propagated.

All the notes are tagged either as harmonic tones, for those belonging to
the current harmony at each time, or as non-harmonic tones for ornamental

34

3.3. MELODY TREE REPRESENTATION USED

notes. Harmonic notes have always priority for propagation and when
two harmonic notes share a common father node, propagation is decided
according to the metrical strength of the note (the stronger the more
priority), depending on its position in the bar and the particular meter of
the melody. Notes have always higher priority than rests (Fig. 3.2 shows an
example). Eventually, when all the internal nodes are labeled, all bar trees
are linked to a common forest root, labeled with the root of the first bar tree.
In this way, the whole melody is completely represented (see Fig. 3.3 for an
illustration).

t
1

t
|M|

t
2

t
3

t
4

t
5

t
6

t
7

σ

! ! !" ! " "# $
4
4 ! ! % !&! !&"' ! !" % " % ("% ! ! ! %!

Figure 3.3: Representation of a |M |-bar melody.

It must be noted that our objective here is not to output an accurate
tonal analysis but to use a simple, deterministic, and computable model
to select the notes that seem to be more important in the melody. The
complex problem of analyzing the music to be reduced has been extensively
studied in works like (Gilbert and Conklin, 2007; Lerdahl and Jackendo↵,
1983; Marsden, 2005).

The main motivation to label the internal nodes is that tree similarity
algorithms used in this dissertation need all the nodes (both internal and
leaves) to have a label, but in the metric tree construction process, after the
structure of the tree is completed, the pitch labels are just in the leaves.

The set of rules are used for propagating the labels from the leaves
upwards, labeling the internal nodes. The propagation of a label is decided on
the basis that the note in that node is more important than that of the sibling
node. The importance of a note is related to its capability to contribute to
the melody identity.

The goal of this work is to measure the similarity between two pieces
of music represented by trees. Thus, in order to compare music, we need a
measure to compare metric trees. In the metric trees depicted so far, the tree
structure describes meter and beat information. Leaves represent the actual
pitches and inner nodes contain the result of the bottom-up propagation just
described. The devised similarity measure should assign higher rates to the
comparison of two variations of the same melody than to two di↵erent works.

35

CHAPTER 3. MELODY TREE REPRESENTATION

These variations are supposed to be represented by similar trees in structure
and pitch labels.

3.4 Corpora

In our experiments, we have tried to identify a target melody using three
di↵erent corpora. One of them is a set of di↵erent variations played by
musicians and the other two are di↵erent variations automatically generated.
All of them used to training the models for the di↵erent approaches. In the
following, we describe these three di↵erent corpora used in this dissertation.

3.4.1 Pascal Database

The first corpus, named Pascal1 consisting of a set of 420 monophonic 8-12
bar incipits of 20 worldwide well known tunes of di↵erent musical genres.
For each song, a canonic version was created using a score editor. Then
it was synthesized and the audio files were given to three amateur and
two professional musicians (a classical and a jazz player). Each musician
listened to the songs (to identify the part of the tune to be played) and
they played them on MIDI controllers (four keyboards, one guitar), real-
time sequencing them 20 times with di↵erent embellishments and without
avoiding performance errors. This way, for each of the 20 original scores, 21
di↵erent sequences were built. See appendix A.1 for the full listing of tunes
included.

3.4.2 Essen Corpora

Two other corpora (Essen-Kinder and Essen-Lied) have been used for testing
the proposed method in order to test its performance on other kind of
variations. These corpora were constructed from the publicly available
Essen Associative Code Folksong Database. The Essen-Kinder corpus was
constructed choosing 337 melodies (MIDI encoded) from the whole Essen
database2 (Selfridge-Field, 1997) and choosing those containing the string
‘Kinder’ in the tag ‘FCT’. From each melody, 12 variations were generated as
explained below. The Essen-Lied corpus has 27 melodies and 64 variations,

1 This name was given after the name of a project funded by an European Union
Network of Excellence named PASCAL (Pattern Analysis, Statistical Modeling and
Computational Learning).

2 Downloaded from http://www.esac-data.org/

36

3.4. CORPORA

containing songs in the Essen database where the ‘FCT’ tag contains the
term ‘Lied’.

The di↵erent variations in this case were automatically generated using
a software developed to it, that simulates di↵erent interpretation mistakes,
like adjacent note substitutions, note deletions, or note insertions, driven by
probabilities given as external parameters. Moreover, grid quantizations for
several grooves were utilized (see an example in appendix A.2).

37

4
Tree Similarity Learning

In this chapter, we review the literature on supervised metric learning from
structured data such as strings and trees, with an emphasis on the pros
and cons of each method. Then, we study the possibilities of the tree edit
similarity to classify melodies using a new approach for estimate the weights
of the edit operations.

4.1 Introduction

As discussed in Section 2.3, using an appropriate metric is key to the
performance of many learning algorithms. Since manually tuning metrics
(when they allow some parameterization) for a given real-world problem is
often di�cult and tedious, a lot of work has gone into automatically learning
them from labeled data, leading to the emergence of metric learning.

Generally speaking, supervised metric learning approaches rely on the
reasonable intuition that a good similarity function should assign a large
(resp. small) score to pairs of points of the same class (resp. di↵erent class),
and conversely for a distance function. Following this idea, they aim at
finding the parameters (usually a matrix) of the metric such that it best
satisfies local constraints built from the training sample T . They are typically
pair or triplet-based constraints of the following form:

S = {(zi, zj) 2 T ⇥ T : xi and xj should be similar},

D = {(zi, zj) 2 T ⇥ T : xi and xj should be dissimilar},

R = {(zi, zj, zk) 2 T ⇥ T ⇥ T : xi should be more similar to xj than to
xk},

where S and D are often referred to as the positive and negative training pairs
respectively, and R as the training triplets. These constraints are usually
derived from the labels of the training instances. One may consider for

39

CHAPTER 4. TREE SIMILARITY LEARNING

instance all possible pairs/triplets or use only a subset of these, for instance
based on random selection or a notion of neighborhood.

Metric learning often has a geometric interpretation: it can be seen as
finding a new feature space for the data where the local constraints are better
satisfied. Learned metrics are typically used to improve the performance of
learning algorithms based on local neighborhoods such as k-NN.

The mainly research on metric learning have been done from feature
vectors obtaining a huge number of formulations and algorithms. An
extended review can be found in (Bellet et al., 2015). In this work we are
interested on the metric learning mainly from structure data and specially
from tree data. In the following section we show a little review of this topic.

4.1.1 Metric Learning from Structured data

As pointed out earlier, metrics have a special importance in the context of
structured data: they can be used as a proxy to access data without having to
manipulate these complex objects. As a consequence, given an appropriate
structured metric, one can use k-NN, SVM, K-Means or any other metric-
based algorithm as if the data consisted of feature vectors.

Unfortunately, for the same reasons, metric learning from structured
data is challenging because most of structured metrics are combinatorial by
nature, which explains why it has received less attention than metric learning
from feature vectors. Most of the available literature on the matter focuses on
learning metrics based on the edit distance. Clearly, for the edit distance to
be meaningful, one needs costs that reflect the reality of the considered task.
To take a simple example, in typographical error correction, the probability
that a user hits the Q key instead of W on a QWERTY keyboard is much
higher than the probability that he hits Q instead of Y. For some applications,
such as protein alignment or handwritten digit recognition, well-tailored cost
matrices may be available (Dayho↵ et al., 1978) (Heniko↵ and Heniko↵,
1992) (Micó and Oncina, 1998). Otherwise, there is a need for automatically
learning a nonnegative (|⌃| + 1) ⇥ (|⌃| + 1) cost matrix C for the task at
hand.

What makes the cost matrix di�cult to optimize is the fact that the
edit distance is based on an optimal script which depends on the edit costs
themselves. Most general-purpose approaches get round this problem by
considering a stochastic variant of the edit distance, where the cost matrix
defines a probability distribution over the edit operations. One can then
define an edit similarity equal to the posterior probability pe(x0|x) that
an input string x is turned into an output string x0. This corresponds
to summing over all possible edit scripts that turn x into x0 instead of

40

4.1. INTRODUCTION

only considering the optimal script. Such a stochastic edit process can be
represented as a probabilistic model and one can estimate the parameters
(i.e., the cost matrix) of the model that maximize the expected log-likelihood
of positive pairs. This is done via an iterative Expectation-Maximization
(EM) algorithm (Dempster et al., 1977), a procedure that alternates between
two steps: an Expectation step (which essentially computes the function of
the expected log-likelihood of the pairs with respect to the current parameters
of the model) and a Maximization step (computing the updated edit costs
that maximize this expected log-likelihood). Note that unlike the classic edit
distance, the obtained edit similarity does not usually satisfy the properties
of a distance (in fact, it is often not symmetric).

String Edit Metric Learning

Generative models The first method for learning a string edit metric
was proposed by (Ristad and Yianilos, 1998). They use a memoryless
stochastic transducer which models the joint probability of a pair pe(x, x0)
from which pe(x0|x) can be estimated. Parameter estimation is performed
with EM and the learned edit probability is applied to the problem of learning
word pronunciation in conversational speech. (Bilenko and Mooney, 2003)
extended this approach to the Needleman-Wunsch Score with a�ne gap
penalty and applied it to duplicate detection. To deal with the tendency of
Maximum Likelihood estimators to overfit when the number of parameters is
large (in this case, when the alphabet size is large), (Takasu, 2009) proposes
a Bayesian parameter estimation of pair-HMM providing a way to smooth
the estimation. Experiments are conducted on approximate text searching
in a digital library of Japanese and English documents.

Discriminative models The work of (Oncina and Sebban, 2006) describes
three levels of bias induced by the use of generative models: (i) dependence
between edit operations, (ii) dependence between the costs and the prior
distribution of strings pe(x), and (iii) the fact that to obtain the posterior
probability one must divide by the empirical estimate of pe(x). These biases
are highlighted by empirical experiments conducted with the method of
(Ristad and Yianilos, 1998). To address these limitations, they propose the
use of a conditional transducer that directly models the posterior probability
pe(x0|x) that an input string x is turned into an output string x0 using
edit operations. Parameter estimation is also done with EM and the paper
features an application to handwritten digit recognition, where digits are
represented as sequences of Freeman codes (Freeman, 1974). In order to
allow the use of negative pairs, (McCallum et al., 2005) consider another

41

CHAPTER 4. TREE SIMILARITY LEARNING

discriminative model, conditional random fields, that can deal with positive
and negative pairs in specific states, still using EM for parameter estimation.

Methods based on gradient descent The use of EM has two main
drawbacks: (i) it may converge to a local optimum, and (ii) parameter
estimation and distance calculations must be done at each iteration, which
can be very costly if the size of the alphabet and/or the length of the strings
are large.

(Saigo et al., 2006) manage to avoid the need for an iterative procedure
like EM in the context of detecting remote homology in protein sequences.
They learn the parameters of the Smith-Waterman score which is plugged in
their local alignment kernel (Saigo et al., 2004). Unlike the Smith-Waterman
score, the local alignment kernel, which is based on the sum over all possible
alignments, is di↵erentiable and can be optimized by a gradient descent
procedure. The objective function that they optimize is meant to favor
the discrimination between positive and negative examples, but this is done
by only using positive pairs of distant homologs. The approach has two
additional drawbacks: (i) the objective function is nonconvex and it thus
subject to local minima, and (ii) the kernels validity is not guaranteed in
general and is subject to the value of a parameter that must be tuned.
Therefore, the authors use this learned function as a similarity measure and
not as a kernel.

Tree Edit Metric Learning

Bernard et al. Extending the work of (Ristad and Yianilos, 1998) and
(Oncina and Sebban, 2006) on string edit similarity learning, (Bernard et al.,
2006) (Bernard et al., 2008) propose both a generative and a discriminative
model for learning tree edit costs. They rely on the tree edit distance by
(Selkow, 1977) - which is cheaper to compute than that of (Zhang and
Shasha., 1989) - and adapt the updates of EM to this case. An application
to handwritten digit recognition is proposed, where digits are represented by
trees of Freeman codes.

Boyer et al. The work of (Boyer et al., 2007) tackles the more complex
variant of the tree edit distance (Zhang and Shasha., 1989), which allows
the insertion and deletion of single nodes instead of entire subtrees only.
Parameter estimation in the generative model is also based on EM, and the
usefulness of the approach is illustrated on an image recognition task.

42

4.1. INTRODUCTION

Neuhaus and Bunke In their paper, (Neuhaus and Bunke, 2007) learn
a (more general) graph edit similarity, where each edit operation is modeled
by a Gaussian mixture density. Parameter estimation is done using an EM-
like algorithm. Unfortunately, the approach is intractable: the complexity
of the EM procedure is exponential in the number of nodes (and so is the
computation of the distance).

Dalvi et al. The work of (Dalvi et al., 2009) points out a limitation of
the approach of (Bernard et al., 2006) (Bernard et al., 2008): they model
a distribution over tree edit scripts rather than over the trees themselves,
and unlike the case of strings, there is no bijection between the edit scripts
and the trees. Recovering the correct conditional probability with respect to
trees requires a careful and costly procedure. They propose a more complex
conditional transducer that models the conditional probability over trees and
use EM for parameter estimation. They apply their method to the problem
of creating robust wrappers for webpages.

Emms The work of (Emms, 2012) points out a theoretical limitation of the
approach of (Boyer et al., 2007): the authors use a factorization that turns
out to be incorrect in some cases. Emms shows that a correct factorization
exists when only considering the edit script of highest probability instead of
all possible scripts, and derives the corresponding EM updates. An obvious
drawback is that the output of the model is not the probability pe(x0|x).
Moreover, experiments on a question answering task highlight that the
approach is prone to overfitting, and requires smoothing and other heuristics
(such as a final step of zeroing-out the diagonal of the cost matrix).

This review raises two observations:
1. There is a relatively small body of work on metric learning

from structured data, presumably due to the higher complexity of the
learning procedures. Almost all existing methods are based on probabilistic
models: they are trained using an expensive iterative algorithm and cannot
accommodate negative pairs. Furthermore, no approach is guaranteed to
converge to the global optimum of the optimized quantity and again, there
is a lack of theoretical study.

2. The use of learned metrics is typically restricted to algorithms based on
local neighborhoods, in particular k-NN classifiers. Since the learned metrics
are typically optimized over local constraints, it seems unclear whether they
can be successfully used in more global classifiers such as SVM and other
linear separators, or if new metric learning algorithms should be designed for
this global setting. Furthermore, building a PSD kernel from the learned

43

CHAPTER 4. TREE SIMILARITY LEARNING

metrics is often di�cult, especially for structured data (e.g., string edit
kernels).

4.2 Background

We begin this part by making a little recap on the definition of a tree.

Definition 10 Let t = �(t
1

, . . . , tn) be a tree where � is a node and t
1

, . . . , tn
is an ordered sequence of (sub)trees. � is called the root of t. t

1

, . . . , tn are
called the children of �. A node with no child (n = 0) is a leaf.

The size of the tree t is denoted by |t| and corresponds to the number of
nodes constituting the tree. In the following, we assume each node to be
labeled by a symbol � coming from a set of labels ⌃. We denote by T

⌃

the
set of trees that can be built from ⌃.

In this work, we stand in a classical supervised learning setting for binary
classification. We assume we are given some labeled examples z = (t, `)
drawn from an unknown distribution P over T

⌃

⇥ {�1, 1}, where �1, 1 are
the binary labels of the examples. K : T

⌃

⇥ T
⌃

! [�1, 1] defines a pairwise
similarity function over T

⌃

, K is symmetric if for all t, t0 2 T
⌃

, K(t, t0) =
K(t0, t). A binary classifier h is a function h : T

⌃

! {�1, 1}.
The binary classifiers we consider rely on a similarity function that is

based on the notion of edit distance over trees. The tree edit distance (TED)
(Bille, 2005) can be seen as an extension or a generalization of the string
edit distance (also known as the Levenshtein distance) and is based on three
elementary edit operations: substitution, insertion or deletion of nodes. It is
defined as follows.

Definition 11 Let ⌃ be a set of labels and $ be the empty symbol, T
⌃

being
the set of all possible trees (including the empty tree $). The tree edit distance
(TED) eT (t, t0) between two trees t and t0 is the minimum number of edit
operations to change t into t0. The set corresponding to the minimum number
of operations allowing one to change t into t0 is called the optimal script.

Like in the case of strings, TED can be computed using dynamic
programming: When considering two trees of sizes m and n, where m  n,
the best known algorithms for this problem, due to (Zhang and Shasha., 1989)
and (Klein, 1998), have an O(n3 log n) time complexity and an O(mn) space
complexity. In these approaches, when a tree node is deleted, all its children
are connected to its father. A less costly variant of these algorithms has been
proposed by (Selkow, 1977), where deleting a node leads to the removal of the

44

4.2. BACKGROUND

entire (sub)tree rooted at that node (See Figure 4.1 for an illustration). The
insertion of a (sub)tree is also allowed and requires the iterative insertion of
its nodes. Such a distance is relevant to specific applications. For instance, it
would make no sense to delete a tag (i.e., a node) of an unordered list
in an HTML document without removing the items (i.e., the subtree).
In this case, the tree edit distance can be computed by dynamic programming
in quadratic time. See (Bille, 2005) for a more extended explanation of tree
edit distances.

aa a

a

a

a

a a a

a

aa

a

b

b b

b
b

b

b

b

b

b

b

c

c

c

d

d

deletion of c(a, b(c))
substitution (d, b)

insertion of c

Figure 2: An optimal edit script according to Selkow tree edit distance al-
gorithm Selkow (1977). The script begins by the deletion of the subtree
c(a, b(c)), then it considers the substitution of two label nodes (d, b) and ter-
minates with the insertion of the one node subtree c. Following this script
between the two trees, the non zero entries of the corresponding vector #
are: #

(a,$)

, #
(b,$)

, #
(c,$)

, #
($,c), and #

(d,b); all of these entries receive the
value 1 since they are exactly used once in the script.

4. Experiments

In this section, we provide an experimental evaluation of GESL for tree
edit distance learning. Our objective is two-fold. First, we show that this
approach allows us to learn good similarities leading to very accurate linear
classifiers. Second, we illustrate how the notion of reasonable points used in
this framework to extract semantic information from the distance learned.

To perform our experiments, we focus on a standard task in music infor-
mation retrieval: melody classification. We evaluate our methodology using
the corpus named Pascal1 consisting of a set of 420 monophonic 8 � 12 bar
incipits of 20 worldwide well known tunes of di↵erent musical genres. For
each song, a canonical version was created using a score editor. Then it was
synthesized and the audio files were given to three amateur and two profes-
sional musicians (a classical and a jazz player) who listened to the songs (to
identify the part of the tune to be played) and they played them on MIDI

1 This name was given after the name of a project funded by an European Union
Network of Excellence named PASCAL (Pattern Analysis, Statistical Modeling and Com-
putational Learning).

10

Figure 4.1: An optimal edit script according to Selkow tree edit distance
algorithm (Selkow, 1977). The script begins by the deletion of the subtree
c(a, b(c)), then it considers the substitution of two labeled nodes (d, b) and
terminates with the insertion of the one node subtree c. Following this script
between the two trees, the non zero entries of the corresponding matrix #
of Section 4.3.1 are: #

(a,$)

, #
(b,$)

, #
(c,$)

, #
($,c), and #

(d,b); all these entries
receive the value 1 since they are exactly used once in the script.

In the next section, we present the theory of (✏, �, ⌧)-good similarity
functions, allowing one to learn low error binary classifiers using good
similarity functions.

4.2.1 Framework for Learning with Good Similarity
Functions

Recently, Balcan et al (2006; 2008) introduced a new theory for learning
with good similarity functions. Their motivation was to overcome two major
limitations of kernel theory. Balcan theory relaxes two major drawbacks
of kernel theory used for learning SVM-based classifiers. First, a similarity
K must be symmetric and positive semi-definite to define a kernel, these
requirements often rules out natural similarity functions for the problem at

45

CHAPTER 4. TREE SIMILARITY LEARNING

hand. Second, a notion of good kernel is not intuitive in that it is defined
according to an implicit possibly unknown projection space making hard the
design of good kernels for a given problem forgetting that a good kernel is
essentially a good similarity function. To overcome these drawbacks, Balcan
et al. (2008) proposed the following definition of good similarity function.

Definition 12 (Balcan et al., 2008) A similarity function K : X ⇥X !
[�1, 1] is an (✏, �, ⌧)-good similarity function for a learning problem P if
there exists a (random) indicator function R(x) defining a (probabilistic) set
of “reasonable points” such that the following conditions hold:

1. A 1� ✏ probability mass of examples (x, `) satisfy

E
(x0,`0)⇠P [``0K(x, x0)|R(x0)] � �. (4.1)

2. Prx0 [R(x0)] � ⌧ .

The first condition is essentially requiring that a 1 � ✏ proportion of
examples x are on average more similar to reasonable examples of the same
class than to reasonable examples of the opposite class by a margin � and the
second condition that at least a ⌧ proportion of the examples are reasonable.

Yet Definition 12 is very interesting in three respects. First, it is a strict
generalization of the notion of good kernel (Balcan et al., 2008) but does not
impose positive semi-definiteness nor symmetry. Second, as opposed to pair
and triplet-based criteria used in metric learning, Definition 12 is based on
an average over some points. In other words, it relaxes the notion of local
constraints, opening the door to metric learning for global algorithms. Third,
these conditions are su�cient to learn well, i.e., to induce a classifier with
low true risk, as we show in the following.

Let K be an (✏, �, ⌧)-good similarity function. If the set of reasonable
points R = (x0

1

, y0
1

), (x0
2

, y0
2

), . . . , (x0
|R|, y

0
|R|) is known, it follows directly from

Equation 4.1 that the following classifier achieves true risk at most ✏ at
margin �:

h(x) = sign
h

1

|R|
P|R|

i=1

y0
iK(x, x0

i)
i
.

Note that h is a linear classifier in the space of the similarity scores to
the reasonable points. In other words, K is used to project the data into a
new space using the mapping � : �! R|R| defined as:

�i(x) = K(x, x0
i), i 2 {1, . . . , |R|}.

However, in practice the set of reasonable points is unknown. We can get
around this problem by sampling points (called landmarks) and use them

46

4.2. BACKGROUND

to project the data into a new space (using the same strategy as before).If
we sample enough landmarks (this depends in particular on ⌧ , which defines
how likely it is to draw a reasonable point), then with high probability there
exists a linear classifier in that space that achieves true risk close to ✏. This
is formalized in Theorem 4.

Theorem 4 (Balcan et al., 2008). Let K be an (✏, �, ⌧)-good similarity
function for a learning problem P . Let L = x0

1

, x0
2

, . . . , x0
n
L

be a sample of

nL = 2

⌧

⇣
log(2/�)+8 log(2/�)

�2

⌘
landmarks drawn from P . Consider the mapping

�L : X ! Rn
L defined as follows: �L

i (x) = K(x, x0
i), i 2 {1, . . . , nL}.

Then, with probability at least 1� � over the random sample L, the induced
distribution �L(P) in Rn

L has a linear separator of error at most ✏+� relative
to L

1

margin at least �/2.

Unfortunately, finding this separator is NP-hard (even to approximate)
because minimizing the number of L

1

margin violations is NP-hard. To
overcome this limitation, the authors considered the hinge loss as a surrogate
for the 0/1 loss (which counts the number of margin violations) in the
following reformulation of Definition 12.

Definition 13 (Balcan et al., 2008). A similarity function K is an (✏, �, ⌧)-
good similarity function in hinge loss for a learning problem P if there exists a
(random) indicator function R(x) defining a (probabilistic) set of reasonable
points such that the following conditions hold:

1. E
(x,y)sP [[1� yg(x)/�]

+

] 6 ✏, where g(x) = E
(x0,y0

)sP [y0K(x, x0)|R(x0)],

2. Prx0 [R(x0)] > ⌧ .

This leads to the following theorem, similar to Theorem 4.

Theorem 5 (Balcan et al., 2008). Let K be an (✏, �, ⌧)-good similarity
function in hinge loss for a learning problem P . For any ✏

1

> 0 and 0 6 � 6
�✏

1

/4, let L = {x0
1

, x0
2

, . . . , x0
n
L

} be a sample of nL = 2

⌧

⇣
log(2/�)+16 log(2/�)

✏1�2

⌘

landmarks drawn from P . Consider the mapping �L : X ! Rn
L defined as

follows: �L
i (x) = K(x, x0

i), i 2 {1, . . . , nL}. Then, with probability at least
1� � over the random sample L, the induced distribution �L(P) in Rn

L has
a linear separator of error at most ✏ + ✏

1

at margin �.

The objective is now to find a linear separator ↵ 2 Rn
L that has low true

risk based on the expected hinge loss relative to L
1

margin �:

47

CHAPTER 4. TREE SIMILARITY LEARNING

E
(x,`)⇠P [[1� `h↵, �L(x)i/�]

+

],

Using a landmark sample L = {x0
1

, x0
2

, . . . , x0
n
L

} and a training sample
T = {(x

1

, y
1

), (x
2

, y
2

), . . . , (xn, yn)}, one can find this separator ↵ e�ciently
by solving the following linear program (LP):

min
↵

d
lX

i=1

"
1�

dX

j=1

↵j`iK(xi, x
0
j)

#

+

+ �k↵k
1

. (4.2)

In practice, we simply use the training examples as landmarks. In this
case, learning rule 4.2 referred to as Balcan’s learning rule in the rest of
this document - is reminiscent of the standard SVM formulation, with three
important di↵erences. First, recall that K is not required to be PSD nor
symmetric. Second, the linear classifier lies in an explicit projection space
built from K (called an empirical similarity map) rather than in a possibly
implicit Hilbert Space induced by a kernel. Third, it uses L

1

regularization,
inducing sparsity in ↵ and thus reducing the number of landmarks the
classifier is based on, which speeds up prediction. This regularization can
be interpreted as a way to select (or approximate) the set of reasonable
points among the landmarks: in a sense, R is automatically worked out
while learning ↵. Note that we can control the degree of sparsity of the
linear classifier: the larger �, the sparser ↵. To sum up, the performance of
the linear classifier theoretically depends on how well the similarity function
satisfies Definition 12.

4.3 Good Edit Similarity Learning for tree-structured
data

We now present our procedure for learning good tree edit similarity. This
procedure follows the principle of the algorithm GESL introduced by (Bellet
et al., 2012) which is based on three main steps. In this section, we detail
each step of this process. First, we define a simple edit similarity based on
edit scripts. Second, we optimize this similarity according to the framework
of (✏, �, ⌧)-good similarity of (Balcan et al., 2008). This step leads to
good similarities allowing one to build, during a last step, powerful linear
separators.

48

4.3. GOOD EDIT SIMILARITY LEARNING FOR
TREE-STRUCTURED DATA

4.3.1 Tree Edit Script Based Similarity

Let C be a positive cost matrix of size (|⌃|+1)⇥(|⌃|+1) defining the possible
edit operations over nodes of trees. Ci,j gives the cost of the operation
changing the symbol ci into cj, ci and cj 2 ⌃ [{$}. Let #(t, t0) be an
(|⌃|+1)⇥(|⌃|+1) matrix whose elements #i,j(t, t0) correspond to the number
of times each edit operation consisting in changing ci into cj is used to turn
t into t0 in the optimal script obtained from any tree edit distance variant
(Selkow, 1977; Zhang and Shasha., 1989). In other words, we consider the
script corresponding to the minimum set of tree edit operations allowing one
to change one tree into another one with respect to the tree edit distance
considered (See Figure 4.1 for an illustration).

From these two matrices, the following edit function is then considered:

eC(t, t0) =
X

0i,j⌃

Ci,j ⇤#i,j(t, t
0). (4.3)

An important point here is that the computation of eC does not depend
on the optimal script with respect to C. In other words, eC is evaluated by
considering the operations used in the optimal script, weighted by the custom
costs C. Therefore, since the edit script defined by #(t, t0) is fixed, eC(t, t0)
is nothing more than a linear function of the edit costs and can be optimized
directly. (Bellet et al., 2012) define then the edit similarity function as:

KC(t, t0) = 2e�e
C

(t,t0) � 1. (4.4)

The use of the exponential allows KC to introduce non-linear information in
the model and to belong to [�1, 1] as required by Balcan et al.’s framework
presented in Section 4.2.1.

4.3.2 Learning Good Similarity Functions

In this section, we present our algorithm for learning good edit similarities.
We first define the notion of good similarity. It relies on a relaxed version of
Balcan et al.’s framework (Balcan and Blum, 2006; Balcan et al., 2008).

Definition 14 (Relaxed good tree edit similarity) A similarity func-
tion K : T

⌃

⇥ T
⌃

! [�1, 1] is an (✏, �, ⌧)-good similarity function for a
learning problem P if there exists a (random) indicator function R(t) defining
a (probabilistic) set of “reasonable trees” such that the following conditions
hold:

49

CHAPTER 4. TREE SIMILARITY LEARNING

1. A 1� ✏ probability mass of examples (t, `) satisfy

E
(t,`)

⇥
E

(t0,`0)

⇥
[1� ``0KC(t, t0)/�]

+

|R(t0)
⇤⇤
 ✏0. (4.5)

where [1� c]
+

= max(0, 1� c) corresponds to the hinge loss.

