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A Maŕıa, Ana y Noa, por las risas y la ilusión
A Jose y Simo, por todo





Acknowledgements

Surprisingly, writing this part of the Thesis turns out to be considerably
more di�cult than what I expected. I guess you constantly imagine yourself
producing this part of the manuscript as the pinnacle of the work, but I did
not expect these mixed feeling of happiness and nervousness.

In the first place I would like to thank José Manuel Iñesta for all the
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Preface

‘[...] who was six years old on 6/6/66 [...]’

W

ith such particular sentence Frank Zappa’s guitar solos transcription
book titled The Frank Zappa Guitar Book began (Zappa & Vai, 1982).

Nevertheless, this quotation was not about Frank as it related to the other
author of the book, who found really curious this unusual fact historically
related to the Devil or the Antichrist. This person was an unknown musician
at the time, but he was (and still is) one of most innovative electric guitar
players ever. His name was Steven Siro Vai and, despite his concerns about
the evilness of the birth date, he later claimed they all disappeared once he
met Marilyn Manson.

Steve Vai grew up in Long Island (New York) and began playing guitar
at the age of 13. His first guitar teacher, also an unknown musician at the
time, was only three years older than him but with a great reputation in the
area. His name was Joe Satriani and he is nowadays considered one of the
main references in electric guitar playing. It is told that, the day of the first
class, Steve went to Joe’s house (where he would receive the lessons) carrying
an acoustic guitar without any strings on it. Nevertheless, as lessons kept
on going, Steve became impressed with the possibilities of that instrument.
Fallen in love with it, Steve began to practise as much as he could, which
eventually led to a great development of both a great technical ability and
remarkable musical skills.

As a teenager Steve became literally obsessed with the music of Frank
Zappa, up to the point of being totally determined to become a member of
his band. At the age of twenty, while attending to the prestigious Berklee
School of Music in Boston (Massachussets), Steve sent Frank some material
he thought the well-known musician would be interested in. Apart from
several tapes showing o↵ his very skilled and mature sense of guitar playing,
there was a transcription of one of Zappa’s most challenging pieces called The
Black Page. This piece, composed for the drum kit and originally performed
by the renowned drummer Terry Bozzio, receives its name due to the large
amount of notes, ornamentations and annotations present in it, which makes
the score resemble a black page. Frank, impressed with the talent and
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abilities of that unknown musician, immediately hired him.
Steve left Berklee and started his career in Frank Zappa’s band. Initially,

most of his duties consisted in transcribing music, typically guitar solos and
drum sections. After some time he became a full-time band member, often
playing impossible guitar parts credited as Strat Abuse. Eventually, some
years later he left the band to pursue his own musical career, becoming one
of the most acclaimed electric guitar players nowadays.

And, how does this story relate to this work? In general, distinguishing
the di↵erent instruments, notes, rhythms, chords, tonalities is not a trivial
task which certainly requires a great deal of practise. On top of that, people
with such skills who also have the necessary expertise to represent this
information in an abstract musical format is definitely scarce. Nevertheless,
symbolic music representations and codifications of the information present
in audio streams are undoubtedly useful for tasks such as preservation,
reproducibility, or musicological analysis, among many others.

This dissertation focuses on this issue of retrieving a symbolic high-level
representation which abstracts the musical information present in an audio
piece using computational approaches. This process is known as Automatic
Music Transcription in the Music Information Retrieval community in which
it shows large application, not only as a user-end application but also as an
intermediate process for other tasks.

Nevertheless, due to its high complexity, this problem is still far from being
solved, reason why Frank would still probably require Steve for transcribing
some of his improvisations. However, small research contributions as this
work should eventually provide more accurate and reliable techniques not
only applicable in the research community but also on a daily basis.
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Garćıa, Iñesta, Ponce de León, and Pertusa (2011) for mono-
timbral polyphonic music. . . . . . . . . . . . . . . . . . . . . 21

2.6 Screenshot of the Tony software (Mauch et al., 2015) for
computer-assisted melody transcription. . . . . . . . . . . . . 22

2.7 Example of onset detection process. Dashed vertical lines
represent the onset events in the signal. . . . . . . . . . . . . 25

2.8 Diagram a two-stage onset detection system. . . . . . . . . . 25
2.9 Example of time series resulting from an Onset Detection

Function analysis. . . . . . . . . . . . . . . . . . . . . . . . . 26
2.10 Example of static threshold Onset Selection approach. . . . . 28
2.11 Example of adaptive threshold Onset Selection based on a

sliding window. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.12 Example of onset event in a sound showing a typical Attack-

Sustain-Release envelope . . . . . . . . . . . . . . . . . . . . . 30
2.13 Results of the onset detection task for the di↵erent Music

Information Retrieval Evaluation eXchange (MIREX) editions. 32
2.14 Results of the frame-based metrics for the multi-pitch detection

task for the di↵erent Music Information Retrieval Evaluation
eXchange (MIREX) editions for general music. . . . . . . . . 34

– Page xi –



List of Figures

2.15 Results of the Note Tracking detection task for the di↵erent
Music Information Retrieval Evaluation eXchange (MIREX)
editions for general music. . . . . . . . . . . . . . . . . . . . . 36

2.16 Results of the Note Tracking detection task for the di↵erent
Music Information Retrieval Evaluation eXchange (MIREX)
editions for piano music. . . . . . . . . . . . . . . . . . . . . . 37

3.1 Diagram of an Interactive Pattern Recognition (IPR) system. 41
3.2 Conceptual example of a Self-Organizing Map process. . . . . 43
3.3 Example of the k-Nearest Neighbor (kNN) classification rule. 44
3.4 Examples of Minkowski measures on a two-dimensional space. 45
3.5 Comparison between the reduction methodologies of Prototype

Selection (PS) and Prototype Generation (PG). . . . . . . . . 47
3.6 Example of a two-dimensional Pareto frontier graph. . . . . . 50

4.1 Examples of the Farthest Neighbor (FaN) and Nearest to
Enemy (NE) schemes (Rico-Juan & Iñesta, 2012) for Prototype
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propuesto por Benetos, Dixon, et al. (2013). . . . . . . . . . . 173

– Page xiv –



List of Tables

4.1 Description of the datasets used the experimentation for the
assessment of ranking-based methods for Prototype Selection. 57

4.2 Average figures of the results obtained for the assessment of
rank-based methods for Prototype Selection. . . . . . . . . . 59

4.3 Description of the datasets considered for the experimentation
of Prototype Selection in imbalanced classification environments. 69

4.4 Results obtained for the experimentation of Prototype Selec-
tion in imbalanced classification environments. . . . . . . . . 71

5.1 Description of the onset detection dataset by Böck, Krebs, and
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Chapter1

Introduction

“Music in general is looking for
something new overall”

Leslie Edward “Les” Claypool

In general, art is associated with the human desire of communication and
expression. Throughout history di↵erent artistic disciplines such as painting,
writing, or dancing allowed, and still do, the expression of feelings, concerns,
or di↵erent visions of life. Among them, music constitutes a particular
discipline whose main means of communication is sound together with its
absence, the silence.

Music has always played a key cultural role across all civilizations and
human time periods. Thus, the evolution of our society has always entailed
a clear development of this form of artistic expression: from the initial
rudimentary expressions of our prehistoric ancestors, more elaborated musical
movements such as the complex suites from the Western common practice,
the epic rock anthems from the modern era, the eastern folklore pieces or
the fusion styles such as bossa nova have addressed the di↵erent musical
concerns and interests. In this regard, music has always been considered as
a fruitful field