2. Prt0 [R(t0)] � ⌧ .

The first condition is essentially requiring that on average a 1�✏ proportion of
trees t are 2� more similar to random reasonable trees of the same class than
to random reasonable trees of the opposite class1 and the second condition
that at least a ⌧ proportion of the trees are reasonable. Note that the
reasonable instances are either provided by the application at hand (in this
case, they can be viewed as prototypes) or are automatically selected from
a set of so-called landmarks by solving a simple linear problem which is
essentially a 1-norm SVM problem (see (Balcan et al., 2008) for details - in
this case, they can be viewed as support vectors).

Definition 14 is very interesting in two respects. First, it does not impose
strong constraints on the form of the similarity functions considered. Second,
these conditions are su�cient to learn a good linear space, i.e., to induce a
linear separator ↵ in the space of the similarities to the reasonable trees:
h(·) =

P
(t0,`0)⇠P |R(t0) `0K(·, t0), as illustrated in Figure 4.2 (see (Balcan et al.,

2008) for a formal proof).

1The original definition of Balcan et al. (2006; 2008) requires the property 1 to be
true only on average over the reasonable examples. However, the use of the exponential
in our similarity implies a non convex formulation of the optimization problem considered
for learning the costs. As a consequence, we propose to relax the original formulation by
considering the surrogate version presented in Definition 14.

50

4.3. GOOD EDIT SIMILARITY LEARNING FOR
TREE-STRUCTURED DATA

E

F
GH

A

B

C
D

K(x,A)
K(x,B)

K
(x

,E
)

Figure 4.2: Linear separator ↵ learned from a training set of
trees {(A, +1), (B, +1), (C, +1), (D, +1), (E,�1), (F,�1), (G,�1), (H,�1)}
thanks to an (✏, �, ⌧)-good similarity function. A, B and E are reasonable
trees. The good linear separator is learned in the 3D-space of the similarities
to that reasonable points with respect to K.

The algorithm GESL has for objective to optimize the goodness of the
similarity KC so as to satisfy Condition 4.5 over all the pairs (zi, zj) of a
training set of NT labeled examples T = {zi = (ti, `i)}N

T

i=1

. The optimization
problem GESL for learning the costs C, which takes the form of a sparse
convex program, is expressed as follows:

(GESL) min
C,B1,B2

1

N2
T

X

1i,jN
T

V (C, zi, zj) + �kCk2F

s.t. V (C, zi, zj) =

⇢
[B1� eC(ti, tj)]

+

if `i 6= `j

[eC(ti, tj)� B2]
+

if `i = `j

B
1

� � log(1

2

), 0  B
2

 � log(1

2

), B
1

� B
2

= ⌘�

Ci,j � 0, 0  i, j  A,

where � � 0 is a regularization parameter on edit costs, k · kF denotes
the Frobenius norm and ⌘� � 0 a parameter corresponding to the desired
“margin”. The relationship between the margin � and ⌘� is given by
� = e⌘��1

e⌘�+1

. The loss V essentially penalizes the violations of the goodness
defined by Equation 4.5.

51

CHAPTER 4. TREE SIMILARITY LEARNING

Then, we optimize the costs of these edit operations by solving this
optimization problem. This allows us, once again, to avoid using a costly
iterative procedure: We only have to compute the tree edit script between
two trees once, which dramatically reduces the algorithmic complexity of the
learning algorithm. Moreover, the procedure of GESL allows one to learn
good tree edit similarities with respect to Definition 14 implying the ability
to learn good linear separators for tree structured data which is presented in
the next section.

4.3.3 Classifier Learning: Automatic Selection of the
Reasonable Trees

As mentioned previously, reasonable points play an important role because
the optimal linear classifier, named ↵, is built in the space of the similarities
to that points. In areas where some ground truth is available, these
reasonable points can be given by an expert. In this case, provided that we
have access to a similarity that satisfies the goodness property of Definition
14, the optimal classifier is directly obtained by using the similarities to that
points. In complex domains such as in music recognition, setting the set of
reasonable points is a tricky task. To overcome this problem, a strategy, as
suggested by Balcan et al. (2008), consists in using d (unlabeled) examples
as landmarks, dl labeled examples and in solving the following simple linear
problem which is essentially a 1-norm SVM problem:

min
↵

d
lX

i=1

"
1�

dX

j=1

↵j`iK(ti, t
0
j)

#

+

+ �k↵k
1

, (4.6)

where k · k
1

corresponds to the L
1

-norm.
An important feature of (4.6) is the L

1

-regularization on ↵, which induces
sparsity. Therefore, it allows automatic selection of reasonable points
controlling the sparsity of the solution: the larger �, the sparser ↵. Moreover,
by solving (4.6), we directly get a good (with generalization guarantees)
linear separator in the space of the similarities to the reasonable points. In
the experimental section, we will show that these points provide valuable
information.

We present in the next section the formalism used for tree representation
of melodies and we use the properties of GESL to derive theoretical
guarantees in this context.

52

4.4. TREE-STRUCTURED REPRESENTATION OF MELODIES
AND THEORETICAL GUARANTEES

4.4 Tree-structured Representation of Melodies
and Theoretical Guarantees

We use a tree-based symbolic representation of melodies as suggested by
previous works for melody classification (Habrard et al., 2008; Rizo et al.,
2009). The representation uses rhythm for defining the tree structure and
pitch information for node labeling. Bars are coded by separated trees and
then they are linked to a common root (see Figs. 3.2 and 3.3 for an
illustration). The level of a node in the tree determines the duration it
represents (see Section 3.3 for details).

This tree representation of melodies defines a particular class of data for
which we can derive a consistency theorem tailored to our method. For any
bar of duration dbar, the duration of a note encoded by a node v in a tree is
defined according to its depth in the tree: nodedur(v) = 1

2

depth(v) ⇥dbar, where
depth(v) denotes the depth of the node v. In order to limit the depth of the
tree, a minimum note duration is generally fixed (Rizo, 2010) and defined
by a constant Mind. Symmetrically, the depth of a node v encoding a note
of duration d is given by: depth(v) = log

2

(d
bar

d
). If Maxd is the maximum

duration of a bar, we have for any bar of duration dbar and any note of
duration d encoded by a node v,

depth(v) = log
2

(
dbar

d
)  log

2

✓
Maxd

Mind

◆
. (4.7)

The depth of the tree represents the number of nodes on the path from

the root to the node and needed to encode the note in the tree; log
2

⇣
Max

d

Min
d

⌘

represents the maximum node depth and thus the maximum number of nodes
needed to encode a note in a tree. Now, if Nmaxb is the maximum number

of bars in a melody, Max
d

Min
d

gives the maximum number of notes in a bar and

then we can bound the maximum size of a tree encoding a melody by:

Nmaxb ⇥
Maxd

Mind

⇥ log
2

✓
Maxd

Mind

◆
. (4.8)

Then, we have the following generalization bound for the GESL tree edit
version. Indeed, one can relate the true loss of the learned matrix CT ,
L(CT) = E

(z,z0)[V (CT , z, z0)], with its empirical expected loss LT (CT) (over
the pairs of the set T) with the following theorem.

Theorem 6 Let Nmaxb, Maxd and Mind be respectively the maximum
number of bars, the maximum duration of bars and the minimum duration

53

CHAPTER 4. TREE SIMILARITY LEARNING

of a note in the melodies. Let T be a sample of NT trees drawn i.i.d. from
an unknown distribution P , CT the matrix learned by GESL (using all the
possible pairs from T), with probability 1� � we have the following bound for
L(CT):

L(CT)  LT (CT) + 2


NT

+

2 + (3B�

2Nnotesp

�B�

+ 3

!!s
ln(2/�)

2NT

, (4.9)

with Nnotes = Nmaxb ⇥ Max
d

Min
d

⇥ log
2

⇣
Max

d

Min
d

⌘
,  = 6N2

notes

�
and B� =

max(⌘�,� log(1/2)).

The proof follows the same principle as in (Bellet et al., 2012), and uses the
fact that the maximum number of nodes in a tree is bounded by Nnotes.

The previous result highlights important aspects of our method. First, it
has a convergence rate in O(

p
1/NT) which a classical rate for concentration

bounds. Another point is that the method is independent from the alphabet
size - i.e. from the pitch representation - which indicates that the method
should scale well with large alphabets. Lastly, by considering the framework
of Section 4.3.2, it provides a consistency justification of our approach by
showing that the goodness of the similarity is ensured, which implies the
existence of a good linear classifier in the space defined by the reasonable
trees.

One drawback of this result is the dependency on a given maximum tree
size Nnotes. Fortunately, this constraint can be relaxed by assuming the trees
to be generated from probabilistic models where the probability to generate
trees with size larger than an integer k is bounded, like probabilistic finite
tree automata. Indeed, it can be shown that with probability 1 � � for any
sample of NT trees, we have for any tree t belonging to this sample,

|t| <
log(NT U/�)

log(1/⇢)
, (4.10)

with U > 0 and 0 < ⇢ < 1 some constants (Denis et al., 2008). By
combining this result with the previous theorem, one can obtain a bound
independent from the maximum tree size, see (Bellet et al., 2012) for the
technical details.

4.5 Experiments in Melody Recognition

In this section, we provide an experimental evaluation of GESL for tree
edit distance learning. Our objective is two-fold: First, we show that this

54

4.5. EXPERIMENTS IN MELODY RECOGNITION

approach allows us to learn good similarities leading to very accurate linear
classifiers. Second, we illustrate how the notion of reasonable points can
be used in this framework to extract semantic information from the learned
similarity.

4.5.1 Pascal database

To perform our experiments, we focus on a standard task in music informa-
tion retrieval, namely melody classification. We evaluate GESL using the
Pascal databaseconsisting of a set of 420 monophonic 8-12 bar incipits of 20
worldwide well known tunes of di↵erent musical genres (see 3.4.1 for details).

4.5.2 Experimental setup

A three-fold cross-validation scheme is carried out to perform the experi-
ments, where 2/3 of the database is used for training and 1/3 for testing.
We compare five edit similarities: (i) the Selkow tree edit distance (Selkow,
1977), which constitutes the baseline, (ii) a stochastic version of the Selkow
distance, Selkowsto (Bernard et al., 2008) learned from an EM-like algorithm
based on the software SEDiL (Boyer et al., 2008), (iii) the Zhang-Shasha
tree edit distance (Zhang and Shasha., 1989), (iv) KSelkow, learned by GESL
using the Selkow edit scripts, and (v) KZhang�Shasha, learned by GESL using
the Zhang-Shasha edit scripts. Note that it was not possible to evaluate the
stochastic version of the Zhang-Shasha distance learned with SEDiL because
the learning procedure was intractable, that confirms our claim mentioned
in the introduction.

Let us remind that GESL is specifically dedicated to optimize similarities
that are then e�ciently used in the learning of a linear separator (by
solving problem (4.6) of Section 4.3.3). Therefore, in a first series of
experiments, the melodies are classified using this linear separator, learned
from the five similarity measures (Selkow, Selkowsto, Zhang-Shasha, KSelkow

and KZhang�Shasha)2. Even though GESL has not been designed for nearest-
neighbor-like algorithms, we perform a second series of experiments where
the melodies are classified with the 1-nearest neighbor rule by directly making
use of the five similarities.

To deal with the multi-class setting, we use a standard one versus one
procedure: A binary linear classifier is learned for each pair of classes (Cj, Ck),
that is, the binary linear classifier h

(j,k)

is learned considering the instances

2Note that the distances are used as a similarities and normalized to stand in the
interval [�1, 1].

55

CHAPTER 4. TREE SIMILARITY LEARNING

Table 4.1: Success rates (%) and standard deviation obtained from the five
edit similarities in 1NN and linear classifications on the Pascal corpus.

Approach Success rate Linear Classifier Success rate 1-NN
Selkow 90.2 ± 1.2 90.5 ± 0.9

Selkowsto 88.6 ± 0.9 91.5 ± 0.4
Zhang-Shasha 91.9 ± 0.9 93.6 ± 0.5

KSelkow 93.1 ± 0.5 90.5 ± 0.2
KZhang�Shasha 95.0 ± 0.7 90.2 ± 1.4

of the class Cj (resp. Ck) as positive (resp. negative) data. Therefore, we
learn

�
n
2

�
(binomial coe�cient) binary classifiers, where n is the number of

classes (in our problem 20 classes and 190 binary classifiers). Each classifier
determines if a melody belongs to the class Cj or to the class Ck. Then,
we apply a majority vote strategy to decide the final classification for each
melody.

4.5.3 Results and edit cost analysis

Results are reported in Table 4.1. We can make the following remarks.

• Using a linear classifier, the similarities learned by GESL allow
significant improvements of the classification accuracy. KZhang�shasha

achieves the best overall performance (95.0%) improving the results
mentioned in (Habrard et al., 2008) for the same dataset. These
results confirm the interest to optimize with GESL a tree edit distance
(according to the goodness criterion of Definition 14) which is then
used to learn a simple linear separator in the space of the similarities
to the reasonable points.

• In the second series of experiments, we can note that the tree edit
distance Zhang � Shasha allows us to reach the best result (however,
smaller than 95.0%). Even though KSelkow and KZhang�Shasha have not
been optimized for a nearest neighbor classifier, it is worth noting that
the tree edit cost learning procedure of GESL remains competitive with
the two others.

In order to analyze the understandability of the inferred models, let us
compare the edit cost matrices learned on the one hand with GESL for both
Selkow and Zhang & Shahsha tree edit distances, and on the other hand

56

4.5. EXPERIMENTS IN MELODY RECOGNITION

0 1 2 3 4 5 6 7 8 9 10 11 − $

0

1

2

3

4

5

6

7

8

9

10

11

−

$
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(a) SEDiL (Selkow).

0 1 2 3 4 5 6 7 8 9 10 11 − $

0

1

2

3

4

5

6

7

8

9

10

11

−

$
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

(b) GESL (Selkow).

0 1 2 3 4 5 6 7 8 9 10 11 − $

0

1

2

3

4

5

6

7

8

9

10

11

−

$
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

(c) GESL (Zhang and Shasha).

Figure 4.3: Learned edit costs by GESL and SEDiL algorithms.

with SEDiL (only for Selkow, because Zhang and Shasha’s is intractable).
In order to represent graphically these matrices, they have been averaged
and normalized over the three folds. Our aim here is to see if the learned
edit costs are able to model the changes and mistakes that can be found
in the corpus. Mistakes correspond in general to note elisions, grace notes
insertions, the substitution of the intended note by another at a distance of
a semitone or a tone, and note duration and onset changes.

The matrix learned by SEDiL is shown in Fig. 4.3(a), while matrices
learned by GESL are presented in Fig. 4.3(b) and (c). We can see that in the
edit cost matrix learned with SEDiL from an EM-like algorithm, small costs
(represented by bright cells) are mainly located in the diagonal of the matrix.
This means that substitutions of a pitch by itself are favored. However, this
reduces the ability of the model to adapt to small variations caused by the
musicians. In this case, the model will prefer to delete and insert a pitch
(the last row and last column contain indeed brighter cells too) to fit the
canonical version. We claim that this does not model well the reality. Unlike
matrix (a), the edit cost matrices (b) and (c) learned with GESL allow some
distortions. We can see that the smallest costs are found not only in the
substitution of a pitch by itself (the diagonal) but also in substitution of a
pitch by a close pitch of about one or two semitones. This corresponds to
the substitution of the intended note by another at a distance of a semitone
or a tone caused by mistakes of the musicians when they played the songs.

Moreover, in both plots issued from GESL, we can identify two bright
row and column that correspond to the operation of replacing a symbol �
by the rest symbol ‘�’ ((� ! �) or (� ! �)). It is worth noting that this
perfectly models the insertions or deletions of rests by the musicians when
they want to produce some e↵ect to the melody feeling.

57

CHAPTER 4. TREE SIMILARITY LEARNING

4.5.4 Reasonable points analysis

Finally, we provide a brief analysis of the reasonable points automatically
selected by solving problem (4.6) of Section 4.3.3. Intuitively, these
representative points should be some discriminative prototypes the classifier
is based on. To make the analysis easier, we consider a restricted task where
the goal is to predict if a melody belongs to the classical music genre or if
it is a children’s song. These two styles correspond to two classes allowing
us to turn the task into a binary classification problem. The examples of
the classical genre correspond to songs belonging to the classes ‘Toccata
and fugue’, ‘Avemaria’, ‘Ode to joy’, ‘Bolero’ and ‘Lohengrin,
wedding march’ of the Pascal corpus. The children’s class is formed by the
songs coming from ‘Alouette’, ‘Oh! Susanna’, ‘Happy birthday’,
‘Twinkle twinkle little star’ and ‘Jingle bells’ classes. From
these data, we build a learning and a test sample such that there are
7 instances for each Pascal class in the test and 14 in the training set.
Therefore, each class has 35 examples in test and 70 for training. Table
4.2 shows the number of reasonable points for each class. We can see that
(beyond a high accuracy) in the classical class there are 4 reasonable points
that belong to ‘Toccata and fugue’ and 5 to ‘Lohengrin, wedding
march’. These two songs seem thus to be good representatives for that
class. In the same way, the ‘Oh! Susanna’ and ‘Happy birthday’
songs provide many (9 out of 15) discriminative prototypes for the children
class. All in all, these four songs provide about 62% (18 out of 29) of the
reasonable points while they represent only 40% of the training songs. Said
di↵erently, the predicted label of a new song will be mainly defined by its
similarity to those 4 songs.

4.6 Conclusions

In this work, we investigated a new framework for learning tree edit distances
thanks to a convex optimization problem based on the framework of GESL,
originally developed for strings. We have shown that this framework
is adequately tailored to tree edit distance allowing us to have strong
theoretical justification while having an e�cient procedure to deal with
complex distance, such as the Zhang-Shasha one, which is a clear advantage
in comparison of EM-based methods that quickly become intractable.

We experimentally showed on a music recognition task that this frame-
work is able to build very accurate classifiers improving state-of-the-art
results for this problem. This experiment was done in a multi-class setting

58

4.6. CONCLUSIONS

Table 4.2: Number of reasonable points used to learn a linear classifier
between classical and children’s music.

Song # reasonable points
Toccata and fugue 4

Avemaria 1
Ode to joy 2

Bolero 2
Lohengrin, wedding march 5

Alouette 2
Oh! Susanna 4

Happy birthday 5
Twinkle twinkle little star 2

Jingle bells 2

Success (%) 94.29

showing that GESL can also deal with this context. Moreover, we illustrated
that the produced models can be used to provide a semantic analysis of the
knowledge learned from the data.

A perspective of this work would be to study other definitions of tree edit
similarities. Indeed, GESL is based on a linear combination of the edit script
operations plugged in an exponential but we could imagine other strategies
tailored to the application at hand. Another interesting future work would be
to adapt the similarity learning procedure directly to the multi-class setting
instead of binary classification. Finally, the e�ciency of this tree edit distance
learning framework (both in terms of accuracy and running time) opens the
door to an extensive use of tree edit distance in larger-scale applications such
as natural language processing or XML data classification.

59

5
Tree Automata

Similarity computation is a di�cult issue in music information retrieval
tasks, because it tries to emulate the special ability that humans show for
pattern recognition in general, and particularly in the presence of noisy
data. A number of works have addressed the problem of what is the best
representation for symbolic music in this context. The tree representation,
using rhythm for defining the tree structure and pitch information for leaf and
node labeling has proven to be e↵ective in melodic similarity computation.
One of the main drawbacks of this approach is that the tree comparison
algorithms are of a high time complexity. In this chapter, stochastic k-
testable tree-models are applied for computing the similarity between two
melodies as a probability. The results are compared to those achieved by
tree edit distances, showing that k-testable tree-models outperform other
reference methods in both recognition rate and e�ciency.

5.1 Introduction

In this chapter, the problem of comparing symbolically encoded (e.g. MIDI or
MusicXML) musical works is addressed. For it, probabilistic k-testable tree
models (Rico-Juan et al., 2005), a generalization of the k-gram models, are
utilized. These models are easy to infer from samples and allow incremental
updates. They can be used for data categorization if a model is inferred for
each class and the new samples are assigned a probability by each model,
taking a maximum likelihood decision. These models have been used in a
number of applications, like structured data compression (Rico-Juan et al.,
2005) or information extraction from structured documents (like HTML or
XML, for example) (Kosalaa et al., 2006), but here they are applied to music
data, focusing on the aforementioned inherent structured nature.

These models build a stochastic tree automata that parses a tree from the
leaves (initial states) to its root (final states), assigning probabilities to the

61

CHAPTER 5. TREE AUTOMATA

transitions. In this process, the similarity between a melody and a reference
model is computed as a probability.

5.2 Stochastic k-testable Tree Models

Stochastic models based on k-grams predict the probability of the next
symbol in a sequence depending on the k � 1 previous symbols. They have
been extensively used in natural language modeling (Brown et al., 1990; Ney
et al., 1995), speech recognition (Jelinek, 1998), and also in some music
information retrieval tasks (Downie, 1999). From a theoretical point of view,
k-gram models can be regarded as a probabilistic extension of locally testable
languages (Zalcstein, 1972). Informally, a string language L is locally testable
if every string w can be recognized as a string in L just by looking at all the
substrings in w of length at most k, together with prefixes and su�xes of
length strictly smaller than k to check near the string boundaries. These
models are easy to learn and can be e�ciently processed (Garćıa and Vidal,
1990; Yokomori, 1995).

Locally testable languages, in the case of trees, were described by
Knuutila (Garćıa, 1993; Knuutila, 1993). In them, the concept of k-fork,
fk, plays the role of the substrings, and the k-root, rk, and k-subtrees,
sk, play the role of prefixes and su�xes. For any k > 0, every k-fork
contains a node and all its descendants lying at a depth smaller that k.
The k-root of a tree is its shallowest k-fork and the k-subtrees are all the
subtrees whose depth is smaller than k. These concepts are illustrated in
Fig. 5.1 for the tree t = a(a(a(ab))b). In this example, r

2

(t) = {a(ab)},
f

3

(t) = {a(a(a)b), a(a(ab))}, and s
2

(t) = {a(ab), a, b}.

a b

a

a b

a

a b

a

a b

a

Figure 5.1: Left: set of 3-forks in a(a(a(ab))b). Right: 2-root (in grey) and
2-subtrees (black dashed).

62

5.2. STOCHASTIC K-TESTABLE TREE MODELS

The stochastic k-testable models will be used to build models to classify
melodies represented as trees. In the next section, we specify the notation
and describe the models.

5.2.1 Trees and Tree Automata

Given an alphabet, that is, a finite set of symbols (also called labels) ⌃ =
{�

1

, · · · , �|⌃|}, we define the set T
⌃

of ⌃-trees as a Context free grammar
G = (⌃0, {T, F}, T, R) where ⌃ and the left and right brackets are included
in the alphabet ⌃0. And R is a set of transition rules of the following type:

• T �! �|�(F) 8 � 2 ⌃;

• F �! T |TF.

The depth (depth) of a tree t is defined as:

depth(t) =

(
0 if t = � 2 ⌃,

1 + maxm
j=1

{depth(tj)} if t = �(t
1

· · · tm) 2 T
⌃

� ⌃
(5.1)

and the subset of trees is

sub(t) =

(
{�} if t = � 2 ⌃,

{t} [
S

n sub(tn) if t = �(t
1

· · · tm) 2 T
⌃

� ⌃.
(5.2)

For example, the depth of the tree a(a(a(ab))b) that belongs to T{a,b} is
3 and its representation is shown in Fig. 5.1.

Finite Tree Automata

A Deterministic Finite Tree Automata (DFTA) is defined as a 4-tuple A =
(Q, ⌃, �, F), where

• Q = {q
1

, · · · , q|Q|} is a finite set of (unary) states;

• ⌃ = {�
1

, · · · , �|⌃|} is the alphabet;

• F ✓ Q is a set of final states;

• � = {�
0

, �
1

, · · · , �M} is a set of transition rules of the following type
� : ⌃⇥Qm �! Q.

63

CHAPTER 5. TREE AUTOMATA

Let us note that there is no initial state in a DFTA, but, when m = 0,
i.e. when the symbol is a constant symbol a, a transition rule is of the
form a ! q(a). Therefore, the transition rules for the constant symbols
can be considered as the initial rules, i.e. for each leaf � 2 ⌃, �

0

(�) define
an initial state. Otherwise, if t = �(t

1

, t
2

, · · · , tm) is a subtree with the
label � 2 ⌃ that expands m subtrees t

1

, t
2

, · · · , tm, the state �(t) 2 Q is
�m(�, �(t

1

), �(t
2

), · · · , �(tm)). Therefore, �(t) is recursively defined for t =
�(t

1

, t
2

, · · · , tm) as:

�(t) =

(
�
0

(�) if m = 0

�m(�, �(t
1

), �(t
2

), · · · , �(tm)) if m > 0
(5.3)

The language recognized by the automaton A is the subset T
⌃

L(A) = {t 2 T
⌃

: �(t) 2 F} (5.4)

For example, let Q = {q
1

, q
2

}, ⌃ = {a, b} and � include the transitions
�
0

(a) = q
1

, �
0

(b) = q
2

, �
2

(a, q
1

, q
2

) = q
2

y �
1

(a, q
2

) = q
1

, the result
of processing with A the tree t = a(a(a(ab))b) (Fig. 5.1) is �(t) =
�
2

(a, �(a(a(ab))), �(b)). Recursively we obtain, �(a(a(ab))) = q
1

and �(b) =
q
2

, therefore �(t) = �(a, q
1

, q
2

) = q
2

. Lastly, for practical reasons, it is usual
to consider automata in which unnecessary states are eliminated i.e. the
transitions not defined lead to an absorption state.

5.2.2 Stochastic Tree Automata

Stochastic tree automata generate a probability distribution over the trees
in T

⌃

. A stochastic DTA incorporates a probability for every transition in
the automaton, with the normalization that the probabilities of transitions
leading to the same state q 2 Q must add up to one. In other words, there is a
collection of functions P = p

0

, p
1

, p
2

, . . . , pM of the type pm : ⌃⇥Qm ! [0, 1]
such that they satisfy, for all q 2 Q,

X

�2⌃

MX

m=0

X

q
1

, · · · , qm 2 Q :
�m(�, q

1

, · · · , qm) = q

pm(�, q
1

, · · · , qm) = 1 (5.5)

In addition to this probabilities, every stochastic deterministic tree
automaton A = (Q, V, �, P, r) provides a function r : Q ! [0, 1] which,
for every q 2 Q, gives the probability that a tree satisfies �(t) = q and
replaces, in the definition of the DTA, the subset of accepting states. Then,

64

5.2. STOCHASTIC K-TESTABLE TREE MODELS

the probability of a tree t in the language generated by the stochastic DTA
A is given by the product of the probabilities of all the transitions used when
t is processed by A, times(multiplied) r(�(t)):

p(t|A) = r(�(t))⇡(t). (5.6)

with ⇡(t) recursively given by

⇡(t) =

(
p

0

(�) if m = 0

pm(�, �(t
1

), �(t
2

), · · · , �(tm))⇡(t
1

)⇡(t
2

) · · · ⇡(tm) if m > 0
(5.7)

The equations (5.6) and (5.7) define a probability distribution p(t|A)
which is consistent if

X

t2T⌃

p(t|A) = 1 (5.8)

As put forward in (Chaudhuri, 1983) and (Sánchez and Bened́ı,
1997), context free grammars whose probabilities are estimated from random
samples are always consistent. It is easy to show (Sakakibara, 1992) that
the language recognized by a DTA can be generated also with a regular tree-
grammar. In the following, the probabilities of the DTA will be extracted
from random samples and, therefore, consistency is always preserved.

5.2.3 Locally Testable Tree Languages

In this section, the k-testable tree languages and its inference methods are
defined following the ideas appeared in (Knuutila, 1993) y (Garćıa and
Vidal, 1990). For that, define the sets of k-forks, k-subtrees and k-root of
a tree is needed. These sets are generated from tree fragments are obtained
when a tree is observed through a window of k size, in other words, with a
maximum depth of k. In the case of the strings k-grams models, we have
to specify what happens at the begin and the end of each string. In the
same way, the root (k-root) and the leaves (k-subtrees) have to be processed
explicitly.

For all k > 0 and for all trees t = �(t
1

. . . tm) 2 T
⌃

. the k-root of t is a
tree in T

⌃

defined as

rk(t) =

(
�(rk�1

(t
1

), rk�1

(t
2

), · · · , rk�1

(tm)) if k > 1

� if k = 1
(5.9)

65

CHAPTER 5. TREE AUTOMATA

Note that in case m = 0, that is t = � 2 ⌃, then rk(�) = �. On the other
hand, the set fk(t) of k-forks and the set sk(t) of k-subtrees are defined as
follows:

fk(t) =
m[

j=1

fk(tj)
[
(

rk(t) if depth(t) � k � 1

; in other case
(5.10)

sk(t) =
m[

j=1

sk(tj)
[
(

t if depth(t)  k � 1

; in other case
(5.11)

In the particular case t = � 2 ⌃, then sk(t) = f
1

(t) = � y fk(t) = ; for all
k > 1. For instance, if t = a(a(a(ab))b) then one gets r

2

(t) = {a(ab)}, f
3

(t) =
{a(a(a)b), a(a(ab))}, and s

2

(t) = {a(ab), a, b}. Note that these definitions
coincide with those in (Knuutila, 1993)except for the meaning of k.

A tree language T is an strictly k-testable language (with k � 2) if there
exist finite subsets R, F , S ✓ T

⌃

such that

t 2 T , rk�1

(t) ✓ R ^ fk(t) ✓ F ^ sk�1

(t) ✓ S. (5.12)

Equation (5.12) show that to identify a k-testable tree language T , three
sets of the tree have to be identify for each tree: the root, the forks with depth
k and the subtrees with depth less than or equal to k � 1. The example in
figure Fig. 5.1, if t belongs to the T language, R have to include a(ab), F
have to include a(a(a)b) and a(a(ab)) and S have to include a(ab), a and b.

In such a case, it is straightforward (Garćıa, 1993; Knuutila, 1993) to
build a DTA A = (Q, ⌃, �, F) that recognizes T . For this purpose, it su�ces:

Q = R [rk�1

(F) [S;
F = R;
�m(�, t

1

, · · · , tm) = �(t
1

, · · · , tm)8�(t
1

, · · · , tm) 2 S;
�m(�, t

1

, · · · , tm) = rk�1

(�(t
1

, · · · , tm))8�(t
1

, · · · , tm) 2 F ;

(5.13)

If one assumes that the tree language L is k-testable, the DTA recognizing
L can be identified from positive samples (Garćıa, 1993; Knuutila, 1993),
that is, from sets made of examples of trees in the language. Given a positive
sample ⌦, the procedure to obtain the DTA essentially builds the automaton
A using rk�1

(⌦), fk(⌦) y sk�1

(⌦) instead of R, F and S respectively in the
above definitions for Q, F y � in equation 5.13.

For example, given the tree t = a(a(a(ab))b) , r
2

(t), f
3

(t) and s
2

(t) pro-
cessed previously in Fig. 5.1, as r

2

(f
3

(t)) = {a(ab), a(a)}, the corresponding
DTA will be:

66

5.2. STOCHASTIC K-TESTABLE TREE MODELS

Q = {a(ab), a(a), a, b};
F = {a(ab)};
�
0

(a) = a;
�
0

(b) = b;
�
2

(a, a, b) = a(ab);
�
2

(a, a(a), b) = a(ab);
�
1

(a, a(ab)) = a(a);

(5.14)

In this way, the tree t is recognized by the DTA, i.e., t 2 L(A).
Throughout this work we will use the name of the rules to refer to the

trees which define transitions in the automata. In other words, each tree t
that belongs fk(⌦)

S
sk�1

(⌦) will be a rule and the trees rk�1

(t) 2 Q which
generate the rules will be the states. In the previous example, the states are
{a(ab), a(a), a, b} and the rules {a, b, a(ab), a(a(a)b), a(a(ab))} associated to
the states are {a, b, a(ab), a(ab), a(a)}.

Estimating Transition Probabilities

A stochastic sample ⌦ = {⌧
1

, ⌧
2

, · · · , ⌧|S|} consists of a sequence of trees
generated according to a given probability distribution. If our model is a
stochastic DTA, the distribution is p(t|A) as given by equations (5.6) y (5.7).
Again, the assumption that the underlying transition scheme (that is, the
states Q and the collection of transition functions �) correspond to a k-
testable allows one to infer a stochastic DTA from a sample in a simple way.

For this purpose, one should note that the likelihood of the stochastic
sample ⌦ is given by

nY

i=1

p(⌧i|A) (5.15)

is maximized (Ney et al., 1995) if the automaton A assigns to every tree ⌧
in the sample a probability equal to the relative frequency of ⌧ in ⌦. In other
words, every transition in � is assigned a probability which coincides with
the relative number of times the rule is used when the trees in the sample
are parsed. Summarizing, given a stochastic sample ⌦ = {⌧

1

, ⌧
2

, · · · , ⌧|S|},
the set of states is

Q = rk�1

(⌦)
[

rk�1

(fk(⌦))
[

sk�1

(⌦); (5.16)

the subset of accepting states is

F = rk�1

(⌦); (5.17)

67

CHAPTER 5. TREE AUTOMATA

the probabilities r(t) are estimated from ⌦ as

r(t) =
1

|⌦|C
[k�1]

r (t, ⌦), (5.18)

where

C [k�1]

r (t, ⌦) =
|⌦|X

i=1

C [k�1]

r (t, ⌧i)

and

C [k�1]

r (t, ⌧) =

(
1 si rk�1

(⌧) = t

0 en othecase

and, finally, the transition probabilities P are estimated as

pm(�, t
1

, · · · , tm) =
C [k](�(t

1

, · · · , tm), ⌦)
P|⌦|

i=1

C [k�1](rk�1

(�(t
1

, · · · , tm)), ⌦)
(5.19)

where

C [k�1](t, ⌦) =
|⌦|X

i=1

C [k�1](t, ⌧i)

and C [k�1](t, ⌧) counts the number of k-forks or (k � 1)-subtrees to t in
⌧ .

It is useful to store the above probabilities r and p as the quotient of two
terms, as given by equations (5.18) y (5.19). In this way, if a new sample
⌦0 is provided, the automaton A can be easily updated to account for the
additional information. For this incremental update, it su�ces to increment
each term in the equations with the sums obtained for the new sample.

Approximating Stochastic DTA by k-testable Automata

From the construction, it is obvious that all stochastic k-testable languages
can be generated by a stochastic DTA. However, as it is also the case with
strings languages (Stolcke and Segal, 1994), the reciprocal is not always true.
The best approximate k-testable model can be obtained in the following way,
based upon the results in (Calera-rubio and Carrasco, 1998). Assume that we
are given a stochastic DTA A = (Q, ⌃, �, P, r). For any value of k, we obtain
a k-testable stochastic DTA A0 = (Q0, ⌃0, �0, P 0, r0) whose probabilities are
given by

68

5.3. CLASSIFICATION

r0(j) =
X

i2Q

r(i)⌘ij (5.20)

for all j 2 Q0 and

p0m(�, j
1

, · · · , jm) =

P
i1,··· ,i

m

2Q C�(�,i1,··· ,i
m

)

pm(�, i
1

, · · · , im)⌘ijP
i2Q Ci

(5.21)

where Ci is the expected number of nodes of type i in a tree and ⌘ij

represents the probability that a node i expands as a subtree t such that
rk�1

(t) = j. All these coe�cients can be easily computed (Calera-rubio and
Carrasco, 1998) using iterative procedures. In particular, Ci is given by

C [n+1]

i = r(i) +
X

j2Q

⇤ijC
[n]

j (5.22)

with C [0]

i = 0 and

⇤ij =
MX

m=1

X

�2⌃

X

j
1

, · · · , jm 2 Q :
�m(�, j

1

, · · · , jm) = j

pm(�, j
1

, · · · , jm)(�ij1 + · · · + �ij
m

)

(5.23)

The coe�cients ⌘[n]

ij are computed as

⌘[n+1]

ij =
PM

m=0

P
�2⌃

P
i
1

, · · · , im 2 Q :
�m(�, i

1

, · · · , im) = iP
j
1

, · · · , jm 2 Q0 :
�0m(�, j

1

, · · · , jm) = j

pm(�, i
1

, · · · , im)(⌘[n]

i1j1
+ · · · + ⌘[n]

i
m

j
m

)

(5.24)

starting with ⌘[0]

ij = 0 (note that the terms with m = 0 do not necessarily
be null). Obviously, the cross entropy between the exact model A and the
approximate one A0 can also be computed following the method described in
(Calera-rubio and Carrasco, 1998).

5.3 Classification

In a stochastic classification task, a sample is assigned to the class that
maximizes the probability of generating it. For a new tree to be classified in

69

CHAPTER 5. TREE AUTOMATA

a particular class of trees, we need to infer a PDTA for each class, Cj, from
well classified trees.

5.3.1 Introduction

The general approach to classify a new sample represented as a tree consists
in the inference of a DTA for each class from well classified samples. Thus, a
new sample is classified in the class that maximizes the likelihood of the new
sample for each class (Duda and Hart, 1973). For that, when the DTA is
inferred, the conditional probability of a new tree is computed as the product
of the probabilities for each transition used to parse the tree.

The problem occurs when the metric associated to the new tree do not
have su�ce information. How we said above, the conditional probability is
calculated multiplying the probabilities of the transitions used to parse the
tree. Suppose that some of these transitions of the tree is not in the PDTA
that is processing the new tree. In this case, the probability assigned to the
new tree by the model is zero even when only one of the transitions are not
in the automaton and the others are. In that way, although the model was
the more indicated (without the null transition), the winner class pass to be
another because of the model will be a null probability.

A worse case occurs when we try to classify a new tree and this has
some unseen transition in each model. In this case, all models will be a null
probability and the assignation of a winner class will be random and not
reliable. To avoid these cases is needed to smooth the models in order to do
not assign null probabilities when unseen transitions appear. Next section
we describe some smoothing methods for the tree case.

5.3.2 Smoothing Methods

Model Interpolation

The inference approach described previously allow to obtain di↵erent stochas-
tic models M [k], one for each value of k from 2 to K. Intuitively, a model
with a big k is more probable that assigns a null probability to a new tree
due to a lot of parameters could not be estimated from the sample. Actually,
a 2-testable model could predict a null probability in some cases.

Two classical smoothing techniques are linear interpolation and backing-
o↵ (Ney et al., 1995). Smoothing through linear interpolation is performed by
computing the probability of events as a weighted average of the probabilities
given by di↵erent model sizes. The probability is calculated as a linear

70

5.3. CLASSIFICATION

combination of each models (with fixed coe�cients), even the base model,
M [1], which never assign null probabilities.

If the probability of a tree is calculated as a linear combination of each
models:

p(⌧ |A) =
KX

k=1

↵kp(⌧ |M [k]) (5.25)

with the restriction
PK

k=1

↵k = 1, we are sure, if ↵
1

> 0, that p(⌧ |A) > 0
for every tree ⌧ .

Therefore, it is important to have a base model M
[1]

that never assign
null probabilities in other case the interpolation will assign null probabilities
in unseen transitions.

But if the higher k models return a zero probability, the target tree will be
classified only with the more general and more ambiguous model discarding
the entire, more specific, k-sized model. This fact harms the classification
precision.

Due to the nature of the data and the tests carried out, the interpolation
approach was rejected from the beginning since the di↵erent models provided
null probabilities in about the totality of de sample so that the use of this
approach have been similar to the use of a unique base model M [1].

Tree languages multilevel smoothing (Backing-o↵)

Backing-o↵ methods have been extensively studied for string models (Ney
et al., 1995). The underlying idea is to discount some probability mass to
the seen events and distribute it among the unseen events. For it, models
with 1  k  K are needed (K is the more specific model). The smaller
the k value, the more general the model is. The aim is always to compute
the probability of a transition with the K model. If it does not have the
needed transition then the k � 1 model is utilized. If necessary, this process
is repeated until the k = 1 model is used. This is a base model that never
assigns null probabilities and therefore is able to recognize any tree through
its component nodes. Note this approach is a transition-based backing-
o↵ that calculate the probability of a transition with the more specific
model possible. Thus solve the existing problem in a model-based backing-o↵
approach when a single unseen transition can cause the model k returns a
zero probability even if the rest of transitions have been seen.

Following an standard approach, the back-o↵ schema uses a probability
distribution pA with another more general, pB as follows:

71

CHAPTER 5. TREE AUTOMATA

p(x) =

⇢
pA(x)(1� �(x)) if pA > 0 ,
⇤

F
pB(x) other case.

(5.26)

The pA distribution is decreased with a discount function � such that
0 < �(x) < 1 and yield the discount term

⇤ =
X

x:p
A

(x)>0

�(x)pA(x) (5.27)

which will be distributed in all the unseen events. The factor F is needed
to keep the normalization:

F =
X

x:p
A

(x)=0

pB(x) (5.28)

In our case, as explained in Section 3.3, a melody is formed by a given
number of bars and each bar is represented by a tree (see Fig. 3.3). Therefore
we are able to compute the probability of each bar tree to belong to a
particular class by parsing it with the PDTA of that class. If we compute
the probability of each bar to belong to a class, those probabilities can be
combined to give a likelihood for the whole song, l(M |Cj), and this procedure
can be performed for all the classes. For the combination of bar probabilities
three di↵erent strategies have been used that are explained below.

A melody M is represented as a forest �(t
1

, t
2

, ..., t|M |) which have a
common root � and a number of trees, |M |, equal to the number of bars in
the melody. Based on the equations (5.6) and (5.7), the probability, adapted
to the k-testable languages, of a melody M in the model A[k] can be defined
as:

p(M |A[k]) = ⇢[k](rk�1

(M))
|M |Y

i=1

⇡[k](ti) (5.29)

where each tree corresponding to the di↵erent bars is t = �(t
1

, t
2

, ..., tm)
and ⇡[k](t) is recursively defined as

⇡[k](t) =

(
p[k]

0

(�) if m = 0

p[k]

m (�, rk�1

(t
1

), rk�1

(t
2

), · · · , rk�1

(tm))
Q|m|

i=1

⇡[k](ti) if m > 0
(5.30)

Following, the base model k = 1, which can be recognize any tree, is
defined. This model defines two probability distributions, the first for the

72

5.3. CLASSIFICATION

number of children m of a node labelled as � , p[1]

� (m), and the second, for

the label p[1](�). In the first case p[1]

� (m) is defined as

p[1]

� (m) =

8
><

>:

E
�

(m)

C[1]
(�)

(1� �[1]

� (m)) if E�(m) > 0 ,
⇤

[1]
�

F
[1]
�

P�(m) if E�(m) = 0 ^ C [1](�) > 0 ,

P (m) other case.

(5.31)

where E�(m) is the number of times the label � appears with m children. In
our case, the tree aridity is bounded, each tree only can have m = 0, 2, or 3
children. C [1](�) is is the number of times the label � appears in the training

sample. �[1]

� is a discount function which is strictly positive and generates,
for each �, a global discount factor.

⇤[1]

� =
1

C [1](�)

X

m

E�(m)�[1]

� (m), (5.32)

which is normalized as

F [1]

� = 1�
X

n:E
�

(n)>0

P�(n). (5.33)

P�(m) is the priori probability that a label � appear with m descendants.
This probability can not be zero. For that, it is considered that each di↵erent
label has been seen one time at least with 0, 2 or 3 children. P (m) is the
priori probability of the nodes with m children.

These probabilities are used here to calculate the base model k = 1 instead
the Poisson distributions used in (Rico-Juan et al., 2005) because in this work
the aridity is bounded.

Secondly, the probability p[1](�) of a node is labelled with � without any
context is defined:

p[1](�) =

(
C[1]

(�)

N
(1� �[1](�)) if C [1](�) > 0 ,

⇤

[1]

F [1] other case
(5.34)

where �[1](�) is a function strictly positive, N =
P

a C [1](a) is the number
of nodes in the sample, F [1] is the normalization factor calculated as the
number of di↵erent symbols in the alphabet which do not have been found
in the training sample and

⇤[1] =
1

N

X

a

C [1](a)�[1](a). (5.35)

73

CHAPTER 5. TREE AUTOMATA

Should be consider that if all symbols of de alphabet have been found
in the training sample, this discount factor is not needed and then, the
calculation of the probabilities will be done as follows

p[1](�) =
C [1](�)

N
(5.36)

Whit these ingredients, we are ready to define the schema Backing-o↵ for
the basic probabilities with k = 2. Given the tree t = �(a

1

...am), is processed
as follows:

p[2]

m (�, a
1

, ..., am) =

8
>><

>>:

C[2]
(t)

C[1]
(�)

(1� �[2](t)) if C [2](t) > 0 ,
⇤

[2]
(�)

F [2]
(�)

p[1]

� (m)⇥
Qm

i=1

p[1](ai) if C [2](t) = 0 ^ C [1](�) > 0 ,

p[1]

� (m)⇥
Qm

i=1

p[1](ai) other case
(5.37)

where

⇤[2](�) =
X

u:C[2]
(u)>0^r1(u)=�

C [2](u)

C [1](�)
�[2](u) (5.38)

and the normalization factor is

F [2](�) = 1� p[1]

� �
X

m>0:E
�

(m)>0

p[1]

� (m)⇥
X

a
1

, ..., am :
C [2](�(a

1

...am)) > 0

mY

i=1

p[1](ai).

(5.39)

For the case k > 2, p[k]

0

(�) = 1.

Para el caso k > 2, p[k]

0

(�) = 1. However, the probabilities of the type p[k]

m

with m > 0, given t = �(t
1

, · · · , tm) with ti = ai(si1...sim
i

) are defined as

p[k]

m (�, t
1

, ..., tm) =8
>>><

>>>:

C[k]
(t)

C[k�1]
(r

k�1(t))
⇥ (1� �[k](t)) if C [k](t) > 0 ,

⇤

[k]
(r

k�1(t))

F [k]
(r

k�1(t))
⇥
Qm

i=1

p[k�1]

m
i

(ai, si1, ..., sim
i

)
if C [k](t) = 0 ^
C [k�1](rk�1

(t)) > 0 ,Qm
i=1

p[k�1]

m
i

(ai, si1, ..., sim
i

) other case
(5.40)

where

74

5.3. CLASSIFICATION

⇤[k](t) =
1

C [k�1](t)

X

u:C[k]
(u)>0^r

k�1(u)=t

C [k](u)�[k](u) (5.41)

and the normalization factor is

F [k](�(t
1

...tm)) = 1�
X

u1, ..., um :

C [k](�(u1...um)) > 0 ^ rk�2(ui) = ti

mY

i=1

p[k�1]

m
i

(ai, vi1, ..., vim
i

).

(5.42)

Note that p[k]

0

= 1 8t.
The third case in equations (5.37) and (5.40) was not taken into account

in theoretical work realized by Rico and coworkers (Rico-Juan et al., 2005)
because, when was applied to the natural language processing, the coverage
of de model k � 1 was complete. This is not the case of de musical data,
due to the specific features and the size of the sample used. Therefore, for
the case where the model k � 1 do not have been saw a transition a similar
schema of n-grams used in (Katz, 1987) is applied.

Finally, the root probabilities ⇢[k] have to be defined. A melody M is
represented as a forest �(t

1

, t
2

, ..., t|M |) which have a common root and a
number of trees, |M |, equal to the number of bars in the melody. Each tree
represent the notes in a bar (see Fig. 3.3). Therefore, the number of children
of the common root is not bounded in the same way a melody can have an
infinite number of bars.

To carry out the calculus of ⇢[k] we only consider the roots of the model
k = 2. In this way only a root label of the forests is used. This arrangement is
considered to avoid that the probability of a given melody belongs to a class
being dependent of the number of bars that the melody have (its length). In
the case of we need use roots with a great k, in other kind of applications,
we have to use Poisson estimators due to the number of children of the root
is not bounded. Therefore, ⇢[2](�) is defined as:

⇢[2](�) =

(
D[2]

(�)

|⌦| (1� ✓[2](�)) if D[2](�) > 0 ,
⇥

[2]

G[2]p
[1]

� (0) other case
(5.43)

✓[2](�) are strictly positive functions. The discount factor ⇥2 is

⇥[2] =
1

|⌦|
X

a:D[2]
(a)>0

D[2](a)✓[2](a) (5.44)

75

CHAPTER 5. TREE AUTOMATA

and its corresponding normalization

G[2] = 1�
X

a:D[2]
(a)>0

p[1](a). (5.45)

D[2](�) is the number of times that the label � appear as a root. In the
same way that happens in equation (5.36), if every labels have found as roots
in the training set, the same procedure is carried out.

Backing-o↵ uses a discount parameter �[k](t) for transitions probability
and other ✓[k](t) for the roots probability (accepting state) of the tree. To esti-
mate these parameters we use the Good-Turing Frequency Estimation (Gale,
1994).

When the probabilities have been estimated with the inferred models for
each class A[k]

C
j

, a melody M is classified in the class Ĉ that maximizes the
probability

Ĉ = arg max
j

l(M |A[k]

C
j

) (5.46)

where l(M |A[k]

C
j

) is processed in the same way that inequality (5.29).

Bar Strategies

Once the PDTAs for the di↵erent classes have been inferred and the
probabilities estimated, a melody M is classified in the class Ĉ that
maximizes the likelihood of the melody for each class

Ĉ = arg max
j

l(M |Cj) (5.47)

that needs to be computed as described next.
As explained in Section 3.3, a melody is formed by a given number of bars

and each bar is represented by a tree (see Fig. 3.3). Therefore we are able
to compute the probability of each bar tree to belong to a particular class
by parsing it with the PDTA of that class. If we compute the probability of
each bar to belong to a class, those probabilities can be combined to give a
likelihood for the whole song, l(M |Cj), and this procedure can be performed
for all the classes. For the combination of bar probabilities three di↵erent
strategies have been used that are explained below.

In a first strategy called voting, a vote for each bar tree of the melody is
given to the class whose probability is the highest for that tree. Thus, using
this strategy to determine the class of the whole melody, the winning class
will receive a greater number of votes. Then the likelihood can be computed
as

76

5.3. CLASSIFICATION

l(M |Cj) =
|M |X

i=1

l(ti|Cj) (5.48)

where

l(ti|Cj) =

⇢
1 if Cj = Ck, Ĉ = arg maxk p(ti|Ck)
0 if Cj 6= Ck, Ĉ = arg maxk p(ti|Ck)

(5.49)

The second strategy (called arithmetic) to determine the most likely class
for a melody is to calculate the arithmetic mean of the probabilities for all
the bars that make up the melody. For that, the probabilities of all the bars
for a particular class are summed up.

l(M |Cj) =
|M |X

i=1

p(ti|Cj) (5.50)

Next, the result should be divided by the number of bars |M | in the melody,
but this operation is not needed for the classification because, given a
particular melody problem, |M | is the same for all classes. One drawback
of this approach is that the average is sensitive to outliers. A third possible
option (called geometric) is compute the geometric mean. The geometric
mean is less sensitive to outliers than the arithmetic one. To compute it we
only have to multiply all the probabilities.

l(M |Cj) =
|M |Y

i=1

p(ti|Cj) (5.51)

The |M |-th root of the resulting product is not needed for classification due
to the same reasons above.

Eventually, we incorporate the probability that the root � of the forest
belongs to the class. This probability is calculated as the relative frequency
of � appears in the root of the forest in training set.

Dynamic time model

In the classification model described above, each bar is parsed independently
and no temporal constrains are applied. Therefore, the di↵erent bars of a
melody could be shu✏ed and the system would attribute the same likelihood
to the resulting melody. In order to avoid this situation, a time model is
introduced. For that, we use a k-gram framework applied to the roots of the
bar parsing trees, in such a way that we only need the conditional probability

77

CHAPTER 5. TREE AUTOMATA

of the i-th bar (represented by the (k�1)-root, which is the accepting state of
its parsing), given the (i� 1)-th bar (k� 1)-root, i.e. p(�(ti)|�(ti�1

), Cj) (see
Fig. 5.2). These probabilities are also conditioned by the di↵erent classes, Cj,
introducing this way more discrimination power. Note that these roots are
summarizing the melodic information in each bar, so the di↵erent variations
are somehow hidden by this coarse-level descriptor.

t
1

t
|M|

t
2

t
3

σ

! ! !" ! " "# $
4
4 ! ! % !&! !&"' ! !" % " % ("% ! ! ! %!
δ(t1) δ(t2) δ(t3)

Figure 5.2: Representation of a |M |-bar melody with the temporal model
depicted.

Using this information, the equations (5.49), (5.50), and (5.51) are
modified, substituting a new p0(ti|Cj) for p(ti|Cj) that is computed as

p0(ti|Cj) = p(�(ti)|�(ti�1

), Cj) · p(ti|Cj) (5.52)

5.4 Results

In our experiments, we have tried to identify a target melody using a set
of di↵erent variations played by musicians for training the models for the
di↵erent classes. We have tested our methodology using three di↵erent
corpora.

The first corpus, named Pascal database consisting of a set of 420
monophonic 8-12 bar incipits of 20 worldwide well known tunes of di↵erent
musical genres (see 3.4.1 for details).

Two other corpora (Essen-Kinder and Essen-Lied) have been used for
testing the proposed method in order to test its performance on other kind
of variations automatically generated (see 3.4.2 for details).

Di↵erent values for the maximum value of the model size, K = {2, 3, 4},
were utilized. Note that K is the largest (more specific) model used. This
means that when K = 2, both k = 2 and k = 1 models are used; when
K = 3, the models k = 3, k = 2, and k = 1 are used. They are combined
with a transition-based backing-o↵ scheme, as explained in Section 5.3.2.
Also, the values for the discount parameters where established heuristically:

78

5.4. RESULTS

for the tree roots, ✓[k](t) = 5 ·10�7 for all models and trees, and for the rules,
�[k](t) = 0.35 for all the models and trees.

A 3-fold cross-validation scheme was carried out to perform the experi-
ments, where 2/3 of the databases were used for training and 1/3 for test,
obtaining average success rates and dispersions.

In Table 5.1 the results using the di↵erent approaches for combining the
probabilities assigned to each bar explained in Section 5.3 are shown. In the
first part (top) of the table, the results of the three approaches using only the
probabilities of transitions are presented. Note that the results of votes and
arithmetic mean approaches are much worse than using the geometric mean.
These results are explained because the geometric mean is less sensitive to
outliers, so variations that may have introduced exotic values when parsing
a particular bar are filtered out more e↵ectively. Thus, if most of the bars of
the melody have a high probability for a given class, the melody is assigned
to that class, although a few bars might have a very low probability.

Table 5.1: Success rates (%) with the di↵erent approaches used using Pascal
corpus.

Approach K = 2 K = 3 K = 4

Votes 47 ± 3 53 ± 4 48 ± 2
Arithmetic 38 ± 2 43 ± 2 40.7 ± 0.8
Geometric 84.3 ± 0.8 90.7 ± 0.8 81 ± 2

with tree roots
Votes 52 ± 1 65 ± 2 72 ± 1

Arithmetic 41.2 ± 0.3 56 ± 2 64 ± 1
Geometric 86.5 ± 0.2 92.65 ± 0.03 93.1 ± 0.9

with forest root
Arithmetic 54 ± 3 67 ± 3 71 ± 3
Geometric 88.2 ± 0.4 92.6 ± 0.4 94 ± 1

Time Model 91.9 ± 0.3 95.1 ± 0.2 96.1 ± 0.6

In the middle part of the table, the results adding the probabilities of
the bar tree roots are presented. In this occasion, note how the use of this
probability improves the success rates, especially when K is high. This is
because for high K values the model is more specific and gives a much higher
probability to the roots that have been seen during the training phase. This
property is possible due to the use of a transition-based backing-o↵, because
using a model-based backing-o↵, the more specific models would have zero

79

CHAPTER 5. TREE AUTOMATA

probability and the classification would be based solely on the k = 1 or
k = 2 models.

At the bottom part of the table, the results incorporating the probability
of the forest root are shown. Note that this strategy does not improve
performance significantly with respect to the use of the bar tree roots. Note
that in this situation, the voting approach has no sense.

The last line in table 5.1 (Time Model) shows the results using the
temporal information. Note how using this information the results have
improved significantly. These results point to the importance of the temporal
information in the model.

In Table. 5.2 the results using the proposed maximum likelihood technique
have been compared to those obtained for the same data and conditions
tested in (Habrard et al., 2008), where for each target melody, classical tree
edit distances (Selkow, 1977) to all the prototypes were computed and the
nearest neighbor rule was applied. The edit distance was computed with
insertion, deletion, and substitution costs set to 1.

Note that stochastic k-testable methods significantly improved for all K
the results of the classical tree edit distance.

Table 5.2: Success rates (%) and comparison with the tree edit distance
(Pascal) using the heuristically established parameter values.

Tree edit dist. K = 2 K = 3 K = 4
Without time model

82.0 ± 0.2
88.2 ± 0.4 92.6 ± 0.4 94 ± 1

Using time model 91.9 ± 0.3 95.1 ± 0.2 96.1 ± 0.6

In the Table. 5.3 the results using the Good-Turing method for estimating
the discount parameters for the proposed scheme is compared to the results of
the stochastic tree edit distance method used in (Habrard et al., 2008). The
estimation with Good-Turing improved the success rate of the stochastic tree
edit distance in all cases but for K = 2 without using the time model although
they were not better than those obtained with the heuristic estimation.

Fig. 5.3 shows the success rates taking into account the first n most
probable classes for di↵erent values of K. Note that, with the first 3 classes,
the success rates reach around 97 % with all K values. Therefore, we can
say that the correct song was usually among the first solutions. Note that,
in the case where we took only the first class of the ranking, the K = 2
model worked worse than the others, because it is a more general model and
it can not di↵erentiate properly between the first two classes (this e↵ect can
be seen also in tables 5.1, 5.2, and 5.3).

80

5.4. RESULTS

Table 5.3: Success rates (%) and comparison with the stochastic edit distance
(Pascal) using Good-Turing estimation for parameter values.

Stochastic K = 2 K = 3 K = 4
Without time model

90.7 ± 0.6
85.8 ± 0.9 92.9 ± 0.4 91 ± 1

Using time model 91.9 ± 0.2 94.6 ± 0.9 94.4 ± 0.9

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20

P
re

c
is

io
n
 a

t
n

n

K=2 K=3 K=4

Figure 5.3: Success rates as a function of the number of classes retrieved as
the most probable ones (Pascal).

In Fig. 5.4 the evolution of the success rate for the K = 3 model is
displayed with respect to the number of samples used for training (the other
models obtained similar results). As shown in the graph, it took only about
3 or 4 training samples to get an acceptable success rate (between 85 and 90
%). This shows that the system would be feasible even if very few training
data were available. This is a very common situation in music information
retrieval tasks, where the amount of labelled data use to be very limited.

Table 5.4 shows the success rate for the Essen-Kinder and Essen-Lied
corpora, using our approach and compared to the tree edit distance approach.
In this comparison, only the results using the time model have been displayed,
after checking that indeed, it outperformed the rest of approaches. This
experiment has been performed under a query against database approach, so
no deviations are provided. Note the clear improvement, especially for the
Essen-Lied corpus.

81

CHAPTER 5. TREE AUTOMATA

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20

P
re

c
is

io
n
 a

t
n

n

K=3

Figure 5.4: Success rates for K = 3 model as a function of the number of
training samples (Pascal).

Table 5.4: Success rates (%) using the time model approach and comparison
with tree edit distance for Essen-Kinder and Essen-Lied corpus.

Tree edit dist. K = 2 K = 3 K = 4
Essen-Kinder 90.0 89.9 97.3 99.7
Essen-Lied 59.0 96.3 100 100

5.5 Conclusions

In this work, we applied stochastic k-testable tree-models showing that they
are suitable for the classification of tree-represented music data. Our goal was
to identify a melody from a set of di↵erent variations. The results overcame
those previously obtained using tree edit distances for the same corpora.

Based on the results we can say that the classification is improved when
taking into account all the bars of the melody rather than using them
separately. We can therefore say that stochastic k-testable tree models
somehow capture the structure of the melody, so that this structure could be
used to improve the melody classification.

Another important point here is e�ciency and the scalability of the
approach. It is remarkable that the classical tree edit distance has a high
complexity, O(mAmB max{hA, hB}), where mi are the maximum arities

82

5.5. CONCLUSIONS

of the two trees, and hi their heights, which in practice is actually
O(|MA||MB| max{hA, hB}). This must be multiplied by the complexity
(quadratic) of the nearest neighbour method implemented to perform the
classification, so if n = |⌃| the total complexity is O(n2|MA||MB| max{hA, hB}).
On the other hand, the proposed method has been shown (Garćıa, 1993) to
run in O(|M |k�1n log n) time and the classification is performed in linear
time with |t|, once k is fixed.

We are persuaded that the promising results obtained can be improved
by adjusting some parameters not studied yet, like using di↵erent and more
sophisticated discount methods. In addition, stochastic k-testable tree-
models can be updated with new samples and do not require too many
training samples to get an acceptable success rate as seen in the results.

Also other music categorization problems like genre or style classification,
and other challenges like representing long-term dependencies in melodies will
be explored in the future.

83

6
Tree grammars

In this chapter we propose a solution when we have melodies represented by
trees for the training but the duration information is not available for the
input data. For that, we infer a probabilistic context-free grammar using
the information in the trees (duration and pitch) and classify new melodies
represented as a string of pitches. We aim to identify a snippet query of
pitches among a set of songs stored in symbolic format.

6.1 Introduction

Humans are very good at recognizing previously known patterns, even if our
perceived inputs are distorted, they are presented just partially, or in the
presence of noisy data. This is often the situation in music comparison. Two
issues are concerned to this problem: the similarity computation and the
representation structure.

In Chapter 5 we used grammatical inference techniques to learn a tree
language. Then, the probability of a tree (melody) to belong to a language
(melody class) can be computed and used to classify it, taking a maximum
likelihood decision among the languages (classes) learnt. To learn a language
from trees, probabilistic k-testable tree models (Knuutila, 1993) were used.
These models are a generalization of the k-gram models commonly used for
strings. They have been used in a number of applications, like structured
data compression (Rico-Juan et al., 2005) or information extraction from
structured documents (like HTML or XML, for example) (Kosalaa et al.,
2006).

However, probabilistic k-testable tree models have a limitation. They
only can accept tree data as input and therefore they do not work in situations
where a tree can not be built. This is the case when, even if we have trees
in the database for training, queries are just a sequence of pitches, so the
duration information is not available.

85

CHAPTER 6. TREE GRAMMARS

In this chapter, a solution to this problem is proposed. We infer a
probabilistic context-free grammar using the trees (duration and pitch) in
the training set and classify a query melody represented by pitch strings by
using probabilistic context-free grammars (tree grammars (Verdu-Mas et al.,
2005)) obtained from the probabilistic k-testable tree models (see Section 5).
This way, the tree structure representing rhythm is captured by the grammar
in the training phase and used in the string parsing.

Symbolic music retrieval from queries has been extensively studied in the
MIR literature. In order to search a query in a dataset of songs, we can apply
any of the well-known pattern matching algorithms, like local string editing
to each of the songs in the dataset, and retrieve a ranking of most similar
items. The main problem here is the e�ciency when using large datasets, but
with the advantage that it can find a partial or approximate occurrence of the
query in any part of the dataset. On the other hand, a previous indexation of
the dataset, e.g by means of motive extraction, solves the scalability issue, but
motive extraction usually needs to work with exact repetitions, making very
inaccurate to build robust indices from di↵erent interpretations of the same
song. In addition, when searching only in motives, the music not present in
the motives is hidden.

Our proposal is able to solve intrinsically these problems. The probabilis-
tic grammar structure itself encodes both motives and melody variations,
giving more weight to the most repeated themes, without the need to be
exact, and enabling the possibility to learn from di↵erent renderings of the
same song, leaving aside the need to encode motives. Besides, there is no
di↵erence between looking for a whole song or searching a small query in the
dataset.

6.2 Probabilistic Context-Free Grammars

Probabilistic Context-Free Grammars (PCFGs) are statistical models based
on context-free grammars, which are a well known type of formal grammars
in formal language theory. The main attractive feature of PCFGs is that
they describe probability distributions on strings and more importantly on
tree structures of the same strings. This makes them suitable for structured
prediction in a variety of areas where tree-like structures on strings have some
meaning.

In this section, we formally define CFGs (Section 6.2.1) and PCFGs
(Section 6.2.2). We also describe the used algorithms (Section 6.2.3) related
to PCFGs that allow to:

• Checking if a particular string is generated by a given PCFG

86

6.2. PROBABILISTIC CONTEXT-FREE GRAMMARS

• Computing the probability assigned by a PCFG to a string

• Finding the most probable parse tree for a string

• Computing the prefix probability of a string

6.2.1 Definitions

Defining Context-Free Grammars

A context-free grammar (CFG) is a tuple hN, ⌃, R, Ii, where N is a set of
non-terminal symbols, ⌃ is a set of terminal symbols (where N \ ⌃ = ;),
R ✓ N ⇥ (N [⌃)⇤ is a set of production rules and I ✓ N is a set
of starting non-terminals. Unless otherwise specified, we use a, b, c, d for
symbols in ⌃, other lower-case Roman letters for strings in ⌃⇤, capital
Roman letters for non-terminals (apart from G which will normally be
used to denote a CFG), S for any starting non-terminal and Greek letters
for strings in (N [⌃)⇤. A production rule (A, ↵) of a CFG is written
as A ! ↵, where A is the left-hand side (LHS) of the rule and ↵
is the right-hand side (RHS). Multiple production rules with the same
RHS: A ! ↵

1

, A ! ↵
2

, · · · , A ! ↵n, can be written as follows: A !
↵

1

|↵
2

| · · · |↵n. Usually, only the production rules of a CFG are written and
the non-terminals, terminals and starting non-terminals are induced from
the rules themselves according to the notation defined above. For example,
the CFG hN, ⌃, R, Ii where N = {S

1

, S
2

, C, D}, ⌃ = {a, b, c, d}, R =
{(S

1

, aS
1

b), (S
1

, ab), (S
2

, CD), (C, cC), (C, c), (D, dD), (D, d)} and I = {S
1

, S
2

}
is simply written as follows:

• S
1

! aS
1

b | ab

• S
2

! CD

• C ! cC | c

• D ! dD | d

The derivational relation over a CFG G, denoted as)G, is a relation on
(⌃ [N)⇤ defined as follows:

↵)G � if 9A 2 N, 9�, µ, ! 2 (⌃ [N)⇤ :
(↵ = µA!) and (� = µ�!) and (A! � 2 R)

The transitive closure of)G is denoted as)+

G and the reflexive transitive
closure of)G is denoted as)⇤

G. The subscript is omitted whenever the

87

CHAPTER 6. TREE GRAMMARS

grammar G is clear from the context. A string ↵ 2 (N [⌃)⇤ derives another
string � 2 (N [⌃)⇤ if ↵)⇤

G �. A string ↵ 2 (N [⌃)⇤ reaches another
string � 2 (N [⌃)⇤ if for G any µ, ! 2 (N [⌃)⇤, ↵)⇤

G µ�!. A grammar
G derives (resp. reaches) a string ↵ 2 (N [⌃)⇤ if for any S 2 I, S derives
(resp. reaches) ↵.

The language generated from a non-terminal A is L(A) = {w 2 ⌃⇤|A)⇤

w} and the sentential forms generated from a non-terminal A are L̂(A) =
{↵ 2 (⌃ [N)⇤|A)⇤ ↵}. The language generated by a CFG G is L(G) =
[S2IL(S) and the sentential forms of a grammar G are L̂(G) = [S2IL̂(S).
A context-free language (CFL) is any language generated by a CFG. Two
CFGs are equivalent if they generate the same language.

A derivation of a non-terminal A, denoted DA, is a sequence of length
n of elements in (N [⌃⇤) such that DA[1] = A, DA[n] 2 ⌃⇤ and for every
i 2 1 · · · n� 1, DA[i])G DA[i + 1]. A derivation of a grammar G is any DS

for S 2 I. The subscript of D is omitted whenever we refer to a derivation
in general (from any non-terminal). A leftmost derivation is a derivation D
of length n such that for every i 2 1 · · · n � 1, the leftmost non-terminal
of D[i] is the one substituted with the RHS of a production rule to obtain
D[i + 1]. The set of leftmost derivations of a string w 2 ⌃⇤ from a grammar
G (resp. non-terminal A), denoted LDG(w) (resp. LDA(w)), is made up
of all the leftmost derivations of G (resp. A) of length n where D[n] = w.
Every leftmost derivation can be graphically represented as a parse tree. For
example, in Fig. 6.1 the parse tree for the leftmost derivation S) SS)
aSbS) aabbS) aabbab is showed:

S

S

a S

a b

b

S

a b

Figure 6.1: Parse tree for the leftmost derivation S) SS) aSbS)
aabbS) aabbab.

For any derivation D of length n, r(D) is a sequence of length n � 1 of
the production rules used in the derivation, where r(D)[i] is the rule used
to reduce D[i] to D[i + 1]. So, for the derivation D = S) SS) aSbS)
aabbS) aabbab, r(D) is [S ! SS, S ! aSb, S ! ab, S ! ab].

The degree of ambiguity of a string w 2 ⌃⇤ with respect to a grammar G
is the number of leftmost derivations of w from G. A CFG G is said to be

88

6.2. PROBABILISTIC CONTEXT-FREE GRAMMARS

ambiguous if at least one string has a degree of ambiguity bigger than 1. A
CFL L is said to be inherently ambiguous if no unambiguous CFG is capable
of generating L.

A context-free grammar is proper if it satisfies the following three
conditions:

1. It is cycle-free, i.e. no non-terminal A exists such that A)+ A.

2. It is �-free, i.e. either no rules with � on the RHS exist or exactly one
exists with S on the LHS (i.e. S ! �) and S does not appear on the
RHS of any other rule.

3. It contains no useless symbols or non-terminals. This means that every
terminal and non-terminal should be reachable from S and every non-
terminal should derive at least one string from ⌃⇤.

6.2.2 Defining Probabilistic Context-Free Grammars

A probabilistic context-free grammar (PCFG) is a CFG with a function
assigning a probability value to each production rule and to each starting
non-terminal. Formally, a PCFG is a tuple hG, P i where G is the underlying
CFG hN, ⌃, R, Ii and P is a function from (R [I) to [0, 1] s.t.

8A 2 N,
X

A!↵2R

P (A! ↵) = 1

and

X

S2I

P (S) = 1

The probability of a derivation of a non-terminal A, denoted as Pr(DA),
is the product of the probabilities of the rules used in the derivation:

Pr(DA) =
Y

A!↵2r(D
A

)

P (A! ↵)

The probability of a derivation of a PCFG, denoted as Pr(DS), is the product
of the probabilities of the rules used in the derivation and the starting non-
terminal probability:

Pr(DS) = P (S)
Y

A!↵2r(D
S

)

P (A! ↵)

89

CHAPTER 6. TREE GRAMMARS

The probability that a non-terminal A generates a string w, denoted
as Pr(A)⇤ w) and known as the inside probability of w from A, is the
summation of the probabilities of all leftmost derivations of w from A:

Pr(A)⇤ w) =
X

D
A

2LD
A

(w)

Pr(DA)

The probability assigned by a PCFG G to a string w 2 ⌃⇤, denoted
Pr(w), is the summation of the probabilities of all leftmost derivations of w
from G:

Pr(w) =
X

D
S

2LD
G

(w)

Pr(DS)

6.2.3 Parsing and Probability of a String

An algorithm for finding the probability that a PCFG assigns to a string
is crucial to have. Without this algorithm, we do not have access to
the distribution defined by the PCFG over the language generated by the
underlying CFG. Without access to the distribution, a PCFG is practically
no better than its underlying CFG.

In Section 6.2.2, we defined the probability assigned by a PCFG to a
string as the summation of the probabilities of all leftmost derivations. This
definition does not directly translate into an e�cient procedure. First of all,
it does not describe how derivations can be found and secondly, the number
of leftmost derivations can be exponential (or even infinite) in the length of
the string.

Fortunately, e�cient procedures (that use dynamic programming) exist
to solve this problem. These procedures were initially designed to find and
e�ciently store all the leftmost derivations of a given string w from a given
grammar G; in other words, they were designed as parsers for CFGs. These
procedures can be easily extended to work with PCFGs by also returning the
probability of the given string. In this section, we describe and analyse the
procedure used and show how they can be used to find the probability of a
string.

There are mainly two procedures to solve this problem, the CockeY-
oungerKasami (CYK) algorithm and the Earley algorithm. On the one hand,
the CYK algorithm assumes that the grammar to be parsed is in Chomsky
Normal Form (CNF). A grammar is in CNF if every production rule is in
(N⇥N2) or (N⇥⌃). For every CFG G, there exists an equivalent CFG G0 in
CNF (Harrison, 1978). An equivalent CFG in CNF can be built in polynomial

90

6.2. PROBABILISTIC CONTEXT-FREE GRAMMARS

time from any CFG following the steps described in (Rich, 2008). Attending
to the complexity, the CYK algorithm and its extensions take O(|P |n3) time,
where |P | is the number of production rules of the grammar to be parsed
and n is the length of the string to be parsed. The n3 term stands for the
fact that every split of every substring is traversed, whilst the |P | term is
there because all production rules are traversed to find matching rules for
each split. The space complexity is O(n2 · |N |), which is the size of the CYK
table. On the other hand, the Earley algorithm, unlike the CYK algorithm,
it does not assume that the grammar to be parsed is in CNF. Moreover, the
worst case running time complexity of the Earley algorithm is O(|G|2n3) (An
improved Earley algorithm is given in (Graham et al., 1980) with a worse
case running time of O(|G|n3)). However, for certain types of grammars,
the Earley algorithm has a lower worst time complexity. For example, the
complexity is O(|G|2n2) for grammars with bounded ambiguity and O(|G|2n)
for deterministic grammars (Stolcke, 1995). The space complexity in terms
of the length of the string is O(n2).

Taking into account the above, in this work the Stolcke algorithm, a
probabilistic extension of the Earley algorithm, is used. In this way, we
avoid the use of an intermediate procedure to transform a PCFG in Chomsky
Normal Form and solve di↵erent probabilities in a common framework as we
show in the next section.

Earley (Stolcke) Algorithm

Unlike the CYK algorithm, the Earley (Stolcke) algorithm is considered as
a top-down rather than a bottom-up parsing algorithm. This is because it
works its way down from the starting production rules to the symbols in the
string rather than the other way round.

Although the Earley algorithm can be modified to work with unrestricted
CFGs, the standard Earley algorithm works with particular forms of
grammars used to model natural language syntax. These grammars satisfy
the following constraints:

• Every production rule is of the form N ! N+ or N ! ⌃

• The set of non-terminals can be split into two disjoint sets, parts of
speech (POS) non-terminals and phrasal non-terminals. The LHS non-
terminals of rules of the form N ! ⌃ are POS non-terminals while the
rest are phrasal non-terminals.

Note that any CFG (resp. PCFG) can be transformed into an equivalent
CFG (resp. PCFG) which satisfies these constraints. This can easily be done

91

CHAPTER 6. TREE GRAMMARS

by substituting terminals a in RHS of rules of length bigger than 1 with
newly added non-terminal Na and adding POS rules Na ! a. Probabilities
can easily be assigned in such a way that the resulting grammar remains
probabilistically equivalent.

The Earley algorithm works by traversing the given string w = a
0

. . . an�1

once from left to right and adding states to a chart as it goes along. States
show how much a particular production rule has been processed so far and
which substring it generates at that point. The presence of some particular
states in the last chart entry indicates that the string is recognized by the
grammar. We will first explain the syntax and semantics of a state, followed
by an explanation of what the chart is, and finally we show how the chart is
filled with states and which states determine whether a string is recognized
or not by the grammar.

The states and the chart A state takes one of the following two forms:

[A! ↵ • B�, i, j]

[A! ai•, i, i + 1]

where:

• A! ↵B� and A! ai are production rules (where ↵, � 2 N⇤)

• A ! ↵ • B� and A ! ai• are known as dotted rules. The • symbol
for the first rule can also be at the end of the rule (i.e. A! ↵•, where
↵ 2 N+)

• i and j are two indices from [0, n� 1] and [0, n] respectively such that
i  j

A state [A! ↵ • B�, i, j] indicates two things:

1. Production rule A ! ↵B� has been processed up until the last non-
terminal of ↵. If ↵ is empty, then the production rule has not yet been
processed and if • is at the end of the rule then the production rule has
been fully processed.

2. ↵)⇤ ai . . . aj1. In case ↵ is empty, then the production rule does not
generate anything (since it has not yet been processed) and thus i is
equal to j.

92

6.2. PROBABILISTIC CONTEXT-FREE GRAMMARS

The chart C is an array with n + 1 entries (from 0 to n). Each entry
holds an ordered set of states. C[j] holds states with index j (i.e. states
whose production rules generate substrings up to aj1). C[0] contains states
with unprocessed production rules starting from the beginning of the string
and C[n] contains fully processed production rules generating su�xes of w.
Having a state [S ! ↵•, 0, n] in C[n] (for any S 2 I) means that the grammar
generates w.

Filling the chart The chart is incrementally filled in n steps, starting from
C[0] up to C[n]. A state with the second index j will be in C[j]. States are
never removed from the chart. Three operators are used to fill the chart:
the PREDICTOR, SCANNER and COMPLETER. Each operator takes
one state as input and constructs new states from it. The COMPLETER
needs access to states in previous chart entries, whilst the PREDICTOR
and SCANNER do not need this. At the jth step, the PREDICTOR and
COMPLETER add states to C[j] whilst the SCANNER adds states to
C[j + 1]. The three operators work as follows:

• Given a state [A ! ↵ • B�, i, j] where B is a phrasal non-terminal,
the PREDICTOR adds the states [B ! •�, j, j] in C[j] for every pro-
duction rule B ! � with B on the LHS. Therefore, the PREDICTOR
adds states with all the possible rules which the non-terminal just after
the • can use. Note that the rules in the added states are unprocessed
since the indices are the same.

• Given a state [A ! ↵ • B�, i, j] where B is a POS non-terminal, the
SCANNER adds the state [B ! aj•, j, j + 1] in C[j + 1] if there exists
a production rule B ! aj.

• Given a state [B ! ↵•, k, j] (i.e. a state with a fully processed
production rule), the COMPLETER searches for states in C[k] of the
form

[A! ↵ • B�, i, k]

and for each such state, the state:

[A! ↵B • �, i, j]

is added to C[j]. In other words, the COMPLETER adds states with
the • symbol moved one step to the right (i.e. from behind B to after
B) when it finds a fully processed rule for B with matching indices.

93

CHAPTER 6. TREE GRAMMARS

Algorithm 1 shows how and when these three operators are used to fill the
whole chart. Note that the initial states in C[0] have unprocessed rules with
starting non-terminals on the LHS. Also note that each time a state is added
in a chart entry, it is placed at the end of the ordered set. Therefore, when
iterating on the same set where states are added, the newly added states will
always be reached by the iteration. After filling the chart, we know that w
is accepted by the grammar if there exists a state [S ! ↵•, 0, n] in C[n] (for
any S 2 I), otherwise w is not accepted by the grammar.

The probability of the string can be calculated by multiplying the
probabilities associated with successive states in the Earley chart. In addition
to providing a solution to calculate the probability that a given string x is
generated by a grammar G, the Stolcke algorithm can compute solutions to
know what is the single most likely parse (or derivation) for x or to get the
probability that x occurs as a prefix of some strings generated by G (the
prefix probability of x). All of these solutions in a single framework, with a
number of additional advantages over isolated solutions (see (Stolcke, 1995)
for more details).

6.3 Stochastic k-testable Tree Grammars

As shown in Chapter 5, a probabilistic DTA (PDTA) incorporates a
probability, pm(�, t

1

, ..., tm), for every transition in the automaton, with the
normalization that the probabilities of the transitions leading to the same
state q 2 Q must add up to one. These probabilities must be calculated
as the ratio between the number of occurrences of a transition and the
number of occurrences of the state to which this transition leads. PDTA also
incorporates a probability ⇢(q) for every accepting state, q 2 F , calculated
as the ratio between the number of occurrences of an accepting state and the
number of trees in the sample, |⌦|.

Eventually, the probability of the tree t is computed as p(t) = ⇢(�(t))⇡(t),
where the product of the probabilities of all the transitions is recursively
computed as:

⇡(t) =

⇢
p

0

(�) if t = � 2 ⌃ ,
pm(�, �(t

1

), ..., �(tm))⇡(t
1

) · · · ⇡(tm) if t = �(t
1

...tm) 2 T
⌃

� ⌃ .
(6.1)

At this point, we can classify a new melody in a particular class. For
this purpose, we need to infer a PDTA for each class, Cj, from well classified
melodies. Once the PDTAs for the di↵erent classes have been inferred and
the probabilities estimated, a melody M can be classified in the class Ĉ that
maximizes the likelihood after parsing with every PDTAs.

94

6.3. STOCHASTIC K-TESTABLE TREE GRAMMARS

Algorithm 1: Earley Algorithm
Input : A CFG G; a string w = a

0

. . . an�1

Output: True if w 2 L(G), False otherwise
C[0] {[S ! •↵, 0, 0]|S 2 I, S ! ↵};
for i = 0 to n do

foreach state in C[i] do
if production rule in state is fully processed then

COMPLETER(state);
else

if the non-terminal after • is a POS non-terminal then
SCANNER(state ;

else
PREDICTOR(state) ;

if {[S ! ↵•, 0, n]|S 2 I, S ! ↵} \ C[n] = ; then
return False ;

else
return True ;

procedure COMPLETER([B ! ↵•, k, j])
foreach state in C[i] do

Add [A! ↵B • �, i, j] to C[j] ;

procedure SCANNER([A! ↵ • B�, i, j])
if B ! aj 2 R then

Add [B ! aj•, j, j + 1] to C[j + 1] ;

procedure PREDICTOR([A! ↵ • B�, i, j])
foreach B ! � 2 R do

Add [B ! •�, j, j] to C[j] ;

95

CHAPTER 6. TREE GRAMMARS

In order to do this, the new target melodies must be represented by trees
for being parsed. However, what happens if the new melodies can not be
represented by trees and are only strings? This situation appears when a
melody query is given using only note pitches or when durations are not
available or reliable. In other words, we have a set of melodies represented
by trees to train the system but the target data are melodies represented by
pitch strings. To deal with this problem, we need to transform the k-testable
tree automata in context-free grammars in order to use them for parsing the
input melody strings.

Context-free grammars may be considered to be the customary way of
representing syntactical structure in natural language sentences. In many
natural language processing applications, to obtain the correct syntactical
structure for a sentence is an important intermediate step before a semantic
interpretation. Therefore, we need to transform the k-testable tree automata
in probabilistic context-free grammars to use them for parsing the input
melody strings. Thus, we could use these grammars to obtain the correct
structure for a given melody represented by a pitch string.

These context-free grammars obtained from the k-testables tree models
include some degree of specialization in its rules that weaken it independence.
In these way, they are specially attractive, on one hand, the relations in
long term between the language components are captured by its grammar
condition. On the other hand, the local relations are represented by its k-
testable condition. Moreover, this last fact rekindle in a structural ambiguity
reduction.

Before transforming our k-testable tree automata in context-free gram-
mars we need introduce some changes in the melody tree representation.
These changes are necessary because if we use the alphabet described in
Section 3.3 then a transition in the automaton could be transformed in
di↵erent grammar rules. This happens because we can not distinguish
between symbols that are terminals or nonterminals. In order to solve these
ambiguities we need to label tree nodes adding the symbol ‘T ’ to that of
⌃p if it is a leaf node (terminal) and the symbol ‘N ’ if it is an inner node
(nonterminal). This change also solve the notation requirements to use the
Stolcke algorithm where the LHS non-terminals of rules of the form T ! ⌃
are POS non-terminals while the rest are phrasal non-terminals as we showed
in Section 6.2.3.

Therefore, if ⌦ = {t
1

, t
2

, . . . , t|⌦|} is a treebank, that is, a stochastic
sample of parse trees, the alphabet ⌃ can be safely partitioned into the
subset s

1

(⌦̂) of labels that may only appear at leaves (⌃pT = ‘T ’⌃p) and its

96

6.3. STOCHASTIC K-TESTABLE TREE GRAMMARS

complementary subset ⌃ � s
1

(⌦̂) (⌃pN =‘N ’⌃p) of labels at internal nodes
(propagated labels in the trees).

Then, we can define a probabilistic k-testable grammar as G[k] = (V [k],
T, I, R[k], p[k]), where I is the start symbol, V [k] = I[rk�1

(fk(⌦)[sk�1

(⌦̂))�
s
1

(⌦̂) is the set of nonterminals, T = s
1

(⌦̂) is the set of terminals, R[k] is the
set of production rules, and p[k] a probability function, built as follows:

• For every tree t 2 rk�1

(⌦̂), add the rule I ! t to R[k] and compute its
probability as

p[k](i! t) =
1

|⌦|⌃
|⌦|
n=1

D(t, rk�1

(⌧n))

where D(i, j) = 1 if i = j and zero otherwise.

• For every tree �(t
1

, t
2

· · · tm) 2 fk(⌦̂), add the rule rk�1

(�(t
1

, t
2

· · · tm))!
t
1

t
2

· · · tm to R[k] and compute its probability as

p[k](rk�1

(�(t
1

, t
2

· · · tm))! t
1

t
2

· · · tm) =
⌃nE [k](�(t

1

, t
2

· · · tm), ⌧n)

⌃nE [k�1](�(t
1

, t
2

· · · tm), ⌧n)
.

where
E [k�1](j, ⌧n) =

X

i2Q

�(i, ⌧n)D(rk�1

(i), rk�1

(j))

and �(t, ⌧) counts the number of nodes ⌧ that expand a subtree s such
that s = ⌧ .

• For every tree �(t
1

, t
2

· · · tm) 2 sk�1

(⌦̂)�T , add the rule �(t
1

, t
2

· · · tm))!
t
1

t
2

· · · tm to R[k], its probability being one:

p[k](�(t
1

, t
2

· · · tm)! t
1

t
2

· · · tm) = 1.

The above rules and probabilities are analogous to those given in 5.2.3 for
the case of tree automata and define a consistent probabilistic context-free
grammar (see (Verdu-Mas et al., 2005) for details). With this definition,
when k = 2, only the label of the node is taken into account and the k-testable
model coincides with the simple rule-counting approach used in treebank
grammars (Charniak, 1996).

As an illustration, Figure 6.6 shows the corresponding probabilistic
context-free grammars (PCFG) (right) for k = 2 and k = 3 derived
from the parsing tree in the left. For this tree we have the follow-
ing sets for the K = 2 model: (roots) r

1

(t) = N4, (forks) f
2

(t) =
{N4(N4 T0), N4(N4 N2), N4(T4 T4), N2(T2 T2)}, (subtrees) s

1

(t) =
{T0, T2, T4}.

97

CHAPTER 6. TREE GRAMMARS

N4

N4

N4

T4 T4

N2

T2 T2

T0

(1/1) I ! N4
(1/3) N4! N4 T0
(1/3) N4! N4 N2
(1/3) N4! T4 T4
(1/1) N2! T2 T2

(1/1) I ! N4(N4 T0)
(1/1) N4(N4 T0)! N4(N4 N2) T0
(1/1) N4(N4 N2)! N4(T4 T4) N2(T2 T2)
(1/1) N4(T4 T4)! T4 T4
(1/1) N2(T2 T2)! T2 T2

} G[2]

} G[3]

Figure 6.2: Example of a probabilistic tree grammar for k = 2, and k = 3.

6.3.1 Smoothing

In general, k-testable grammars with larger values of k contain more
specialized rules and, therefore, are less ambiguous and allow for faster
parsing. In contrast, smaller k provide more general grammars with more
ambiguity and therefore parsing is slower, since all possible combinations
need to be explored.

But the larger they are, the more likely they can find unseen strings, that
will be assigned a zero probability in recognition. This would lead to the
conclusion that a target melody is just impossible, but instead we have to
say that it is less probable for that class. Therefore, the use of smoothing
techniques becomes necessary if one wants to use these models for parsing.

Two classical smoothing techniques are linear interpolation and backing-
o↵ (Ney et al., 1995). Smoothing through linear interpolation is performed by
computing the probability of events as a weighted average of the probabilities
given by di↵erent model sizes. But if the higher k models return a zero
probability, the target melody will be classified only with the more general
and more ambiguous model discarding the entire, more specific, k-sized
model.

In contrast, backing-o↵ allows to avoid lower-order parsing when it is
possible, because it tries to parse with the higher-order grammar unless no
parse tree is available by this grammar. Only in such a case the lower-order
model is called, so backing-o↵ is faster than linear interpolation. However,
the lack of a single rule in the sample can force the parser to use the lower-
order model, loosing all the higher-order information for a whole melody.

In this work, we use an alternative approach: the rule-based backing-
o↵ (Verdu-Mas et al., 2005) similar to the approach used in 5.3.2 for the

98

6.3. STOCHASTIC K-TESTABLE TREE GRAMMARS

k-testable tree automata. In this approach, the set of rules is generalized
with the probabilities

p((rk�1

(�(t
1

, t
2

· · · tm))! t
1

t
2

· · · tm|G[k]

RULE) =8
<

:

(1� �)p[k](rk�1

(�(t
1

, t
2

· · · tm))! t
1

t
2

· · · tm)
if p[k](rk�1

(�(t
1

, t
2

· · · tm))! t
1

t
2

· · · tm) > 0
�

⇤(r
k�1(�(t1,t2···tm)))

⇧i:r
k�2(ti) 6=t

i

p[k�1](rk�2

(⌧i)! ⌧i) otherwise,

(6.2)

where t
1

, · · · , tm are parse trees and

⇤(rk�1

(�(t
1

, t
2

· · · tm))) =
1�

P
r
k�1(�(t1,t2···tm))!⌧1···⌧m2R[k]

Q
i:r

k�2(ti) 6=t
i

p[k�1](rk�2

(⌧i)! ⌧i)
(6.3)

It requires the implementation of specific parsers, since building the
whole grammar is unfeasible due to the large number of implicit rules. An
alternative scheme that requires only minor modifications is to use a quasi-
equivalent grammar G0 built as follows:

1. Add the rules in R[k] to R0 with probabilities

p0(X ! ↵) = (1� �)p[k](X ! ↵).

2. For every variable �(t
1

, t
2

· · · tm) in V [k], add a rule �(t
1

, t
2

· · · tm)) !
t
1

t
2

· · · tm to R0 whose probability is

p0(�(t
1

, t
2

· · · tm))! t
1

t
2

· · · tm) =
�

⇤(�(t
1

t
2

· · · tm))

3. For every rule rk�2

(�(t
1

, t
2

· · · tm))! t
1

t
2

· · · tm in R[k�1], add
rk�2

(�(t
1

, t
2

· · · tm))! rk�1

(�(t
1

, t
2

· · · tm)) to R0 and the probability

p0(rk�2

(�(t
1

, t
2

· · · tm))! rk�1

(�(t
1

, t
2

· · · tm)) =
p[k�1](rk�2

(�(t
1

, t
2

· · · tm))! t
1

t
2

· · · tm)

As shown in Fig. 6.3, the parse trees generated by this grammar G0

and their probabilities are, after an adequate projection ⇣, identical to those
generated by using the equation 6.2: If a node with label X has as single
descendent a subtree Y (↵) and the depth of label X is smaller than that of
label Y , the projection operation ⇣ has to be applied so that ⇣(X(Y (↵))) =
Y (↵). Then, G0 can be used with a standard chart parser provided that some
care is taken to avoid selecting a projected subtree whenever the same subtree

99

CHAPTER 6. TREE GRAMMARS

Grammar G[2]

N4

N4

T4 T4

T0

Grammar G[3]

N4(N4 T0)

N4(T4 T4)

T4 T4

T0

N4(N4 T0) ! N4(T4 T4) T0

Grammar G

N4(N4 T0)

N4

N4(T4 T4)

T4 T4

T0

N4(N4 T0) ! N4 T0

N4 ! N4(T4 T4)

Figure 6.3: Parsing example

can be obtained without projection. This can be checked by redefining the
suitable comparison operator so that t

1

is not a better tree than t
2

if ⇣(t
1

) =
⇣(t

2

) = t
2

(even if p(t
1

|G0) > p(t
2

|G0).

In this procedure the di↵erent k-grammars are combined to build a unique
grammar for each class Cj. In Fig. 6.4 a little schema is showed where the
k-grammars inferred from the tree data (pitch and duration) with di↵erent
values of k are merge in a unique grammar that include all the rules. This
grammar is used to parse the strings (only pitch) in the test data.

Figure 6.4: Schema of a unique combined grammar that merge the di↵erent
k-grammars.

100

6.3. STOCHASTIC K-TESTABLE TREE GRAMMARS

G[3]

I ! N4(N4 T0)
N4(N4 T0)! N4(N4 N2) T0
N4(N4 N2)! N4(T4 T4) N2(T2 T2)
N4(T4 T4)! T4 T4
N2(T2 T2)! T2 T2

G[2]

N4! N4 T0 V N4! N4(N4 T0)
N4! N4 N2 V N4! N4(N4 N2)
N4! T4 T4 V N4! N4(T4 T4)
N2! T2 T2 V N2! N2(T2 T2)

Figure 6.5: Example of how the k � 1 rules are changed in a model with
K = 3.

Each rule in the k model is added to the new grammar G0 with its
probability minus a portion, this portion being the discount parameter �.
Afterwards, the backing-o↵ drops into the k�1, adding the needed rules with
a probability determined by the discount parameter. That is, the probability
mass that is removed to the k rules is added to the backing-o↵ rules to drop
into the k� 1 model. This procedure is performed for each k. In Fig. 6.5 an
example of how the k � 1 rules are changed in a model with K = 3. Note
the k rules (in this case k = 3) do not change while the k� 1 are changed in
the suitable form.

However, we need to define a universal grammar because some labels in
⌃p for the leaves of the trees do not appear in the training data for the
grammars. Then, if a particular new melody contains an unseen label, the
parser will return a zero probability. This particular problem is more relevant
in music than in texts, because if training melodies are in major and minor
modes (the most common in many genres), some degrees may not appear in
the whole training set (like minor second, 1 in ⌃p, or diminished fifth, 6 in
⌃p, for example), but they can in a target query, and the models can not
deal with such a case.

For solving this problem we introduce rules of the form N�
1

! N (where
N is a new symbol used as a backing-o↵ rule for the model k = 1), where
the probability is given by the frequency of the symbol N�

1

in the training
data. Then, the rules of the form N ! T�

2

are added with a probability
given by each symbol. Since the alphabet ⌃p is finite, each symbol T�

2

is

101

CHAPTER 6. TREE GRAMMARS

G[3]

I ! N4(N4 T0)
N4(N4 T0)! N4(N4 N2) T0
N4(N4 N2)! N4(T4 T4) N2(T2 T2)
N4(T4 T4)! T4 T4
N2(T2 T2)! T2 T2

G[2]

N4! N4(N4 T0)
N4! N4(N4 N2)
N4! N4(T4 T4)
(N2! N2(T2 T2)

G[1]

N ! T0
N ! N0
...

G[3] =) G[2]

N4(N4 T0)! N4 T0
N4(N4 N2)! N4 N2

G[2] =) G[1]

N0! N
...

Figure 6.6: Example of G0 for K = 3.

initialized with its count to 1. This way, if a symbol T�
2

does not appear in
the training data, it will remain with a low probability but not zero, solving
the problem of unseen labels. Note that these rules only work with terminals
T�

2

, hence, the ambiguity is only allowed in the leaves of the tree, and the
structure of the parsing trees is preserved.

Finally, in Fig. 6.6 a complete grammar G0 for K = 3 is showed. In this
example the rules of the models k = 3, k = 2 and k = 1 (universal grammar)
(on the left) are combined with its respective backing-o↵ rules showed on the
right. Once this grammar is built for each class, we can proceed to classify
new melodies represented as strings.

6.4 Classification

As explained before, we want to study if the proposed approach can be used to
classify new melodies represented by strings of pitches. After a grammar Gj

is inferred for each class Cj we need an algorithm for obtaining the probability
that a given string s is generated by Gj. For this purpose, we have used the

102

6.4. CLASSIFICATION

Stolcke algorithm (Stolcke, 1995) for string parsing described in Section 6.2.3.
This parsing algorithm are able to give the probability p(s|G) that a string
s is generated by a probabilistic Context-free grammar G without requiring
conversions to Chomsky Normal Form (CNF). Then, the string representing
the melody M is classified in the class Ĉ that maximizes the likelihood

Ĉ = arg max
j

l(M |Cj) (6.4)

We can calculate this likelihood in two ways: splitting the melody
(SplitBars) in bars or computing the whole melody (Whole).

In SplitBars, the melody string is split in |M | (number of bars in a melody
M) bar strings s

1

, . . . , s|M |. Therefore we are able to compute the probability
of each bar string to belong to a particular class (grammar). Suppose we
have a finite number of classes and we have computed the membership
probability of each bar string si to each of these grammars, p(si|Gj). These
probabilities can be combined to give a decision for the whole song. For the
combination of bars the geometric mean of the probabilities has been used.
The geometric mean is less sensitive to outliers than the arithmetic one. For
our purposes is enough to multiply all bar strings probabilities of the whole
melody. Calculating the |M |-th root of the resulting product, required by the
geometric mean, is not needed for classification because, given a particular
melody M to classify, |M | is the same for all classes. Therefore, the likelihood
is computed as

l(M |Cj) =
|M |Y

i=1

p(si|Gj) (6.5)

On the other hand, in the ‘Whole’ strategy we only need the probability
of the melody string (now M = s). Then

l(M |Cj) = p(s|Gj) (6.6)

For calculating this probability we need to introduce the start rules
S ! IS and S ! I which define a melody recursively (melody is formed
by a bar and a melody) (I is the initial symbol for a bar, as explained in
Section 6.3). Therefore, the grammars allow to recognize a whole melody
instead of melodies split in bars.

The solutions presented above have some drawbacks. In the ‘SplitBars’
strategy the system needs to know where the bars begin. But this information
usually is not available in a query made of pitch symbols and an algorithm to
partition the string melody is needed. However we do not know any method
able to do that only with a string of pitches, without the duration and meter

103

CHAPTER 6. TREE GRAMMARS

information. On the other hand, the ‘Whole’ strategy has problems when the
melody is very large, due to the time complexity of the parsing algorithms.
In the case of the Stolcke algorithm the time complexity is O(|M |3).

However, the Stolcke algorithm computes the probability that a given
string s is generated by a grammar G and the probability that x occurs
as a prefix of some string generated by G (the prefix probability of x).
Computations for these tasks proceed incrementally, as the parser scans its
input from left to right. In particular, prefix probabilities are available as
soon as the prefix has been seen, and are updated incrementally as it is
extended. When the string is completely parsed both probabilities are the
same. This way, we can use Stolcke to calculate, in parallel, the prefix parse
for each class and make a ranking of classes for a given melody. The ranking
allows the system to stop the parsing for the worst classes when a given
number of melody symbols have been parsed. In other words, if we have
a long melody, we could classify it using only the beginning of the query.
After that, we compute the probability of the whole melody only for the
most probable classes. This way, we can improve the computing time for
long melodies.

6.5 Results

In our experiments, we have tried to identify a target melody using a set
of di↵erent variations played by musicians for training the models for the
di↵erent classes. We have tested our methodology using three di↵erent
corpora.

The first corpus, named Pascal database consisting of a set of 420
monophonic 8-12 bar incipits of 20 worldwide well known tunes of di↵erent
musical genres (see Section 3.4.1 for details).

Two other corpora (Essen-Kinder and Essen-Lied) have been used for
testing the proposed method in order to test its performance on other kind
of variations automatically generated (see Section 3.4.2 for details).

A 3-fold cross-validation scheme was carried out to perform the experi-
ments, obtaining average success rates and dispersions ((max�min)/4). The
system learn a grammar G0 with K = 3 (G[3], G[2], G[1], and the corresponding
backing-o↵ rules) with a discount � = 0.1.

Table 6.1 shows the results of classification using the approaches explain in
Section 6.4. These results are compared with the results using the approach
of probabilistic deterministic tree automata used in Chapter 5 but using the
notation change described in Section 6.3.

104

6.5. RESULTS

Table 6.1: Success rates with the di↵erent approaches used.

Approach Success rate
PDTA 87.3 ± 0.7

StringBars 92.4 ± 1.1
Whole 86.9 ± 1.3

Note that PDTA uses the duration information implicit in tree represen-
tation, however the grammar approaches use less information (only pitch)
for classifying. From the results, it is observed that the new approach
using the strings through the StringsBars method improves significantly the
PDTA results. The Whole approach did not improve the results because it
is more sensitive to variations in the data than the geometric mean of the
bar probabilities.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

S
u
c
c
e
s
s
 a

t
n

n

0.05
0.1

0.4
0.7

0.99

Figure 6.7: Success rate behaviour in function of the number of symbols
processed for several values for the discount parameter �.

Figure 6.7 shows the success rate behaviour as a function of the number of
symbols processed for several values of the discount parameter �. Here we can
see the system ability to classify queries of a given length n = |M |, instead
of the whole melody. This way, the system can obtain a useful success rate
without computing the probability of the whole melody. Thus, computing
the prefix probability of n symbols is enough. A good result is, for example,
the obtained for a prefix of 18 symbols with a success rate of 0.757 ± 0.011.
This way, the system avoids the whole melody computation. Average |M | in
this corpus, is about 100 pitch symbols.

105

CHAPTER 6. TREE GRAMMARS

About the discount parameter, we can see that its behaviour is as
expected. That is, when the discount parameter is high the success rate
decreases. This is because if the system takes out more probability mass of
the more specific models to add this probability to the more general models,
the system becomes an ambiguous classifier without discrimination power
giving more weight to the rules of the universal (k = 1) model instead the
more specific models.

Figure 6.8 shows the success rate when the proper class is in the best
i classes (i = {1..4}). The system returns a ranking sorted by the prefix
probability parsed at each time. This ranking can be used in two ways. On
the one hand, to retrieve the i best classes if is required from a particular
task obtaining a success rate of about 95% for a prefix of 18 symbols. On the
other hand, the ranking can be used to stop the computation of the worst
classes when a given number of melody symbols have been parsed while the
system continues computing the probability in the remain classes. After that,
we compute the probability of the whole melody only for the best classes,
improving the computation time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

S
u
c
c
e
s
s
 a

t
n

n

classes = 1
classes = 2

classes = 3
classes = 4

Figure 6.8: Success rate when the proper class is in the best i classes.

Figures 6.9 and 6.10 show the success rate for the Essen-Lied and Essen-
Kinder corpora, using our approach. This experiment has been performed
under a query against database approach, so no deviations are available.
Note the clear improvement, especially for the Essen-Kinder corpus.

6.6 Conclusions

In this work, we applied probabilistic tree grammars constructed from
stochastic k-testable tree-models showing that this approach can be used

106

6.6. CONCLUSIONS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

S
u
c
c
e
s
s
 a

t
n

n

classes = 1 classes = 3

Figure 6.9: Success rate when the proper class is in the best i classes (Essen-
Lied) .

for classifying new melodies represented by strings using the information
captured in the grammar rules. This approach allows avoiding the duration
information in the input data (strings with pitch only), making easier
querying a music database. Our goal was to identify a melody from a set
of di↵erent variations. The results overcame those previously obtained using
probabilistic deterministic tree automata for the same corpus. According to
the results, we can say that the classification is improved splitting the melody
in bars. Also the results keep in good performance taking the string of the
whole melody, which is important since not always the bar information is
available. We are persuaded that these promising results can be improved by
defining a more complex universal grammar for unseen labels and removing
some rules that make the grammars more ambiguous.

Thus, it seems that tree grammars are able to classify noisy snippet
queries. Although the success rate seems to increase with the query length
we need find a balance between success and computation time. Moreover,
the ranking could be used as a pruning for discarding the parse of a whole
melody for the worse grammars given the snippet query. In other words, if we
have a long melody, we could classify it using only its beginning. After that,
we compute the probability of the whole melody only for the best classes.
This way, we can improve the computation time when the melody length is
large.

107

CHAPTER 6. TREE GRAMMARS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

S
u
c
c
e
s
s
 a

t
n

n

classes = 1 classes = 3

Figure 6.10: Success rate when the proper class is in the best i classes (Essen-
Kinder).

108

7
Conclusions and Future Work

7.1 Conclusions

In this thesis, the problem of music similarity has been studied. In order to
disambiguate this concept for the span of this dissertation, we had considered
as ground-truth that the most similar sequences are di↵erent interpretations
of the same song or those produced by the variation compositional form. This
statement implies that the similarity is measured upon a trade-o↵ between
the melodic and rhythmic dimensions. To perform our experiments, we have
focused on a standard task in music information retrieval, namely melody
classification. The approaches used try to emulate this classification in a
similar way to how humans do, recognizing previously known patterns, even
if the inputs are distorted, they are presented just partially, or in the presence
of noisy data.

The research has been done in the symbolic music data field using a
tree representation named metrical trees and described in (Rizo, 2010). The
tree structure is an alternative representation between strings and graphs.
On the one hand, its expressive capacity is higher than the strings and
allow describing naturally hierarchical structures in which relations among
its components are given. On the other hand, its management from the
theoretical point of view is much simpler and e�cient than that of graphs.
In this structure, leaves contain pitches. Duration is represented by the
level of the tree: the shorter a note is, the deeper it appears in the tree
and an in-depth tree traversal represents the time sequence of music. This
representation has proven to be e↵ective in a number of melodic similarity
computation in tasks (Habrard et al., 2008; Rizo, 2010).

Tree edit similarity learning Our first contribution has been focused on
the tree similarity learning problem. We investigated a new framework for
learning tree edit distances thanks to a convex optimization problem based on

109

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

the framework called GESL for Good Edit Similarity Learning and described
in (Bellet et al., 2012), originally developed for strings. We have shown
that this framework is adequately tailored to tree edit distance allowing us
to have strong theoretical justification while having an e�cient procedure
to deal with complex distance, such as the Zhang-Shasha one, which is a
clear advantage in comparison of EM-based methods that quickly become
intractable.

We experimentally showed on the music recognition task described above
that this framework is able to build very accurate classifiers improving state-
of-the-art results for this problem. This experiment was done in a multi-
class setting showing that GESL can also deal with this context. Moreover,
we illustrated that the produced models can be used to provide a semantic
analysis of the knowledge learned from the data.

Stochastic k-testable tree automata Our second contribution has been
focused on the inference of k-testable tree languages showing that they are
suitable for the classification of tree-represented music data. For that, the
probabilities of several inferred stochastic k-testable tree automata (one for
each class) to generate a given tree (melody) were used to classify the given
tree in the class that maximizes this probability.

The results overcame those previously obtained using tree edit distances
for the same corpora even the obtained with the tree edit distance learning
approach using linear classifiers described in Chapter 4, as we show in Table
7.1

Table 7.1: Results summary for success rates (%) and comparison with the
tree edit distance learning approach using linear classifiers and k-testable
tree automata for the (Pascal) corpus.

Approach Success rate Linear Classifier
KSelkow 93.1 ± 0.5

KZhang�Shasha 95.0 ± 0.7
Tree automata

PDTA K = 3 95.1 ± 0.2
PDTA K = 4 96.1 ± 0.6

Based on the results we can say that the classification is improved when
taking into account all the bars of the melody rather than using them
separately. We can therefore say that stochastic k-testable tree models

110

7.1. CONCLUSIONS

somehow capture the structure of the melody, so that this structure could be
used to improve the melody classification.

Another important point here is e�ciency and the scalability of the
approach. It is remarkable that the classical tree edit distance has a high
complexity, O(mAmB max{hA, hB}), where mi are the maximum arities
of the two trees, and hi their heights, which in practice is actually
O(|MA||MB| max{hA, hB}). This must be multiplied by the complexity
(quadratic) of the nearest neighbour method implemented to perform the
classification, so if n = |⌃| the total complexity is O(n2|MA||MB| max{hA, hB}).
On the other hand, the proposed method has been shown (Garćıa, 1993) to
run in O(|M |k�1n log n) time and the classification is performed in linear time
with |t|, once k is fixed. In addition, stochastic k-testable tree-models can
be updated with new samples and do not require too many training samples
to get an acceptable success rate as seen in the results.

Probabilistic tree grammars Our third contribution has been focused
on the application of probabilistic tree grammars constructed from stochastic
k-testable tree-models showing that this approach can be used for classifying
new melodies represented by strings using the information captured in the
grammar rules. This approach allows avoiding the duration information in
the input data (strings with pitch only), making easier querying a music
database.

Symbolic music retrieval from queries has been extensively studied in the
MIR literature. In order to search a query in a dataset of songs, we can apply
any of the well-known pattern matching algorithms, like local string editing
to each of the songs in the dataset, and retrieve a ranking of most similar
items. The main problem here is the e�ciency when using large datasets, but
with the advantage that it can find a partial or approximate occurrence of the
query in any part of the dataset. On the other hand, a previous indexation of
the dataset, e.g by means of motive extraction, solves the scalability issue, but
motive extraction usually needs to work with exact repetitions, making very
inaccurate to build robust indices from di↵erent interpretations of the same
song. In addition, when searching only in motives, the music not present in
the motives is hidden.

Our proposal is able to solve intrinsically these problems. The probabilis-
tic grammar structure itself encodes both motives and melody variations,
giving more weight to the most repeated themes, without the need to be
exact, and enabling the possibility to learn from di↵erent renderings of the
same song, leaving aside the need to encode motives. Besides, there is no

111

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

di↵erence between looking for a whole song or searching a small query in the
dataset.

The results overcame those previously obtained using probabilistic deter-
ministic tree automata for the same corpus. According to the results, we
can say that the classification is improved splitting the melody in bars. Also
the results keep in good performance taking the string of the whole melody,
which is important since not always the bar information is available.

Thus, it seems that tree grammars are able to classify noisy snippet
queries. Although the success rate seems to increase with the query length
we need find a balance between success and computation time. Moreover,
the ranking could be used as a pruning for discarding the parse of a whole
melody for the worse grammars given the snippet query. In other words, if we
have a long melody, we could classify it using only its beginning. After that,
we compute the probability of the whole melody only for the best classes.
This way, we can improve the computation time when the melody length is
large.

Generative system Finally, our last contribution is derived from the
inference of the tree grammars described in Chapter 6. These grammars
can be used to classify melodies as we showed above but also could be used
to generate new melodies using the structure of the trees captured in the
di↵erent grammar rules inferred from the tree data. In this way, we could
build a system that would allow us to generate new melodies from the inferred
grammars.

This system could be used in several ways. First, the possibility to
generate genuine music from several databases like genre, style or author.
In this way, the new music would have the essence of the dataset captured
in the grammar. Second, the mentioned system could be used to help music
composition systems suggesting new ideas, derived from the several training
sets, to write new songs. Third, this generation engine could be used in
situations that requires obtain more samples automatically. For example, in
databases that have limited samples and can not be used with other pattern
recognition approaches because them require a huge number of samples.
Eventually, in any situation that requires an automatic generation of new
samples.

Unfortunately, the construction of a generative system requires a deeper
research which is out of the scope of this thesis. However, we show some lines
to follow and an early research with some ideas in the future work section.

112

7.2. FUTURE WORKS

7.2 Future works

There are a number of possible lines of work that can be followed to study
more in depth the approaches proposed in this thesis. Some of them
are related to the tasks presented here and others can be considered a
continuation of this work by applying the same methods to other music
information retrieval tasks.

First, the several approaches proposed in this thesis could be used to
other kind of classes like genre, style or author. To do this, we only need new
corpora properly labelled to apply the methods studied. An early research
was done using the corpus Perez-9-genres described in (Pérez-Sancho, 2009)
where the task consists in classify melodies in di↵erent music genres. The
preliminary results seem to be hopeful.

Second, regarding the edit similarity learning approach described in
Chapter 4, a perspective of this work would be to study other definitions of
tree edit similarities. Indeed, GESL is based on a linear combination of the
edit script operations plugged in an exponential but we could imagine other
strategies tailored to the application at hand. Another interesting future
work would be to adapt the similarity learning procedure directly to the
multi-class setting instead of binary classification. Moreover, the e�ciency
of this tree edit distance learning framework (both in terms of accuracy and
running time) opens the door to an extensive use of tree edit distance in
larger-scale applications such as natural language processing or XML data
classification.

Third, about the k-testables tree automata and grammars. We are
persuaded that the promising results obtained could be improved by
adjusting some parameters not studied yet, like using di↵erent and more
sophisticated discount methods. In other way, results and e�ciency could
be improved by defining a more complex universal grammars (automata) for
unseen labels and removing some rules that make the grammars (automata)
more ambiguous.

Finally, as we pointed out above, in Section 7.1, the tree grammars
described in Chapter 6 can be used to classify melodies as we showed above
but also could be used to generate new melodies using the structure of the
trees captured in the di↵erent grammar rules inferred from the tree data.
In this way, we could build a system that would allow us to generate new
melodies from the inferred grammars.

This system can be constructed using a randomly approach to generate
new melodies from the probabilities captured in the grammar rules. In other
words, a new melody is generated using the random walk formalization.

113

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Starting from the Start symbol, a new rule is randomly selected in each
step. The process finish when all the current symbols are terminals. At this
point, a new tree (melody) is obtained.

After having done some preliminary tests, some problems have appeared.
One of them is that the generated trees can be very deep and have few bars.
An early solution to solve this problem can be select the trees according depth
and number of bars. Other solution can be change the tempo according the
depth of the tree.

Another way to generate the new melodies could be generate strings of
pitches whit a genetic algorithm and then parse this string with the tree
grammars retrieving the most likelihood parse tree from a string of pitches.
Therefore, a new melody is obtained with the pitches generated from the
genetic algorithm and the tree structure obtained from the tree grammars.

Regarding the problem of how evaluate the generated melodies, a possible
idea is to use a edit similarity learned with the approach described in Chapter
4 which is totality independent of the inferred grammars. In this way, we
could have an indicator to evaluate the generated melodies.

Finally, after observing the preliminary results of the generated melodies
seems the models are bar-oriented. This fact was also perceived in tree
automata which was solved using the dynamic time model described in
Section 5.3.2. However, it seems to be suitable adding more information
about the whole structure. Therefore, this fact open the door to study
the incorporation of harmonic information to the tree structure. A possible
solution is generate an harmonic sequence and then generate each tree bar of
the sequence until the whole melody is completely generated. Unfortunately,
this is another story and we do not know if it will be solved in a brief time
slice.

114

A
Corpora

A.1 Pascal corpus

• “Alouette” (french children song)

• “Macarena” (Los del Rio)

• “Avemaria” (F. Schubert) (Fig. A.1 contains the score of the used
theme and Fig. A.2 for an example of some interpretations of that
theme).

• “Ode to joy, from the 9th symphony” (L.V. Beethoven)

• “Boléro” (M.Ravel)

• “Oh! Susanna” (S. Foster)

• “La Cucaracha” (mexican song)

• “Pink Panther” (H. Mancini)

• “La Cumparsita” (G.M. Rodriguez)

• “Silent night” (christmas carol)

• “Frére Jacques” (french children song)

• “Tico-Tico no Fubá” (Zequinha de Abreu)

• “Guantanamera” (José Fernández Dı́az)

• “Toccata and fugue in D minor” (J.S.Bach)

• “Happy birthday” (Patty Hill and Mildred J. Hill)

• “Twinkle twinkle little star” (children song)

115

APPENDIX A. CORPORA

• “Jingle bells” (J. Pierpoint)

• “When the Saints Go Marching In” (J.M. Black)

• “Lohengrin, wedding march” (R. Wagner)

• “Yesterday” (The Beatles)

! ! ! ! "#! !
Voice

! $$% !$!# ! !!& !!' ((

Figure A.1: Incipit of the Schubert’s Ave Maria used as query.

116

A.2. ESSEN SYNTHETIC CORPUS EXAMPLE

4
4!!" # $%

11

%10%
11

&$% #%%% $%

'% % % (2

" !! %%
11

%%#%
11

)
% & %

11

%% % %
(a)

! ! " ! "! ! !
11

4
3

MIDI 01

! ! !# $$! !! ! "! !! ! !!! ! !
11

11

!
(b)

!" !
16

! ! ! !
Grand Piano

! ! #$ %%
8
12 &

16 15

! #! ! # !16! ! # !! ###' (
) #

! ### &
16

! ###! # !
16

$ %% ' ! # * +3 ! ! #) # ! #&
16

! ###' ! 8 ! # ! !, !
9#!

16

! #
(c)

Figure A.2: Three di↵erent interpretations of the Schubert’s Ave Maria used
for training (scores rendered using the MakeMusic Inc. Finale package from
the MIDI files).

A.2 ESSEN synthetic corpus example

HERMANN FLA LAERM AN
! ! ! !! !! !! !

"
#$

4
2

!! !! !! ! !! !! !!! !!!! !

Figure A.3: Theme K1605 as present in the ESSEN corpus.

117

APPENDIX A. CORPORA

! ! ! !" # $!%
4
2

Track 0

! ! ! ! !!& !' ! ! !! ! !! ! ! ! ! !
(

! ! !

! ! !! ! !% ! ! !4 ! !!
(" # $) ! ! !! ! ! !

! ! !! ! !)7 % ! ! ! !! ! !& ! !! ! ! !

Figure A.4: Distorted theme from melody shown in A.3 (score rendered using
the MakeMusic Inc. Finale package from the MIDI file).

118

B
Publications

Some parts of this thesis have been published in journals and conference
proceedings. Here is a list of papers in chronological order:

• Bellet, A; Bernabeu, J.F.; Habrard, A.; Sebban, M
”Learning discriminative tree edit similarities for linear classification -
Application to melody recognition”
Neurocomputing, vol. 214, pp. 155-161 (2016)

• Bernabeu, J. F.; Calera-Rubio, J.; Iñesta, J. M.; Rizo, D.
”Query Parsing Using Probabilistic Tree Grammars”
5th workshop on Music and Machine Learning, MML 2012, Edinburgh
(2012)

• Bernabeu, J.F.; Calera-Rubio, J.; Iñesta, J.M.
”Classifying melodies using tree grammars”
Pattern Recognition and Image Analysis: 5th Iberian Conference,
IbPRIA 2011, Las Palmas de Gran Canaria, Spain, June 8-10, 2011.
Lecture Notes in Computer Science, vol. 6669, pp. 572–579 (2011)

• Bernabeu, Jose F. and Calera-Rubio, Jorge and Iñesta, José M. and
Rizo, David
”Melodic Identification Using Probabilistic Tree Automata”
Journal of New Music Research, vol. 40, pp. 93-103 (2011)

• Bernabeu, J.F., Calera-Rubio, J., Iñesta, J.M., Rizo, D.
”Tree language automata for melody recognition”
Actas del II Workshop de Reconocimiento de Formas y Anlisis de
Imgenes (AERFAI), ISBN: 978-84-92812-66-0, pp. 17-22, Valencia,
Spain (2010)

• Bernabeu, J.F., Calera-Rubio, J., Iñesta, J.M., Rizo, D.
”A probabilistic approach to melodic similarity”
Proceedings of MML 2009, pp. 48-53 (2009)

119

C
Resumen en castellano

Una de las principales preocupaciones en las tareas de recuperación de
información musical (MIR) es cómo evaluar la similitud melódica de una
manera similar a cómo lo hacen los seres humanos. El ser humano es capaz de
reconocer patrones previamente conocidos, incluso si lo que perciben nuestros
sentidos está distorsionado, se presentan sólo parcialmente, o los datos se
presentan en un ambiente ruidoso. En la comparación musical esto sucede
en varias situaciones, por ejemplo, al comparar versiones de una melod́ıa dada
o al buscar en bases de datos utilizando una consulta que será, por definición,
parcial y puede ser distorsionada o incluso errónea. Dos cuestiones se refieren
a este problema: el cálculo de similitud y la estructura de representación
utilizada.

El término similitud musical es ambiguo o al menos puede ser juzgado
desde diferentes puntos de vista (Selfridge-Field, 1998). Puede referirse
a la semejanza entre la ĺınea melódica de dos fragmentos musicales, la
similitud de sus patrones ŕıtmicos, o incluso su coincidencia armónica.
Con el fin de desambiguar este concepto para el contexto de esta tesis,
consideraremos como verdad fundamental que las secuencias más similares
son interpretaciones diferentes de la misma canción o de las producidas por
la variación de la composición. Esta afirmación implica que la similitud es
medida a partir de un equilibrio entre la dimensión melódica y ŕıtmica.

C.1 Recuperación de información musical (MIR)

La recuperación de información musical (MIR) es un campo de investigación
dedicado a la extracción de información significativa a partir del contenido de
fuentes musicales (Orio, 2006), (Typke et al., 2005). Tradicionalmente, esta
investigación se ha dividido en dos dominios: audio y simbólico. Los archivos
de audio digital contienen una señal de audio digitalizada procedente de una
grabación de sonido y se pueden encontrar en formatos comprimidos (MP3)

121

APPENDIX C. RESUMEN EN CASTELLANO

o sin comprimir (WAV). Por otro lado, los archivos de música simbólica
contienen partituras digitales, es decir, la notación musical y las instrucciones
necesarias para que una computadora o un sintetizador reproduzca una
canción. Estos archivos pueden ser secuenciados (MIDI) o estructurados
(MusicXML).

Con el uso generalizado de reproductores de música portátiles, la mayor
parte de los usuarios de ordenadores de hoy en d́ıa tienen que lidiar con una
gran base de datos de música digital. Muchas herramientas de software (por
ejemplo, iTunes) están disponibles para reproducir, recuperar y almacenar
grandes cantidades de archivos de audio. Estos archivos contienen una
información más rica que la información proporcionada por datos simbólicos,
ya que reúnen todos los elementos que participan en una obra musical: el
tono, la armońıa, el ritmo, el timbre, las letras, etc. Sin embargo, esta
riqueza da lugar a una complejidad mayor, porque toda esta información
está mezclada con la señal de audio y es muy dif́ıcil separar cada uno de
estos elementos. Para trabajar con archivos de audio es necesario utilizar
técnicas de procesamiento de señales digitales para extraer caracteŕısticas
que representen el contenido musical. Por ejemplo, una de las caracteŕısticas
más comunes utilizadas para este propósito son los coeficientes cepstrales en
las frecuencias de Mel, que proporcionan información sobre el timbre de la
pieza musical (Aucouturier y F., 2004). Otras obras utilizan caracteŕısticas
relacionadas con el ritmo (Lidy y Rauber, 2005), textura (Tzanetakis y Cook,
2002), o tono (Tzanetakis et al., 2003). Sin embargo, estas caracteŕısticas
sólo proporcionan descripciones poco precisas del contenido musical y son
dif́ıciles de interpretar.

Debido a la repentina y enorme popularidad de los reproductores de
audio portátiles, la investigación sobre algoritmos que clasifican, recuperan
y recomiendan música se han vuelto realmente importante en los ultimos
tiempos. En este marco, surge la necesidad de transformar los archivos
de audio en un formato que proporcione información muy precisa sobre el
contenido real de una obra musical - la partitura - incluyendo tono, armońıa,
ritmo y letras, pero que carecen de algunas caracteŕısticas importantes
que sóolo pueden encontrarse en los archivos de audio, como el timbre,
interpretacióon y caracteŕısticas de la producción. Los archivos que obtienen
este tipo de caracteŕısticas son los archivos de música simbólica (datos), y el
proceso para transformar datos de audio en datos simbólicos se denomina
transcripción. Sin embargo, los algoritmos de transcripción de última
generación no son fiables hoy en d́ıa. Por lo tanto, la mayoŕıa de los modelos
musicales de hoy en d́ıa no consideran la estructura musical en absoluto. En
su mayoŕıa dependen de las propiedades locales de la seal de audio, como
la textura, o el análisis de frecuencia a corto plazo. Por ejemplo, en la

122

C.1. RECUPERACIÓN DE INFORMACIÓN MUSICAL (MIR)

mayoŕıa de los enfoques actuales para la transcripción o seguimiento de tono,
los algoritmos tienen que basarse en fuertes suposiciones sobre el timbre
o el número de notas simultáneas para decidir cuántas notas se escuchan
(o interpretan) simultáneamente, e identificar estas notas. Por lo tanto, la
aplicabilidad general de estos algoritmos es limitada.

A pesar de ello, se ha hecho muy poca investigación para modelar
datos de música simbólica en comparación con los importantes esfuerzos
desplegados para modelar datos de audio. Hay algunos trabajos que utilizan
datos simbólicos para mejorar los resultados utilizando sólo datos de audio.
Un ejemplo de esto es el enfoque en el contexto de la clasificación de
género propuesto por (Lidy T., 2007) donde las caracteŕısticas de audio
y caracteŕısticas simbólicas se combinan para conseguir una mejora en los
resultados de clasificación.

Otro ejemplo es el trabajo de (Paiement, 2008) en el que modelos
precisos de música simbólica podŕıan mejorar drásticamente el rendimiento
de los algoritmos de transcripción aplicados en contextos más generales.
Proporcionaŕıan ”conocimiento musical” a algoritmos que actualmente sólo
dependen de las propiedades básicas del sonido para tomar decisiones. Del
mismo modo, los modelos de lenguaje natural se usan normalmente en los
algoritmos de transcripción del habla (Rabiner y Schafer, 1978). Como un
ejemplo simple, supongamos que un algoritmo de transcripción conoce la
clave de una canción en particular y trata de estimar la última nota de esta
canción. La probabilidad de que esta nota fuese la tónica seŕıa muy alta,
ya que la mayoŕıa de las canciones en cualquier corpus terminan en la nota
tónica. Otra ventaja de los datos de música simbólica es que son mucho más
comprimidos que los datos de audio. Por ejemplo, la representación simbólica
de un archivo de audio de docenas de megabytes puede transformarse tan sólo
en una pequeña cantidad de kilobytes. Esta pequeña cantidad de kilobytes
contiene la mayor parte de la información necesaria para reconstruir el archivo
de audio original. De este modo, podemos concentrarnos en las caracteŕısticas
psicoacústicas esenciales de la señal al diseñar algoritmos para capturar
dependencias a largo plazo en datos de música simbólica. Finalmente, la
ventaja más interesante de tratar directamente con datos simbólicos es la
posibilidad de diseñar algoritmos de generación de música realistas. La
mayoŕıa de los modelos probabiĺısticos presentados en esta tesis son modelos
generativos. Por lo tanto, estos modelos pueden ser muestreados para generar
eventos musicales genuinos, dados otros componentes musicales o no. Sin
embargo, la generación de nueva música está fuera del alcance de esta tesis.

123

APPENDIX C. RESUMEN EN CASTELLANO

C.2 La dimensión melódica y ŕıtmica

Dependiendo del dominio de aplicación, se dice que el contenido musical
contiene diferentes atributos. En el dominio psicoacústico, (Levitin, 1999)
utiliza el tono, el ritmo, el tempo, el contorno, el timbre, la sonoridad y
la localización espacial. En el dominio MIR, (Downie, 1999b) considera
siete dimensiones: tono, temporal, armónica, timbral, editorial, textual y
bibliográfica. Otros autores también incluyen caracteŕısticas más elaboradas
como la información temática obtenida a partir de los datos brutos (Hsu et
al., 1998). Para la comparación basada en contenido musical, las propiedades
más utilizadas y directamente disponibles son el tono y el ritmo. En esta tesis
se utilizarán estos dos atributos para describir las notas musicales, por lo que,
es conveniente que el lector conozca su definición.

C.2.1 Altura o tono

El tono es la frecuencia percibida de un sonido (Krumhansl, 1979). El
contenido de la frecuencia de una nota musical se compone de una frecuencia
fundamental y múltiplos enteros de esa frecuencia. La percepción del tono
humano es logaŕıtmica con respecto a la frecuencia fundamental. Por lo
tanto, normalmente nos referimos al tono de una nota usando clases de tono.
En inglés, una clase de tono se define por una letra. Por ejemplo, la nota con
la frecuencia fundamental de 440 Hz se llama A (LA en castellano). En la
cultura de la música occidental, la escala cromática es el método más común
de organizar las notas. Cuando se utiliza la escala temperada, cada nota
sucesiva está separada por un semitono. Dos notas separadas por un semitono
tienen una relación de frecuencia fundamental de 21/12 (aproximadamente
1.05946). Usando este sistema, la frecuencia fundamental se duplica cada
12 semitonos. El intervalo entre dos notas se refiere al espacio entre estas
dos notas con respecto al tono. Se dice que dos notas separadas por 12
semitonos están separadas por una octava, y tienen la misma clase de tono.
Por ejemplo, la nota con frecuencia fundamental a 880 Hz se llama A, una
octava más alta que la nota A con la frecuencia fundamental a 440 Hz.
Decimos que el intervalo entre estas dos notas es una octava. Observe que
la nota correspondiente a 440 Hz es A4 y A5 corresponde a 880 Hz mientras
que su clase de tono es la misma, en este caso A. El śımbolo ’]’ (sostenido)
eleva una nota en un semitono. Por el contrario, el śımbolo ’[’ (bemol) baja
una nota en un semitono. La mayoŕıa de las clases de tono están separadas
por un tono (es decir, dos semitonos), excepto para las notas E y F, aśı como
B y C, que están separados sólo por un semitono. En este sistema, A[y B[

se refieren a la misma nota. Dos clases de tono que se refieren a la misma

124

C.3. LA REPRESENTACIÓN DE ÁRBOL

altura se les denomina enarmónicas. En esta tesis, consideraremos que las
notas enarmóonicas son completamente equivalentes.

C.2.2 Ritmo

En la mayoŕıa de las notaciones musicales, el ritmo se define con respecto
a un pulso subyacente que divide el tiempo en partes iguales. La velocidad
del ritmo se llama tempo. Por ejemplo, cuando el tempo es 120, contamos
120 pulsos por minuto (BPM), o dos pulsos por segundo. La métrica es
el sentido de los pulsos fuertes y débiles que surge de la interacción entre
niveles jerárquicos de secuencias que tienen componentes periódicos anidados.
Tal jerarqúıa está impĺıcita en la notación de música occidental, donde los
diferentes niveles están indicados por tipos de notas (notas redondas, notas
blancas, notas negras, etc.) y donde los compases establecen segmentos que
contienen igual número de pulsos (Handel, 1989). Los tipos de notas se
definen relativamente entre śı. Las notas redondas tienen siempre el doble de
duracióon que las blancas, que a su vez tienen el doble de la duracióon que
las negras, y aśı sucesivamente. El número de pulsos por compás se define
generalmente en el principio de una canción por la indicación de compás. El
numerador representa el número de tiempos o pulsos que tendrá el compás.
El denominador representa la unidad de pulso, que es la figura que llenará
un tiempo del compás. Por ejemplo, en la mayoŕıa de los compases de cuatro
pulsos, una nota negra dura un tiempo. Por lo tanto, una nota corchea dura
la mitad de un pulso, una blanca dura dos pulsos, y una redonda dura cuatro
pulsos. Si el tempo es 120, interpretaremos una blanca por segundo y hay
dos blancas en cada compás.

C.3 La representación de árbol

Una serie de trabajos han abordado el problema de cómo representar la
música simbólica de manera que la tarea de comparación pueda ser eficaz
y eficiente. La eficacia se puede medir en términos de su capacidad para
hacer frente a diferentes aspectos de la percepción humana de similitud
melódica. Esta es una tarea dif́ıcil y se basa principalmente en los
datos contenidos en los conjuntos de entrenamiento de los experimentos
realizados y los algoritmos de comparación. Por otro lado, la eficiencia se
relaciona principalmente con las complejidades de tiempo y memoria. Este
aspecto evalúa hasta qué punto el enfoque considerado puede ser escalado
a situaciones del mundo real con cientos o incluso miles de datos musicales.
Las melod́ıas musicales han sido comparadas por diferentes algoritmos que

125

APPENDIX C. RESUMEN EN CASTELLANO

utilizan diferentes tipos de representaciones. Codificaciones de cadenas junto
con distancias de edición y alineación usando numerosas representaciones
de tono y ritmo fueron estudiadas en (Grachten et al., 2005, Lemger m,
2000, Mongeau y Sanko↵, 1990) y algoritmos basados en modelos de n-
gramas en (Doraisamy , 2004, Downie, 1999a, Uitdenbogerd, 2002). Además,
se propuso una codificación de grafos en (Pinto y Tagliolato, 2008) en
la que la información del ritmo no estaba representada. Otros enfoques
para la representación son menos abstractos y tratan de asignar los tonos
de melod́ıa y las duraciones en graficos 2D, en una especie de diagráma
de pianola, convirtiendo el problema de coincidencia de melod́ıas en uno
geométrico (Aloupis et al., 2006, Tanur, 2005, Typke, 2007 , Ukkonen et al.,
2003, Wiggins et al., 2002). La estructura de árbol es una representación
alternativa entre cadenas y grafos. Por una parte, su capacidad expresiva
es superior a las cadenas y permite describir estructuras naturalmente
jerárquicas en las que se dan las relaciones entre sus componentes. Por
otra parte, su gestión desde el punto de vista teórico es mucho más simple
y eficiente que la de los grafos. Los árboles han sido utilizados por varios
autores en la literatura con diferentes objetivos. La teoŕıa del lenguaje formal
usa los árboles de una manera natural y Lee (Lee, 1985) intentó interpretar
ritmos usando gramáticas. Algo similar hizo Bod (Bod, 2002), pero con
el objetivo de aprender a segmentar automáticamente melod́ıas, utilizando
el enfoque de árbol proporcionado por el análisis de la melod́ıa. En el
trabajo de Conklin (Gilbert y Conklin, 2007), melodias monofónicas fueron
transformadas en estructuras de árbol utilizando una gramática libre de
contexto probabiĺıstica para realizar reducciones melódicas que se utilizaron
también en una tarea de segmentación.

En el contexto de la composición musical asistida, los árboles se
han utilizado como una forma de representar conceptualmente la música
(Balaban, 1996; Smaill et al., 1993). Bajo este enfoque, el sistema
Wind in the Willows (Hogberg, 2005) usó transductores de árboles para
generar música. La renombrada herramienta para la composición asistida
OpenMusic (Assayag et al., 1999) utiliza árboles como una forma natural
para representar la naturaleza jerárquica de la duración de la subdivisión
de las figuras musicales y agrupaciones como tuplas. Para representar los
análisis musicológicos, la representación de los árboles se utilizó en la Teoŕıa
Generativa de la Música Tonal (GTTM) (Lerdahl y Jackendo↵, 1983) y en
una serie de trabajos basados en el análisis de Schenker (Kirlin y Utgo↵,
2008; Marsden, 2001, 2005; , 2007, Smoliar, 1979). Por último, los árboles
también se han utilizado no como un medio para representar la música,
sino como una estructura de datos intermedia para otros objetivos, como
la construcción de estructuras documentos para la indexación (Blackburn,

126

C.4. OBJETIVOS Y ENFOQUE EN ESTA TESIS

2000; Skalak et al., 2008). En este trabajo se ha empleado una representación
de árbol que codifica las melod́ıas, la cual fue introducida en (Rizo, 2010;
Rizo et al., 2003) donde se utiliza la estructura de árbol para codificar el
ritmo impĺıcitamente. En esta estructura, las hojas contienen las alturas
de las notas. La duración está representada por el nivel del árbol: cuanto
más corta es una nota, más profunda aparece en el árbol y un recorrido en
profundidad del árbol representa la secuencia temporal de la música. Se ha
demostrado que esta representación es eficaz en una serie de tareas en las
que se realizaban cálculos de similitud melódica (Habrard et al., 2008; Rizo,
2010).

Una de las principales ventajas de los árboles melódicos es que, a diferen-
cia de las representaciones lineales en las que ambas dimensiones melódicas:
tiempo (duración) y tono están codificadas por śımbolos expĺıcitos, repre-
sentan impĺıcitamente el tiempo en su estructura, haciendo uso del hecho de
que las duraciones de nota son múltiplos de unidades de tiempo básicas. De
esta manera, son menos sensibles a la codificación de la melod́ıa, ya que sólo
se necesita codificar el tono, por lo que hay menos grados de libertad para
la codificación y, por lo tanto, menos parámetros a ajustar. Sin embargo,
esta representación tiene algunos inconvenientes: su estricta dependencia
de la estructura de la métrica de la fuente de entrada y su dificultad para
representar ligaduras, puntillos y śıncopas. El primer problema puede ser
resuelto a través de un análisis métrico a priori (Eck y Casagrande, 2005,
Meudic, 2002) en el caso de que los metadatos del medidor no estén presentes
en la fuente de datos. El segundo inconveniente, desde el punto de vista
de la representación, puede resolverse mediante la adición de un śımbolo
especial que codifica el concepto de continuación de nota. Para la tarea de
comparación, esto no es un problema como otros autores señalan (Hanna et
al., 2008, Mongeau y Sanko↵, 1990, Pardo y Sanghi, 2005). Un problema
derivado es el crecimiento excesivo de árboles cuando se encuentran notas
muy cortas y imprecisiones de rendimiento en el caso de datos secuenciales
en tiempo real. Este problema ha sido abordado por métodos de poda de
árboles y algoritmos avanzados de cuantificación (Agon et al., 1994, Cemgil
et al., 2000). Finalmente, los métodos para comparar este tipo de estructuras
son costosos, en algunos casos se vuelven casi intratables y se hace necesario
utilizar métodos que sean más eficientes.

C.4 Objetivos y enfoque en esta tesis

Debido a las ventajas de la estructura de árbol descrita anteriormente,
nuestra motivación para realizar esta tesis consiste en intentar construir un

127

APPENDIX C. RESUMEN EN CASTELLANO

sistema que permita clasificar y generar melod́ıas utilizando la información
de la codificación del árbol, capturando las dependencias inherentes que se
encuentran dentro de este tipo de estructura. Y mejorar los métodos actuales
en términos de precisión y tiempo de ejecución. De esta manera, trataremos
de encontrar métodos más eficientes que son clave para usar la estructura
de árbol en grandes conjuntos de datos. En primer lugar, estudiaremos las
posibilidades de la distancia de edición de árboles para clasificar melod́ıas
utilizando un nuevo enfoque para estimar los pesos de las operaciones de
edición. Centrándonos en el problema de aprendizaje de similitud de árboles,
investigaremos un nuevo marco para el aprendizaje de las distancias de
edición de árboles gracias a un problema de optimización convexa basado
en el marco denominado GESL (Good Edit Similarity Learning) descrito en
(Bellet et al., 2012).

Una vez estudiadas las posibilidades del enfoque citado, se utilizará un
enfoque alternativo. Para ello se utilizará un enfoque de inferencia gramatical
para inferir lenguajes de árboles. La inferencia de estos lenguajes nos da
la posibilidad de utilizarlos para clasificar nuevos árboles (melod́ıas). Por
otra parte, este enfoque podŕıa ser utilizado para generar nuevas muestras,
aunque esta cuestión está fuera del alcance de esta tesis. Para llevar a
cabo esta investigación nos centramos en dos enfoques diferentes. Por un
lado, el formalismo de los autómatas de árboles es utilizado para inferir los
modelos y clasificar las melod́ıas representadas como árboles. Para ello, se
utilizarán los lenguajes k-testables de árboles. Por otro lado, las gramáticas
de árboles inferidas a partir de los autómatas de árboles. De esta manera, las
gramáticas inferidas usando datos de árbol en el entrenamiento se utilizarán
para clasificar nuevas melod́ıas representadas como cadenas. Este el último
enfoque es necesario para resolver el problema cuando la información de
duración de las notas no está disponible en las muestras que tienen que ser
clasificadas.

C.5 Conclusiones

En esta tesis se ha estudiado el problema de la similitud musical. Para
desambiguar este concepto a lo largo de esta disertación, hab́ıamos consid-
erado como verdad fundamental que las secuencias más parecidas son las
diferentes interpretaciones de una misma canción o de las producidas por
la variación en la composición. Esta afirmación implica que la similitud se
mida a partir de un equilibrio entre la dimensión melódica y ŕıtmica. Para
realizar nuestros experimentos, nos hemos centrado en una tarea estándar
en la recuperación de información musical, esta es, la clasificación de la

128

C.5. CONCLUSIONES

melod́ıa. Los enfoques utilizados tratan de emular esta clasificación de
manera similar a cómo lo hacen los seres humanos, reconociendo patrones
previamente conocidos, incluso si los datos de entradas están distorsionados,
se presentan sólo parcialmente, o se presentan junto a ruido. La investigación
se ha realizado en el campo de datos musicales simbólicos utilizando una
representación de árbol denominada árboles métricos y descrita en (Rizo,
2010). La estructura del árbol Es una representación alternativa entre
cadenas y grafos. Por un lado, su capacidad expresiva es superior a las
cadenas y permiten describir estructuras naturalmente jerárquicas en las que
sus componentes pueden ser relacionados. Por otra parte, su gestión desde
el punto de vista teórico es mucho más simple y más eficiente que la de los
grafos. En dicha estructura, las hojas contienen las alturas de las notas. La
duración es representada por el nivel del árbol: cuanto más corta es una
nota, más profunda aparece en el árbol y un recorrido en profundidad del
árbol representa la secuencia temporal de la música. Se ha demostrado que
esta representación es eficaz en una serie de tareas en las que se realizaban
cálculos de similitud melódica (Habrard et al., 2008; Rizo, 2010).

Aprendizaje de similitud de árboles Nuestra primera contribución se
ha centrado en el problema del aprendizaje de similitud de árboles. Se
ha investigado un nuevo marco para el aprendizaje de las distancias de
edición de árboles gracias a un problema de optimización convexa basado
en el marco denominado GESL (Good Edit Similarity Learning) descrito
en (Bellet et al., 2012), originalmente desarrollado para cadenas. Hemos
demostrado que este marco se puede adaptar adecuadamente a las distancias
de edición de árboles, además de ser un procedimiento eficiente para hacer
frente a distancias complejas, como puede ser el caso de la distancia de
árboles de Zhang-Shasha, lo cual es una clara ventaja en comparación
con los mtodos basados en EM (esperanza-maximización) que se vuelven
rápidamente intratables. Hemos demostrado experimentalmente que, en la
tarea de reconocimiento de la música descrita anteriormente, este marco es
capaz de construir clasificadores muy precisos que mejoran los resultados
actuales para este problema. Este experimento se realizó en un entorno
multi-clase mostrando que GESL también puede hacer frente a este contexto.
Además, hemos ilustrado que los modelos producidos pueden ser utilizados
para proporcionar un análisis semántico del conocimiento aprendido de los
datos.

Autómatas probabiĺısticos k-testables de árboles Nuestra segunda
contribución se ha centrado en la inferencia de lenguajes k-testables de

129

APPENDIX C. RESUMEN EN CASTELLANO

árboles mostrando que son adecuados para la clasificación de los datos musi-
cales representados como árboles. Para ello, se utilizaron las probabilidades
de varios autómatas probabiĺısticos k-testables (uno para cada clase) de
generar un determinado árbol (melod́ıa) para clasificar el árbol dado en la
clase que maximiza esta probabilidad.

Los resultados superaran los obtenidos previamente usando las distancias
de edición de árbol para los mismos datos, incluso los obtenidos con las
distancias aprendidas mencionadas anteriormente utilizando los clasificadores
lineales, como se muestra en la Tabla 7.1. Basándonos en los resultados
podemos decir que la clasificación es mejorada cuando se tienen en cuenta
tods los compases de la melod́ıa en lugar de utilizarlos por separado. Por
lo tanto, podemos decir que los modelos de árboles estocásticos k-testables
capturan de alguna manera la estructura de la melod́ıa, de modo que esta
estructura puede usarse para mejorar la clasificación de la melod́ıa.

Otro punto importante aqúı es la eficiencia y la escalabilidad del
enfoque. La distancia de edición clásica del árbol tiene una alta com-
plejidad, O(mAmB max{hA, hB}), donde mi son las aridades máximas
de los dos árboles, y hi, sus alturas, que en la práctica es realmente
O(|MA||MB| max{hA, hB}). Esto debe ser multiplicado por la compleji-
dad (cuadrática) del método de vecino más cercano implementado para
realizar la clasificación, por lo que si n = |⌃|, la complejidad total es
O(n2|MA||MB| max{hA, hB}). Por otra parte, el método propuesto se mostró
en (Garćıa, 1993) que teńıa una complejidad temporal de O(|M |k�1n log n)
y la clasificación se realiza en tiempo lineal con |t|, una vez que k es
fijo. Además, los modelos estocásticos k-testables de árboles pueden ser
actualizados con nuevas muestras y no requieren demasiadas muestras de
entrenamiento para obtener una tasa de acierto aceptable como se muestra
en los resultados.

Gramáticas de árboles probabiĺısticas Nuestra tercera contribución se
ha centrado en la aplicación de las gramáticas de árboles construidas a partir
de modelos estocásticos k-testable de árboles mostrando que este enfoque
puede ser utilizado para la clasificación de nuevas melod́ıas representadas
por cadenas utilizando la información capturada en las reglas gramaticales.
Este enfoque permite evitar el problema cuando la información de duración
de notas no está disponible en los datos de entrada (cadenas con tono
solamente), facilitando la consulta de una base de datos musical. La
recuperación de música simbólica mediante consultas ha sido ampliamente
estudiada. Para buscar una consulta en un conjunto de datos de canciones,
podemos aplicar cualquiera de los algoritmos de reconocimiento de patrones

130

C.5. CONCLUSIONES

conocidos. El principal problema es la eficiencia cuando se utilizan grandes
conjuntos de datos. Por otro lado, una indexación previa del conjunto de
datos, por ejemplo mediante la extracción de motivos, resuelve el problema
de la escalabilidad, pero la extracción de motivos usualmente necesita
trabajar con repeticiones exactas, haciendo muy imprecisa la construcción de
ı́ndices robustos a partir de interpretaciones diferentes de mismas canción.
Además, al buscar sólo en motivos, la música no presente en los motivos
queda oculta. Nuestra propuesta es capaz de resolver intŕınsecamente
estos problemas. La propia estructura gramatical probabiĺıstica codifica
tanto los motivos como las variaciones de la melod́ıa, dando más peso a
los temas más repetidos, sin necesidad de ser exactos, y posibilitando el
aprendizaje a partir de representaciones diferentes de la misma canción,
dejando a un lado la necesidad de codificar motivos. Además, no hay
diferencia entre buscar una canción entera o buscar una pequeña consulta
en el conjunto de datos. Los resultados superan los obtenidos previamente
utilizando autómatas probabiĺısticos de árboles para el mismo corpus. Según
los resultados, podemos decir que la clasificación se mejora dividiendo la
melod́ıa en compases. Por atro lado, los resultados también muestran un
buen rendimiento teniendo en cuenta la totalidad de la melod́ıa, lo cual es
importante ya que no siempre está disponible la información de compases.

Por lo tanto, parece que las gramáticas de árbol son capaces de clasificar
consultas de fragmentos con imprecisiones (ruido). Aunque la tasa de acierto
parece aumentar con la longitud de la consulta es necesario encontrar un
equilibrio entre el la tasa de acierto deseada y el tiempo de ejecución. Por
otra parte, la clasificación podŕıa utilizarse como una poda para descartar el
análisis de toda la melod́ıa en cada una de las gramáticas. En otras palabras,
si queremos analizar una melod́ıa larga, podŕıamos clasificarla usando sólo
el principio de esta. A continuación, calculamos la probabilidad de toda la
melod́ıa sólo para las mejores clases. De esta manera, podemos mejorar el
tiempo de cálculo cuando la longitud de la melod́ıa es grande.

Sistema generativo Finalmente, nuestra última contribución se deriva
de la inferencia de las gramáticas de árbol mencionadas. Estas gramáticas
pueden ser utilizar para clasificar las melod́ıas como se mostró anteriormente,
pero también se podŕıan utilizar para generar nuevas melod́ıas usando la
estructura de los árboles capturados en las reglas gramáticales inferidas
a partir de los datos de arboles. De este modo, podŕıamos construir un
sistema que nos permitiese generar nuevas melod́ıas a partir de las gramáticas
inferidas. Este sistema podŕıa utilizarse de varias formas. En primer
lugar, la posibilidad de generar música a partir de varias bases de datos

131

APPENDIX C. RESUMEN EN CASTELLANO

como género, estilo o autor. De esta manera, la nueva música tendŕıa
la esencia del conjunto de datos capturado en la gramática. En segundo
lugar, el mencionado sistema podŕıa utilizarse para ayudar a los sistemas
de composición musical a sugerir nuevas ideas, derivadas de los diversos
conjuntos de entrenamiento, para escribir nuevas canciones. En tercer lugar,
este motor de generación podŕıa ser utilizado en situaciones que requieren
obtener más muestras de forma automática. Por ejemplo, en bases de datos
que tienen muestras limitadas y no pueden utilizarse con otros metodos de
reconocimiento de patrones porque requieren un gran número de muestras.
Finalmente, en cualquier situación que requiera la generación automática de
nuevas muestras.

Desafortunadamente, la construcción de un sistema generativo requiere
una investigación más profunda que está fuera del alcance de esta tesis. Sin
embargo, mostramos algunas ĺıneas a seguir y una investigación inicial con
algunas ideas a continuación.

Como se señaló anteriormente, las gramáticas de árboles descritas en
la tesis pueden utilizarse para clasificar las melod́ıas como se mostró
anteriormente, pero también podŕıan utilizarse para generar nuevas melod́ıas
utilizando la estructura de los árboles capturados en las diferentes reglas
gramaticales Inferidas a partir de los datos del árbol. De esta manera,
podŕıamos construir un sistema que nos permitiera generar nuevas melod́ıas a
partir de las gramáticas inferidas. Este sistema puede construirse utilizando
una aproximación aleatoria para generar nuevas melod́ıas a partir de las
probabilidades capturadas en las reglas gramaticales. En otras palabras,
se genera una nueva melod́ıa usando la formalización del paseo aleatorio
(random walk). A partir del śımbolo de inicial, una nueva regla se selecciona
aleatoriamente en cada paso. El proceso termina cuando todos los śımbolos
actuales son terminales. En este punto, se obtiene un nuevo árbol (melod́ıa).
Después de haber hecho algunas pruebas preliminares, algunos problemas
han aparecido. Uno de ellos es que los árboles generados pueden ser muy
profundos y tienen pocos compases. Una rápida solución para resolver
este problema puede ser seleccionar los árboles según la profundidad y
el número de compases. Otra solución puede ser cambiar el tempo de
acuerdo a la profundidad del árbol. Por otro lado, otra forma de generar
las nuevas melod́ıas podŕıa ser generar cadenas de de carácteres con un
algoritmo genético y luego analizar esta cadena con las gramáticas de árboles
recuperando el árbol de análisis de mayor probabilidad de esta cadena de
alturas (tonos).

Por lo tanto, de esta forma se obtiene una nueva melod́ıa con las alturas
(tonos) generados a partir del algoritmo genético y la estructura árbol
obtenida a partir de las gramáticas de árboles.

132

C.6. PUBLICACIONES

En cuanto al problema de cómo evaluar las melod́ıas generadas, una
posible idea es usar una similitud de edición aprendida con el enfoque descrito
en esta tesis, el cual es totalmente independiente de las gramáticas inferidas.
De esta manera, podŕıamos tener un indicador para evaluar las melod́ıas
generadas.

Finalmente, después de observar los resultados preliminares de las
melod́ıas generadas parece que los modelos están orientados a la compases.
Este hecho también se percibió en los autómatas de los árboles que se
resolvió utilizando el modelo de tiempo dinámico descrito en la sección
5.3.2. Sin embargo, parece adecuado añadir más información sobre toda
la estructura. Por lo tanto, este hecho abre la puerta para estudiar la
incorporación de información armónica a la estructura de árbol. Una posible
solución es generar una secuencia armónica y luego generar cada compás del
árbol de la secuencia hasta que toda la melod́ıa se genera completamente.
Desafortunadamente, esta es otra historia y no sabemos si se resolverá en un
breve lapso de tiempo.

C.6 Publicaciones

Algunas partes de esta tesis han sido publicadas en revistas y actas de
conferencias. A continuacióon mostramos una lista de los art́ıculos en orden
cronológico:

• Bellet, A; Bernabeu, J.F.; Habrard, A.; Sebban, M
”Learning discriminative tree edit similarities for linear classification -
Application to melody recognition”
Neurocomputing, vol. 214, pp. 155-161 (2016)

• Bernabeu, J. F.; Calera-Rubio, J.; Iñesta, J. M.; Rizo, D.
”Query Parsing Using Probabilistic Tree Grammars”
5th workshop on Music and Machine Learning, MML 2012, Edinburgh
(2012)

• Bernabeu, J.F.; Calera-Rubio, J.; Iñesta, J.M.
”Classifying melodies using tree grammars”
Pattern Recognition and Image Analysis: 5th Iberian Conference,
IbPRIA 2011, Las Palmas de Gran Canaria, Spain, June 8-10, 2011.
Lecture Notes in Computer Science, vol. 6669, pp. 572–579 (2011)

• Bernabeu, Jose F. and Calera-Rubio, Jorge and Iñesta, José M. and
Rizo, David

133

APPENDIX C. RESUMEN EN CASTELLANO

”Melodic Identification Using Probabilistic Tree Automata”
Journal of New Music Research, vol. 40, pp. 93-103 (2011)

• Bernabeu, J.F., Calera-Rubio, J., Iñesta, J.M., Rizo, D.
”Tree language automata for melody recognition”
Actas del II Workshop de Reconocimiento de Formas y Análisis de
Imágenes (AERFAI), ISBN: 978-84-92812-66-0, pp. 17-22, Valencia,
Spain (2010)

• Bernabeu, J.F., Calera-Rubio, J., Iñesta, J.M., Rizo, D.
”A probabilistic approach to melodic similarity”
Proceedings of MML 2009, pp. 48-53 (2009)

134

Bibliography

Pieter Adriaans and Ceriel Jacobs. Using MDL for Grammar Induction, pages
293–306. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-
45265-2. doi: 10.1007/11872436 24. URL http://dx.doi.org/10.1007/
11872436_24. (Cited on page 13).

Pieter Adriaans, Marten Trautwein, and Marco Vervoort. Towards High Speed
Grammar Induction on Large Text Corpora, pages 173–186. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000. ISBN 978-3-540-44411-4. doi: 10.1007/
3-540-44411-4 11. URL http://dx.doi.org/10.1007/3-540-44411-4_
11. (Cited on page 13).

Carlos Agon, Gérard Assayag, J. Fineberg, and Camilo Rueda. Kant: A critique
of pure quantification. In Proc. of the 1994 International Computer Music
Conference, pages 52–59, Aarhus, Denmark, 1994. (Cited on pages 7 and 33).

Noga Alon, Shai Ben-David, Nicolò Cesa-Bianchi, and David Haussler. Scale-
sensitive dimensions, uniform convergence, and learnability. J. ACM, 44(4):
615–631, July 1997. ISSN 0004-5411. doi: 10.1145/263867.263927. URL http:
//doi.acm.org/10.1145/263867.263927. (Cited on page 23).

Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio Mesa,
Yurai Nuñez, David Rappaport, and Godfried T. Toussaint. Algorithms for
computing geometric measures of melodic similarity. Computer Music Journal,
30(3):67–76, 2006. (Cited on page 5).

Gérard Assayag, Camilo Rueda, Mikael Laurson, Carlos Agon, and Olivier Delerue.
Computer-assisted composition at ircam: From patchwork to openmusic.
Computer Music Journal, 23(3):59–72, 1999. (Cited on pages 6 and 31).

J.-J. Aucouturier and Pachet F. Improving timbre similarity: How high is the sky?
Journal of Negative Results in Speech and Audio Sciences, 1(1), 2004. (Cited
on page 2).

Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999. ISBN
020139829X. (Cited on page 25).

Mira Balaban. The music structures approach to knowledge representation for
music processing. Computer Music Journal, 20(2):96–111, 1996. (Cited on
pages 6 and 31).

M.-F. Balcan and A. Blum. On a Theory of Learning with Similarity Functions. In
Proceedings of the 23rd International Conference on Machine Learning (ICML),
pages 73–80, 2006. (Cited on pages 45, 49, and 50).

135

http://dx.doi.org/10.1007/11872436_24
http://dx.doi.org/10.1007/11872436_24
http://dx.doi.org/10.1007/3-540-44411-4_11
http://dx.doi.org/10.1007/3-540-44411-4_11
http://doi.acm.org/10.1145/263867.263927
http://doi.acm.org/10.1145/263867.263927

BIBLIOGRAPHY

M.-F. Balcan, A. Blum, and N. Srebro. Improved Guarantees for Learning via
Similarity Functions. In Proceedings of the 21st Annual Conference on Learning
Theory (COLT), pages 287–298, 2008. (Cited on pages 11, 45, 46, 47, 48, 49,
50, and 52).

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities:
Risk bounds and structural results. Journal of Machine Learning Research, 3:
463–482, 2002. URL http://www.jmlr.org/papers/v3/bartlett02a.
html. (Cited on page 23).

Aurélien Bellet, Amaury Habrard, and Marc Sebban. Good edit similarity learning
by loss minimization. Machine Learning, 89(1-2):5–35, 2012. (Cited on pages
7, 11, 48, 49, 54, and 110).

Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metric Learning. Morgan
& Claypool Publishers, 2015. (Cited on page 40).

Shai Ben-David, Nadav Eiron, and Philip M. Long. On the di�culty of
approximately maximizing agreements. Journal of Computer and System
Sciences, 66(3):496 – 514, 2003. ISSN 0022-0000. doi: https://doi.org/
10.1016/S0022-0000(03)00038-2. URL http://www.sciencedirect.com/
science/article/pii/S0022000003000382. (Cited on page 21).

Shai Ben-David, David Loker, Nathan Srebro, and Karthik Sridharan. Minimizing
the misclassification error rate using a surrogate convex loss. In ICML. icml.cc
/ Omnipress, 2012. URL http://dblp.uni-trier.de/db/conf/icml/
icml2012.html#Ben-DavidLSS12. (Cited on page 21).

M. Bernard, A. Habrard, and M. Sebban. Learning stochastic tree edit distance.
In Proceedings of the 17th European Conference on Machine Learning (ECML),
volume 4212 of LNCS, pages 42–53. Springer, 2006. (Cited on pages 42 and 43).

M. Bernard, L. Boyer, A. Habrard, and M. Sebban. Learning probabilistic models
of tree edit distance. Pattern Recognition, 41(8):2611–2629, 2008. (Cited on
pages 10, 42, 43, and 55).

Enrico Bertini, Andrada Tatu, and Daniel A. Keim. Quality Metrics in High-
Dimensional Data Visualization: An Overview and Systematization. IEEE
Symposium on Information Visualization (InfoVis), 17(12):pages 2203–2212,
December 2011. (Cited on page 25).

M. Bilenko and R. J. Mooney. Adaptive Duplicate Detection Using Learnable
String Similarity Measures. In Proceeding of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD),
pages 39–48, 2003. (Cited on page 41).

136

http://www.jmlr.org/papers/v3/bartlett02a.html
http://www.jmlr.org/papers/v3/bartlett02a.html
http://www.sciencedirect.com/science/article/pii/S0022000003000382
http://www.sciencedirect.com/science/article/pii/S0022000003000382
http://dblp.uni-trier.de/db/conf/icml/icml2012.html#Ben-DavidLSS12
http://dblp.uni-trier.de/db/conf/icml/icml2012.html#Ben-DavidLSS12

BIBLIOGRAPHY

P. Bille. A survey on tree edit distance and related problems. Theoretical Computer
Science, 337(1-3):217–239, 2005. (Cited on pages 9, 28, 44, and 45).

Steven G. Blackburn. Content Based Retrieval and Navigation of Music Using
Melodic Pitch Contours. PhD thesis, University of Southampton, Southampton,
UK, September 2000. (Cited on pages 6 and 32).

Rens Bod. A general parsing model for music and language. Music and Artificial
Intelligence, pages 77–90, 2002. (Cited on pages 5 and 31).

S. Boucheron, G. Lugosi, and O. Bousquet. Concentration Inequalities, volume
Lecture Notes in Artificial Intelligence 3176, pages 208–240. Springer,
Heidelberg, Germany, 2004. (Cited on page 22).

O. Bousquet and A. Elissee↵. Algorithmic stability and generalization
performance. In Advances in Neural Information Processing Systems 13, pages
196–202, Cambridge, MA, USA, April 2001. Max-Planck-Gesellschaft, MIT
Press. (Cited on page 23).

O. Bousquet and A. Elissee↵. Stability and generalization. Journal of Machine
Learning Research, 2:499–526, 2002. (Cited on page 23).

Olivier Bousquet, Stphane Boucheron, and Gbor Lugosi. Introduction to statistical
learning theory. In Olivier Bousquet, Ulrike von Luxburg, and Gunnar Rtsch,
editors, Advanced Lectures on Machine Learning, volume 3176 of Lecture Notes
in Computer Science, pages 169–207. Springer, 2003. ISBN 3-540-23122-6.
(Cited on page 17).

L. Boyer, Y. Esposito, A. Habrard, J. Oncina, and M. Sebban. Sedil: Software
for edit distance learning. In Proceeding of the European Conference on
Machine Learning and Knowledge Discovery in Databases (ECML/PKDD),
Part II, volume 5212 of LNCS, pages 672–677, 2008. available from http:
//labh-curien.univ-st-etienne.fr/SEDiL/. (Cited on page 55).

Laurent Boyer, Amaury Habrard, and Marc Sebban. Learning metrics between
tree structured data: Application to image recognition. In ECML, pages 54–66,
2007. (Cited on pages 10, 42, and 43).

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jenifer C. Lai,
and Robert L. Mercer. Class-based n-gram models of natural language.
Computational Linguistics, 18:18–4, 1990. (Cited on page 62).

Jorge Calera-rubio and Rafael C. Carrasco. Computing the relative entropy
between regular tree languages, 1998. (Cited on pages 68 and 69).

137

http://labh-curien.univ-st-etienne.fr/SEDiL/
http://labh-curien.univ-st-etienne.fr/SEDiL/

BIBLIOGRAPHY

Pedro Latorre Carmona, J. Salvador Sánchez, and Ana L. N. Fred, editors.
ICPRAM 2012 - Proceedings of the 1st International Conference on Pattern
Recognition Applications and Methods, Volume 1, Vilamoura, Algarve, Portugal,
6-8 February, 2012, 2012. SciTePress. ISBN 978-989-8425-98-0. (Cited on page
140).

Ali Taylan Cemgil, Bert Kappen, and Peter Desain. Rhythm quantization for
transcription. Computer Music Journal, 24(2):60–76, 2000. (Cited on pages 7
and 33).

Eugene Charniak. Tree-bank grammars. In In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pages 1031–1036, 1996. (Cited
on page 97).

Chaudhuri. Solution of an open problem on probabilistic grammars. IEEE Trans.
Comput., 32(8):748–750, 1983. ISSN 0018-9340. (Cited on page 65).

Alexander Clark. Unsupervised Language Acquisition: Theory and Practice. PhD
thesis, COGS, University of Sussex, 2001. URL papers/thesis.pdf. (Cited
on page 13).

Michael Collins and Nigel Du↵y. Convolution kernels for natural language. In
Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors,
Advances in Neural Information Processing Systems 14 — Proceedings of
the 2001 Neural Information Processing Systems Conference (NIPS 2001),
December 3-8, 2001, Vancouver, British Columbia, Canada, pages 625–632.
MIT Press, Cambridge, MA, USA, 2002. URL http://books.nips.cc/
papers/files/nips14/AA58.pdf. (Cited on page 30).

C. Cortes, P. Ha↵ner, and M. Mohri. Rational Kernels: Theory and Algorithms.
Journal of Machine Learning Research (JMLR), 5:1035–1062, 2004. (Cited on
page 29).

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20
(3):273–297, September 1995. ISSN 0885-6125. doi: 10.1023/A:1022627411411.
URL http://dx.doi.org/10.1023/A:1022627411411. (Cited on pages
21 and 25).

François Coste and Jacques Nicolas. Inference of finite automata: Reducing the
search space with an ordering of pairs of states, pages 37–42. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1998. ISBN 978-3-540-69781-7. doi: 10.1007/
BFb0026669. URL http://dx.doi.org/10.1007/BFb0026669. (Cited
on page 13).

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans.
Inf. Theor., 13(1):21–27, September 2006. ISSN 0018-9448. doi: 10.1109/TIT.

138

papers/thesis.pdf
http://books.nips.cc/papers/files/nips14/AA58.pdf
http://books.nips.cc/papers/files/nips14/AA58.pdf
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1007/BFb0026669

BIBLIOGRAPHY

1967.1053964. URL http://dx.doi.org/10.1109/TIT.1967.1053964.
(Cited on page 24).

N.N. Dalvi, P. Bohannon, and F. Sha. Robust web extraction: an approach
based on a probabilistic tree-edit model. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 335–348, 2009. (Cited
on pages 10 and 43).

M. O. Dayho↵, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change
in proteins. Atlas of protein sequence and structure, 5(suppl 3):345–351, 1978.
(Cited on pages 27 and 40).

Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York, NY, USA, 2010. ISBN 0521763169,
9780521763165. (Cited on page 13).

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society, Series B, 39(1):1–38, 1977. (Cited on page 41).

F. Denis, E. Gilbert, A. Habrard, F. Ouardi, and M. Tommasi. Relevant
representations for the inference of rational stochastic tree languages. In
Proceedings of the 9th International Colloquium on Grammatical Inference
(ICGI), volume 5278 of LNCS, pages 57–70. Springer, 2008. (Cited on page
54).

Shyamala Doraisamy. Polyphonic Music Retrieval: The N-gram approach. PhD
thesis, Imperial College London, London, UK, 2004. (Cited on page 5).

J. Stephen Downie. Evaluating a Simple Approach to Music Information Retrieval:
Conceiving Melodic N-Grams as Text. PhD thesis, University of Western
Ontario, Canada, July 1999. (Cited on pages 3, 5, and 62).

Frank Drewes and Johanna Högberg. An algebra for tree-based music generation.
In CAI, pages 172–188, 2007. (Cited on pages 6 and 32).

Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis.
John Wiley & Sons Inc, 1973. ISBN 0471223611. (Cited on page 70).

Douglas Eck and Norman Casagrande. Finding meter in music using an
autocorrelation phase matrix and shannon entropy. In Proceedings of the
International Symposium on Music Information Retrieval (ISMIR), pages 504–
509, 2005. (Cited on pages 6 and 33).

Charles Elkan. Using the triangle inequality to accelerate k-means. In Tom
Fawcett and Nina Mishra, editors, ICML, pages 147–153. AAAI Press, 2003.

139

http://dx.doi.org/10.1109/TIT.1967.1053964

BIBLIOGRAPHY

ISBN 1-57735-189-4. URL http://dblp.uni-trier.de/db/conf/icml/
icml2003.html#Elkan03. (Cited on page 26).

Martin Emms. On stochastic tree distances and their training via expectation-
maximisation. In Proceedings of the 1st International Conference on Pattern
Recognition Applications and Methods - ICPRAM 2012 - Volume 1, pages 144–
153, 2012. (Cited on pages 10 and 43).

Martin Emms and Hector-Hugo Franco-Penya. On order equivalences between
distance and similarity measures on sequences and trees. In Carmona et al.
(2012), pages 15–24. ISBN 978-989-8425-98-0. (Cited on page 28).

H. Freeman. Computer Processing of Line-Drawing Images. ACM Computing
Surveys, 6:57–97, 1974. (Cited on page 41).

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. In Proceedings of the Second European
Conference on Computational Learning Theory, EuroCOLT ’95, pages 23–37,
London, UK, UK, 1995. Springer-Verlag. ISBN 3-540-59119-2. URL http:
//dl.acm.org/citation.cfm?id=646943.712093. (Cited on page 21).

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic
regression: a statistical view of boosting (with discussion and a rejoinder by the
authors). Ann. Statist., 28(2):337–407, 04 2000. doi: 10.1214/aos/1016218223.
URL http://dx.doi.org/10.1214/aos/1016218223. (Cited on page
21).

William Gale. Good-turing smoothing without tears. Journal of Quantitative
Linguistics, 2, 1994. (Cited on page 76).

X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance. Pattern
Analysis & Applications, 13(1):113–129, 2010. (Cited on page 29).

P. Garćıa and E. Vidal. Inference of k-testable languages in the strict sense and
application to syntactic pattern recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(9):920–925, 1990. ISSN 0162-8828.
doi: http://doi.ieeecomputersociety.org/10.1109/34.57687. (Cited on pages 62
and 65).

Pedro Garćıa. Learning k-testable tree sets from positive data. Technical Report
DSIC/II/46/1993, Universidad Politecnica de Valencia, 1993. (Cited on pages
62, 66, 83, and 111).

E. Gilbert and D. Conklin. A probabilistic context-free grammar for melodic
reduction. International Workshop on Artificial Intelligence and Music at
IJCAI-07. Twentieth International Joint Conference on Artificial Intelligence,
Hyderabad, India, 2007. (Cited on pages 5, 31, and 35).

140

http://dblp.uni-trier.de/db/conf/icml/icml2003.html#Elkan03
http://dblp.uni-trier.de/db/conf/icml/icml2003.html#Elkan03
http://dl.acm.org/citation.cfm?id=646943.712093
http://dl.acm.org/citation.cfm?id=646943.712093
http://dx.doi.org/10.1214/aos/1016218223

BIBLIOGRAPHY

Maarten Grachten, Josep Llúıs Arcos, and Ramon López De Mántaras. Melody
retrieval using the implication/realization model. In 6th Inter. Conf. On Music
information retrieval. ISMIR 2005. (First prize of the MIREX Symbolic Melodic
Similarity Contest)., 2005. (Cited on page 5).

Susan L. Graham, , and Michael Harrison Walter L. Ruzzo. An improved context-
free recognizer. ACM Trans. Program. Lang. Syst., 2(3):415–462, July 1980.
ISSN 0164-0925. doi: 10.1145/357103.357112. URL http://doi.acm.org/
10.1145/357103.357112. (Cited on page 91).

A. Habrard, José M. Iñesta, David Rizo, and M. Sebban. Melody recognition with
learned edit distances. LNCS, 5342:86–96, 2008. (Cited on pages 6, 33, 53, 56,
80, and 109).

S. Handel. Listening: An Introduction to the Perception of Auditory Events.
A Bradford book. MIT Press, 1989. ISBN 9780262081795. URL https:
//books.google.es/books?id=LChBcAAACAAJ. (Cited on page 4).

Pierre Hanna, Matthias Robine, Pascal Ferraro, and Julien Allali. Improvements
of alignment algorithms for polyphonic music retrieval. In Computer Music
Modeling and Retrieval 2008, Copenhague, 2008. (Cited on pages 6 and 33).

M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1978. ISBN
0201029553. (Cited on page 90).

David Haussler. Convolution kernels on discrete structures. Techni-
cal Report UCS-CRL-99-10, University of California at Santa Cruz,
Santa Cruz, CA, USA, 1999. URL http://citeseer.ist.psu.edu/
haussler99convolution.html. (Cited on page 30).

S. Heniko↵ and Heniko↵. Amino acid substitution matrices from protein blocks.
Proc Natl Acad Sci U S A J, 89:10915–9, November 1992. (Cited on pages 27
and 40).

Marijn J. H. Heule and Sicco Verwer. Exact DFA Identification Using SAT Solvers,
pages 66–79. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-
642-15488-1. doi: 10.1007/978-3-642-15488-1 7. URL http://dx.doi.org/
10.1007/978-3-642-15488-1_7. (Cited on page 13).

Johanna Högberg. Wind in the willows - generating music by means of tree
transducers. In CIAA, pages 153–162, 2005. (Cited on pages 6 and 31).

Jia-Lien Hsu, Arbee L. P. Chen, and C.-C. Liu. E�cient repeating pattern finding
in music databases. In Proceedings of the Seventh International Conference on
Information and Knowledge Management, CIKM ’98, pages 281–288, New York,

141

http://doi.acm.org/10.1145/357103.357112
http://doi.acm.org/10.1145/357103.357112
https://books.google.es/books?id=LChBcAAACAAJ
https://books.google.es/books?id=LChBcAAACAAJ
http://citeseer.ist.psu.edu/haussler99convolution.html
http://citeseer.ist.psu.edu/haussler99convolution.html
http://dx.doi.org/10.1007/978-3-642-15488-1_7
http://dx.doi.org/10.1007/978-3-642-15488-1_7

BIBLIOGRAPHY

NY, USA, 1998. ACM. ISBN 1-58113-061-9. doi: 10.1145/288627.288668. URL
http://doi.acm.org/10.1145/288627.288668. (Cited on page 3).

Plácido R. Illescas, David Rizo, and José M. Iñesta. Harmonic, melodic, and
functional automatic analysis. In Proc. of the 2007 International Computer
Music Conference, volume I, pages 165–168, 2007. (Cited on page 34).

Tommi Jaakkola and David Haussler. Exploiting generative models in
discriminative classifiers. In In Advances in Neural Information Processing
Systems 11, pages 487–493. MIT Press, 1998. (Cited on page 30).

F. Jelinek. Statistical Methods for Speech Recognition. The MIT Press, January
1998. ISBN 0262100665. (Cited on page 62).

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized kernels between
labeled graphs. In Proceedings of the Twentieth International Conference on
Machine Learning, pages 321–328. AAAI Press, 2003. (Cited on page 30).

Slava M. Katz. Estimation of probabilities from sparse data for the language model
component of a speech recognizer. In IEEE Transactions on Acoustics, Speech
and Signal Processing, pages 400–401, 1987. (Cited on page 75).

Phillip B. Kirlin and Paul E. Utgo↵. A framework for automated schenkerian
analysis. In Proceedings of the 9th International Conference on Music
Information Retrieval (ISMIR 2008), September 2008. (Cited on pages 6
and 31).

P.N. Klein. Computing the edit-distance between unrooted ordered trees. In
Proceedings of the 6th European Symposium on Algorithms (ESA), volume 1461
of LNCS, pages 91–102. Springer, 1998. (Cited on page 44).

T. Knuutila. Inference of k-testable tree languages. In Bunke (Ed.), Advances in
Structural and Syntactic Pattern Recognition (Proc. of the S+SSPR’92), World
Scientific, Singapore, 1993. (Cited on pages 62, 65, 66, and 85).

V. Koltchinskii. Rademacher penalties and structural risk minimization. IEEE
Transactions on Information Theory, 47(5):1902–1914, Jul 2001. ISSN 0018-
9448. doi: 10.1109/18.930926. (Cited on page 23).

Raymond Kosalaa, Hendrik Blockeela, Maurice Bruynooghea, and Jan Van den
Bussche. Information extraction from structured documents using k-testable
tree automaton inference. Data & Knowledge Engineering, 58(2):129–158,
August 2006. (Cited on pages 13, 61, and 85).

Carol L. Krumhansl. The psychological representation of musical pitch in a
tonal context. Cognitive Psychology, 11(3):346 – 374, 1979. ISSN 0010-0285.

142

http://doi.acm.org/10.1145/288627.288668

BIBLIOGRAPHY

doi: https://doi.org/10.1016/0010-0285(79)90016-1. URL http://www.
sciencedirect.com/science/article/pii/0010028579900161.
(Cited on page 3).

Jim Z. C. Lai, Yi-Ching Liaw, and Julie Liu. Fast k-nearest-neighbor search
based on projection and triangular inequality. Pattern Recognition, 40(2):351–
359, 2007. doi: 10.1016/j.patcog.2006.04.024. URL https://doi.org/10.
1016/j.patcog.2006.04.024. (Cited on page 26).

Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Results of the
Abbadingo one DFA learning competition and a new evidence-driven state
merging algorithm, pages 1–12. Springer Berlin Heidelberg, Berlin, Heidelberg,
1998. ISBN 978-3-540-68707-8. doi: 10.1007/BFb0054059. URL http:
//dx.doi.org/10.1007/BFb0054059. (Cited on page 13).

John Langford. Tutorial on practical prediction theory for classification. J. Mach.
Learn. Res., 6:273–306, December 2005. ISSN 1532-4435. URL http://dl.
acm.org/citation.cfm?id=1046920.1058111. (Cited on page 22).

C. S. Lee. The rhythmic interpretation of simple musical sequences: Towards a
perceptual model. In R. West, P. Howell, and I. Cross, editors, Musical Structure
and Cognition, pages 53–69. Academic Press, London, 1985. (Cited on pages 5
and 31).

Kjell Lemström. String Matching Techniques for Music Retrieval. PhD thesis,
University of Helsinki, Finland, November 2000. (Cited on page 5).

F. Lerdahl and R. Jackendo↵. A Generative Theory of Tonal Music. MIT Press,
Cambridge, Massachusetts, 1983. (Cited on pages 6, 31, and 35).

C Leslie, E Eskin, and W S Noble. The spectrum kernel: a string kernel for svm
protein classification. Pac Symp Biocomput, pages 564–575, 2002. URL http:
//www.ncbi.nlm.nih.gov/pubmed/11928508. (Cited on page 29).

C. Leslie, E. Eskin, J. Weston, and WS. Noble. Mismatch string kernels for
svm protein classification. In Advances in Neural Information Processing
Systems 15, pages 1417–1424, Cambridge, MA, USA, October 2003. Max-
Planck-Gesellschaft, MIT Press. (Cited on page 29).

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics-Doklandy, 6:707–710, 1966. (Cited on pages 11 and 27).

Daniel J. Levitin. Music, cognition, and computerized sound. chapter Memory
for Musical Attributes, pages 209–227. MIT Press, Cambridge, MA, USA,
1999. ISBN 0-262-03256-2. URL http://dl.acm.org/citation.cfm?id=
304632.304666. (Cited on page 3).

143

http://www.sciencedirect.com/science/article/pii/0010028579900161
http://www.sciencedirect.com/science/article/pii/0010028579900161
https://doi.org/10.1016/j.patcog.2006.04.024
https://doi.org/10.1016/j.patcog.2006.04.024
http://dx.doi.org/10.1007/BFb0054059
http://dx.doi.org/10.1007/BFb0054059
http://dl.acm.org/citation.cfm?id=1046920.1058111
http://dl.acm.org/citation.cfm?id=1046920.1058111
http://www.ncbi.nlm.nih.gov/pubmed/11928508
http://www.ncbi.nlm.nih.gov/pubmed/11928508
http://dl.acm.org/citation.cfm?id=304632.304666
http://dl.acm.org/citation.cfm?id=304632.304666

BIBLIOGRAPHY

H. Li and T. Jiang. A class of edit kernels for SVMs to predict translation initiation
sites in eukaryotic mRNAs. In Proceedings of the 8th Annual International
Conference on Research in Computational Molecular Biology (RECOMB), pages
262–271, 2004. (Cited on page 29).

Thomas Lidy and Andreas Rauber. Evaluation of feature extractors and psycho-
acoustic transformations for music genre classification. In ISMIR 2005, 6th
International Conference on Music Information Retrieval, London, UK, 11-15
September 2005, Proceedings, pages 34–41, 2005. URL http://ismir2005.
ismir.net/proceedings/1033.pdf. (Cited on page 2).

Pertusa A. Iñesta J.M. Lidy T., Rauber A. Improving genre classification by
combination of audio and symbolic descriptors using a transcription system. In
Proc. of the 8th Int. Conf. on Music Information Retrieval, ISMIR 2007, pages
61–66, Vienna, Austria, 2007. (Cited on page 2).

S. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf. Theor., 28(2):129–
137, September 2006. ISSN 0018-9448. doi: 10.1109/TIT.1982.1056489. URL
http://dx.doi.org/10.1109/TIT.1982.1056489. (Cited on page 25).

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris
Watkins. Text classification using string kernels. J. Mach. Learn. Res., 2:419–
444, March 2002. ISSN 1532-4435. doi: 10.1162/153244302760200687. URL
http://dx.doi.org/10.1162/153244302760200687. (Cited on page
29).

Alan Marsden. Representing melodic patterns as networks of elaborations.
Computers and the Humanities, 35(1):37–54, 2001. (Cited on pages 6 and 31).

Alan Marsden. Generative structural representation of tonal music. Journal of
New Music Research, 34(4):409 – 428, December 2005. (Cited on pages 6, 31,
and 35).

Alan Marsden. Automatic derivation of musical structure: A tool for research
on schenkerian analysis. In Proceedings of the 8th International Conference
on Music Information Retrieval (ISMIR’07), Vienna, Austria, September 2007.
(Cited on pages 6 and 31).

Andrew McCallum, Kedar Bellare, and Fernando Pereira. A Conditional
Random Field for Discriminatively-trained Finite-state String Edit Distance. In
Proceedings of 21st Conference in Uncertainty in Artificial Intelligence (UAI),
pages 388–395, 2005. (Cited on page 41).

Yashar Mehdad. Automatic cost estimation for tree edit distance using particle
swarm optimization. In Proceedings of the 47th Annual Meeting of the
Association for Computational Linguistics and the 4th International Joint

144

http://ismir2005.ismir.net/proceedings/1033.pdf
http://ismir2005.ismir.net/proceedings/1033.pdf
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1162/153244302760200687

BIBLIOGRAPHY

Conference on Natural Language Processing of the AFNLP (ACL-IJCNLP),
pages 289–292, 2009. (Cited on page 10).

Benôıt Meudic. Automatic meter extraction from midi files. In Journées
d’informatique musicale. Marseille: Centre National de Création Musicale,
2002. (Cited on pages 6 and 33).

L. Micó and J. Oncina. Comparison of fast nearest neighbour classifiers for
handwritten character recognition. Pattern Recognition Letters, 19:351–356,
1998. (Cited on pages 27 and 40).

Maŕıa Luisa Micó, José Oncina, and Enrique Vidal. A new version of the nearest-
neighbour approximating and eliminating search algorithm (aesa) with linear
preprocessing time and memory requirements. Pattern Recogn. Lett., 15(1):
9–17, January 1994. ISSN 0167-8655. doi: 10.1016/0167-8655(94)90095-7.
URL http://dx.doi.org/10.1016/0167-8655(94)90095-7. (Cited
on page 26).

Mehryar Mohri and Afshin Rostamizadeh. Stability bounds for non-i.i.d.
processes. In Advances in Neural Information Processing Systems 20,
Proceedings of the Twenty-First Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, December 3-6,
2007, pages 1025–1032, 2007. URL http://papers.nips.cc/paper/
3239-stability-bounds-for-non-iid-processes. (Cited on page
24).

Mehryar Mohri and Afshin Rostamizadeh. Stability bounds for stationary phi-
mixing and beta-mixing processes. Journal of Machine Learning Research, 11:
789–814, 2010. doi: 10.1145/1756006.1756032. URL http://doi.acm.org/
10.1145/1756006.1756032. (Cited on page 24).

Marcel Mongeau and David Sanko↵. Comparison of musical sequences. Computers
and the Humanities, 24(3):161–175, 1990. (Cited on pages 5, 6, and 33).

David W. Mount. Bioinformatics: sequence and genome analysis, chapter
Phylogenetic Prediction. CSHL press, 2004. (Cited on page 27).

Katsuhiko Nakamura and Takashi Ishiwata. Synthesizing Context Free Grammars
from Sample Strings Based on Inductive CYK Algorithm, pages 186–195.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2000. ISBN 978-3-540-45257-7.
doi: 10.1007/978-3-540-45257-7 15. URL http://dx.doi.org/10.1007/
978-3-540-45257-7_15. (Cited on page 13).

Saul B. Needleman and Christian D. Wunsch. A general method
applicable to the search for similarities in the amino acid sequence of
two proteins. Journal of Molecular Biology, 48(3):443 – 453, 1970.

145

http://dx.doi.org/10.1016/0167-8655(94)90095-7
http://papers.nips.cc/paper/3239-stability-bounds-for-non-iid-processes
http://papers.nips.cc/paper/3239-stability-bounds-for-non-iid-processes
http://doi.acm.org/10.1145/1756006.1756032
http://doi.acm.org/10.1145/1756006.1756032
http://dx.doi.org/10.1007/978-3-540-45257-7_15
http://dx.doi.org/10.1007/978-3-540-45257-7_15

BIBLIOGRAPHY

ISSN 0022-2836. doi: DOI:10.1016/0022-2836(70)90057-4. URL http:
//www.sciencedirect.com/science/article/B6WK7-4DN8W3K-7X/
2/0d99b8007b44cca2d08a031a445276e1. (Cited on page 27).

M. Neuhaus and H. Bunke. A probabilistic approach to learning costs for graph
edit distance. In Proceedings of the 17th International Conference on Pattern
Recognition (ICPR), pages 389–393. IEEE, 2004. (Cited on page 10).

M. Neuhaus and H. Bunke. Edit distance-based kernel functions for structural
pattern classification. Pattern Recognition, 39:1852–1863, 2006. (Cited on page
29).

Michel Neuhaus and Horst Bunke. Automatic learning of cost functions for graph
edit distance. Inf. Sci., 177(1):239–247, 2007. doi: 10.1016/j.ins.2006.02.013.
URL http://dx.doi.org/10.1016/j.ins.2006.02.013. (Cited on
page 43).

Hermann Ney, Ute Essen, and Reinhard Kneser. On the estimation of small
probabilities by leaving-one-out. IEEE Trans. Pattern Anal. Mach. Intell., 17
(12):1202–1212, 1995. (Cited on pages 62, 67, 70, 71, and 98).

J. Oncina and M. Sebban. Learning Stochastic Edit Distance: application in
handwritten character recognition. Pattern Recognition, 39(9):1575–1587, 2006.
(Cited on pages 41 and 42).

Nicola Orio. Music retrieval: A tutorial and review. Found. Trends Inf. Retr.,
1(1):1–96, January 2006. ISSN 1554-0669. doi: 10.1561/1500000002. URL
http://dx.doi.org/10.1561/1500000002. (Cited on page 1).

Jean-Franois Paiement. Probabilistic Models for Music. PhD thesis, Université de
Montréal, 2008. (Cited on page 3).

Bryan Pardo and Manan Sanghi. Polyphonic musical sequence alignment for
database search. In Proceedings of the International Symposium on Music
Information Retrieval (ISMIR), pages 215–222, 2005. (Cited on pages 6 and 33).

Mateusz Pawlik and Nikolaus Augsten. Rted: A robust algorithm for the tree
edit distance. Proc. VLDB Endow., 5(4):334–345, December 2011. ISSN
2150-8097. doi: 10.14778/2095686.2095692. URL http://dx.doi.org/10.
14778/2095686.2095692. (Cited on page 28).

C. Pérez-Sancho. Stochastic Language Models for Music Information Retrieval.
PhD thesis, Alicante, Spain, July 2009. (Cited on page 113).

Georgios Petasis, Georgios Paliouras, Constantine D. Spyropoulos, and
Constantine Halatsis. eg-GRIDS: Context-Free Grammatical Inference

146

http://www.sciencedirect.com/science/article/B6WK7-4DN8W3K-7X/2/0d99b8007b44cca2d08a031a445276e1
http://www.sciencedirect.com/science/article/B6WK7-4DN8W3K-7X/2/0d99b8007b44cca2d08a031a445276e1
http://www.sciencedirect.com/science/article/B6WK7-4DN8W3K-7X/2/0d99b8007b44cca2d08a031a445276e1
http://dx.doi.org/10.1016/j.ins.2006.02.013
http://dx.doi.org/10.1561/1500000002
http://dx.doi.org/10.14778/2095686.2095692
http://dx.doi.org/10.14778/2095686.2095692

BIBLIOGRAPHY

from Positive Examples Using Genetic Search, pages 223–234. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-30195-0.
doi: 10.1007/978-3-540-30195-0 20. URL http://dx.doi.org/10.1007/
978-3-540-30195-0_20. (Cited on page 13).

Alberto Pinto and Paolo Tagliolato. A generalized graph-spectral approach to
melodic modeling and retrieval. In MIR ’08: Proceeding of the 1st ACM
international conference on Multimedia information retrieval, pages 89–96, New
York, NY, USA, 2008. ACM. (Cited on page 5).

L. R. Rabiner and R. W. Schafer. Digital Processing of Speech Signals. Prentice-
Hall, Englewood Cli↵s, NJ, 1978. (Cited on page 3).

E. Rich. Automata, Computability and Complexity: Theory and Applications.
Pearson Prentice Hall, 2008. ISBN 9780132288064. URL https://books.
google.es/books?id=lIuu53IcKWoC. (Cited on page 91).

J. R. Rico-Juan, J. Calera-Rubio, and R. C. Carrasco. Smoothing and compression
with stochastic k-testable tree languages. Pattern Recognition, 38(9):1420–1430,
2005. (Cited on pages 13, 14, 61, 73, 75, and 85).

E. S. Ristad and P. N. Yianilos. Learning String-Edit Distance. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(5):522–532, 1998. (Cited on
pages 41 and 42).

D. Rizo and J.M. Iñesta. Tree-structured representation of melodies for comparison
and retrieval, chapter -, page 155. -, 2002. (Cited on page 32).

D. Rizo, K. Lemstrm, and J. M. Iñesta. Tree representation in combined
polyphonic music comparison. Computer Music Modeling and Retrieval. Genesis
of Meaning in Sound and Music. Lecture Notes in Computer Science, 5493:177–
195, 2009. ISSN 978-3-642-02517-4. (Cited on pages 33 and 53).

David Rizo. Symbolic music comparison with tree data structures. PhD thesis,
Universidad de Alicante, November 2010. (Cited on pages 6, 32, 53, and 109).

David Rizo, F. Moreno-Seco, and José M. Iñesta. Tree-structured representation
of musical information. LNCS, 2652:838–846, 2003. (Cited on page 6).

Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana, and
Alessandro Verri. Are loss functions all the same? Neural Comput., 16(5):
1063–1076, May 2004. ISSN 0899-7667. doi: 10.1162/089976604773135104.
URL http://dx.doi.org/10.1162/089976604773135104. (Cited on
page 21).

147

http://dx.doi.org/10.1007/978-3-540-30195-0_20
http://dx.doi.org/10.1007/978-3-540-30195-0_20
https://books.google.es/books?id=lIuu53IcKWoC
https://books.google.es/books?id=lIuu53IcKWoC
http://dx.doi.org/10.1162/089976604773135104

BIBLIOGRAPHY

H. Saigo, J.-P. Vert, N. Ueda, and T. Akutsu. Protein homology detection using
string alignment kernels. Bioinformatics, 20(11):1682–1689, 2004. (Cited on
pages 29 and 42).

Hiroto Saigo, Jean-Philippe Vert, and Tatsuya Akutsu. Optimizing amino acid
substitution matrices with a local alignment kernel. BMC Bioinformatics, 7
(246):1–12, 2006. (Cited on page 42).

Yasubumi Sakakibara. E�cient learning of context-free grammars from positive
structural examples. Inf. Comput., 97(1):23–60, 1992. ISSN 0890-5401. (Cited
on page 65).

Yasubumi Sakakibara, Michael Brown, Richard Hughey, Saira Mian, Kimmen
Sjölander, Rebecca C. Underwood, and David Haussler. Recent methods
for RNA modeling using stochastic context-free grammars, pages 289–306.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1994. ISBN 978-3-540-48450-
9. doi: 10.1007/3-540-58094-8 25. URL http://dx.doi.org/10.1007/
3-540-58094-8_25. (Cited on page 13).

G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Commun. ACM, 18(11):613–620, November 1975. ISSN 0001-
0782. doi: 10.1145/361219.361220. URL http://doi.acm.org/10.1145/
361219.361220. (Cited on page 25).

Joan-Andreu Sánchez and José-Miguel Bened́ı. Consistency of stochastic context-
free grammars from probabilistic estimation based on growth transformations,
1997. (Cited on page 65).

B. Schölkopf, J. Weston, E. Eskin, C. Leslie, and WS. Noble. A kernel approach
for learning from almost orthogonal patterns. In Principles of Data Mining and
Knowledge Discovery, Lecture Notes in Computer Science, volume 2430/2431
of Lecture Notes in Computer Science, pages 511–528, Berlin, Germany, 2002.
Max-Planck-Gesellschaft, Springer. (Cited on page 29).

Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. MIT Press,
Cambridge, MA, USA, 2001. ISBN 0262194759. (Cited on page 25).

Eleanor Selfridge-Field. Beyond MIDI: The handbook of musical codes. MIT Press,
Cambridge, Massachusetts, USA, 1997. (Cited on page 36).

Eleanor Selfridge-Field. Conceptual and representational issues in melodic
comparison. In Walter B. Hewlett and Eleanor Selfridge-Field, editors, Melodic
Similarity: Concepts, Procedures, and Applications. Computing in Musicology,
volume 11, chapter 1, pages 223–230. MIT Press, 1998. (Cited on page 1).

148

http://dx.doi.org/10.1007/3-540-58094-8_25
http://dx.doi.org/10.1007/3-540-58094-8_25
http://doi.acm.org/10.1145/361219.361220
http://doi.acm.org/10.1145/361219.361220

BIBLIOGRAPHY

S.M. Selkow. The tree-to-tree editing problem. Information Processing Letters, 6
(6):184–186, 1977. (Cited on pages IX, 28, 42, 44, 45, 49, 55, and 80).

Kilho Shin and Tetsuji Kuboyama. A generalization of haussler’s convolution
kernel: Mapping kernel. In Proceedings of the 25th International Conference
on Machine Learning, ICML ’08, pages 944–951, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-205-4. doi: 10.1145/1390156.1390275. URL http:
//doi.acm.org/10.1145/1390156.1390275. (Cited on page 30).

Kilho Shin, Marco Cuturi, and Tetsuji Kuboyama. Mapping kernels for trees. In
Proceedings of the 28th International Conference on Machine Learning, ICML
2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages 961–968, 2011.
(Cited on page 30).

Josef Sivic and Andrew Zisserman. E�cient visual search of videos cast as text
retrieval. IEEE Trans. Pattern Anal. Mach. Intell., 31(4):591–606, April 2009.
ISSN 0162-8828. doi: 10.1109/TPAMI.2008.111. URL http://dx.doi.org/
10.1109/TPAMI.2008.111. (Cited on page 25).

Michael Skalak, Jinyu Han, and Bryan Pardo. Speeding melody search with
vantage point trees. In Proceedings of the 9th International Conference on
Music Information Retrieval (ISMIR 2008), September 2008. (Cited on pages
6 and 32).

Alan Smaill, Geraint A. Wiggins, and Mitch Harris. Hierarchical music
representation for composition and analysis. Computers and the Humanities,
27(1):7–17, 01 1993. (Cited on pages 6 and 31).

T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. In Journal of Molecular Biology, volume 147(1), pages 195–197,
1981. (Cited on page 27).

Stephen W Smoliar. A computer aid for schenkerian analysis. In ACM 79:
Proceedings of the 1979 annual conference, pages 110–115, New York, NY, USA,
1979. ACM. (Cited on pages 6 and 31).

Andreas Stolcke. Bayesian learning of probabilistic language models. PhD thesis,
University of California, Berkeley, 1994. (Cited on page 13).

Andreas Stolcke. An e�cient probabilistic context-free parsing algorithm that
computes prefix probabilities. Computational Linguistics, 21:165–201, 1995.
(Cited on pages 91, 94, and 103).

Andreas Stolcke and Jonathan Segal. Precise n-gram probabilities from stochastic
context-free grammars, 1994. (Cited on page 68).

149

http://doi.acm.org/10.1145/1390156.1390275
http://doi.acm.org/10.1145/1390156.1390275
http://dx.doi.org/10.1109/TPAMI.2008.111
http://dx.doi.org/10.1109/TPAMI.2008.111

BIBLIOGRAPHY

Atsuhiro Takasu. Bayesian Similarity Model Estimation for Approximate
Recognized Text Search. In Proceedings of the 10th International Conference
on Document Analysis and Recognition (ICDAR), pages 611–615, 2009. (Cited
on page 41).

Luke Tanur. A Geometric Approach to Pattern Matching in Polyphonic Music.
PhD thesis, University of Waterloo, 2005. (Cited on page 5).

Koji Tsuda, Taishin Kin, and Kiyoshi Asai. Marginalized kernels for biological
sequences. Bioinformatics, 18(1):S268, 2002. doi: 10.1093/bioinformatics/18.
suppl 1.S268. URL +http://dx.doi.org/10.1093/bioinformatics/
18.suppl_1.S268. (Cited on page 30).

Rainer Typke. Music Retrieval based on Melodic Similarity. PhD thesis, Utrecht
University, Netherlands, February 2007. (Cited on page 5).

Rainer Typke, Frans Wiering, and Remco C. Veltkamp. A survey of music
information retrieval systems. In In ISMIR, pages 153–160, 2005. (Cited on
page 1).

George Tzanetakis and Perry R. Cook. Musical genre classification of audio
signals. IEEE Trans. Speech and Audio Processing, 10(5):293–302, 2002.
doi: 10.1109/TSA.2002.800560. URL http://dx.doi.org/10.1109/TSA.
2002.800560. (Cited on page 2).

George Tzanetakis, Andrey Ermolinskyi, and Perry Cook. Pitch histograms in
audio and symbolic music information retrieval. Journal of New Music Research,
32(2):143–152, 2003. (Cited on page 2).

Alexandra L. Uitdenbogerd. Music Information Retrieval Technology. PhD thesis,
RMIT University, Melbourne, Victoria, Australia, July 2002. (Cited on page
5).

Esko Ukkonen, Kjell Lemström, and Veli Mäkinen. Geometric algorithms
for transposition invariant content based music retrieval. In Proceedings of
the International Symposium on Music Information Retrieval (ISMIR), 2003.
(Cited on page 5).

L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142,
November 1984. ISSN 0001-0782. doi: 10.1145/1968.1972. URL http://doi.
acm.org/10.1145/1968.1972. (Cited on page 21).

V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability &
Its Applications, 16(2):264–280, 1971. doi: 10.1137/1116025. URL http:
//dx.doi.org/10.1137/1116025. (Cited on pages 17 and 22).

150

http://dx.doi.org/10.1109/TSA.2002.800560
http://dx.doi.org/10.1109/TSA.2002.800560
http://doi.acm.org/10.1145/1968.1972
http://doi.acm.org/10.1145/1968.1972
http://dx.doi.org/10.1137/1116025
http://dx.doi.org/10.1137/1116025

BIBLIOGRAPHY

Vladimir Vapnik. Estimation of Dependences Based on Empirical Data: Springer
Series in Statistics (Springer Series in Statistics). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1982. ISBN 0387907335. (Cited on page 22).

Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998. (Cited
on page 17).

Jarkko Venna, Jaakko Peltonen, Kristian Nybo, Helena Aidos, and Samuel Kaski.
Information retrieval perspective to nonlinear dimensionality reduction for
data visualization. J. Mach. Learn. Res., 11:451–490, March 2010. ISSN
1532-4435. URL http://dl.acm.org/citation.cfm?id=1756006.
1756019. (Cited on page 25).

J. L. Verdu-Mas, R. C. Carrasco, and J. Calera-Rubio. Parsing with probabilistic
strictly locally testable tree languages. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(7):1040–1050, 2005. (Cited on pages 14, 86, 97,
and 98).

Xueyi Wang. A fast exact k-nearest neighbors algorithm for high dimensional
search using k-means clustering and triangle inequality. In IJCNN, pages 1293–
1299. IEEE, 2011. ISBN 978-1-4244-9635-8. URL http://dblp.uni-trier.
de/db/conf/ijcnn/ijcnn2011.html#Wang11. (Cited on page 26).

Geraint A. Wiggins, Kjell Lemström, and David Meredith. Sia(m)ese: An
algorithm for transposition invariant, polyphonic content-based music retrieval.
In Proceedings of the International Symposium on Music Information Retrieval
(ISMIR), 2002. (Cited on page 5).

Rui Yang, Panos Kalnis, and Anthony K. H. Tung. Similarity evaluation on
tree-structured data. In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’05, pages 754–765, New York,
NY, USA, 2005. ACM. ISBN 1-59593-060-4. doi: 10.1145/1066157.1066243.
URL http://doi.acm.org/10.1145/1066157.1066243. (Cited on
page 28).

Takashi Yokomori. On polynomial-time learnability in the limit of strictly
deterministic automata. Mach. Learn., 19(2):153–179, 1995. ISSN 0885-6125.
(Cited on page 62).

Menno Matthias Van Zaanen. Bootstrapping structure into language : alignment-
based learning. PhD thesis, University of Leeds, UK, 2001. URL http://
etheses.whiterose.ac.uk/1304/. (Cited on page 13).

Yechezkel Zalcstein. Locally testable languages. J. Comput. Syst. Sci., 6(2):151–
167, 1972. (Cited on page 62).

151

http://dl.acm.org/citation.cfm?id=1756006.1756019
http://dl.acm.org/citation.cfm?id=1756006.1756019
http://dblp.uni-trier.de/db/conf/ijcnn/ijcnn2011.html#Wang11
http://dblp.uni-trier.de/db/conf/ijcnn/ijcnn2011.html#Wang11
http://doi.acm.org/10.1145/1066157.1066243
http://etheses.whiterose.ac.uk/1304/
http://etheses.whiterose.ac.uk/1304/

BIBLIOGRAPHY

K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing, pages 1245–1262,
1989. (Cited on pages 10, 28, 42, 44, 49, and 55).

Philip Zigoris, Damian Eads, and Yi Zhang. Unsupervised learning of tree
alignment models for information extraction. In ICDM Workshops, pages 45–49,
2006. (Cited on page 10).

152

	1 Introduction
	1.1 Music Information Retrieval (MIR)
	1.2 The Melodic and Rhythmic Dimensions
	1.2.1 Pitch
	1.2.2 Rhythm

	1.3 Tree Representation
	1.4 Objectives and the Approach in this Thesis
	1.4.1 Machine Learning.
	1.4.2 Improving the Similarity. Tree Edit Similarity Learning.
	1.4.3 Similarity as a Probability to Belong to a Tree Language.

	1.5 Structure of this Thesis

	2 Technical Background
	2.1 Supervised Learning
	2.1.1 Typical Setting
	2.1.2 Finding a Good Hypothesis
	2.1.3 Surrogate Loss Functions

	2.2 Deriving Generalization Guarantees
	2.2.1 Uniform Convergence
	2.2.2 Uniform Stability

	2.3 Metrics
	2.3.1 Definitions
	2.3.2 Some Metrics between Structured Data

	3 Melody Tree Representation
	3.1 Introduction
	3.2 Tree Representation of Monophonic Metered Music
	3.3 Melody Tree Representation Used
	3.4 Corpora
	3.4.1 Pascal Database
	3.4.2 Essen Corpora

	4 Tree Similarity Learning
	4.1 Introduction
	4.1.1 Metric Learning from Structured data

	4.2 Background
	4.2.1 Framework for Learning with Good Similarity Functions

	4.3 Good Edit Similarity Learning for tree-structured data
	4.3.1 Tree Edit Script Based Similarity
	4.3.2 Learning Good Similarity Functions
	4.3.3 Classifier Learning: Automatic Selection of the Reasonable Trees

	4.4 Tree-structured Representation of Melodies and Theoretical Guarantees
	4.5 Experiments in Melody Recognition
	4.5.1 Pascal database
	4.5.2 Experimental setup
	4.5.3 Results and edit cost analysis
	4.5.4 Reasonable points analysis

	4.6 Conclusions

	5 Tree Automata
	5.1 Introduction
	5.2 Stochastic k-testable Tree Models
	5.2.1 Trees and Tree Automata
	5.2.2 Stochastic Tree Automata
	5.2.3 Locally Testable Tree Languages

	5.3 Classification
	5.3.1 Introduction
	5.3.2 Smoothing Methods

	5.4 Results
	5.5 Conclusions

	6 Tree grammars
	6.1 Introduction
	6.2 Probabilistic Context-Free Grammars
	6.2.1 Definitions
	6.2.2 Defining Probabilistic Context-Free Grammars
	6.2.3 Parsing and Probability of a String

	6.3 Stochastic k-testable Tree Grammars
	6.3.1 Smoothing

	6.4 Classification
	6.5 Results
	6.6 Conclusions

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future works

	A Corpora
	A.1 Pascal corpus
	A.2 ESSEN synthetic corpus example

	B Publications
	C Resumen en castellano
	C.1 Recuperación de información musical (MIR)
	C.2 La dimensión melódica y rítmica
	C.2.1 Altura o tono
	C.2.2 Ritmo

	C.3 La representación de árbol
	C.4 Objetivos y enfoque en esta tesis
	C.5 Conclusiones
	C.6 Publicaciones

	Bibliography

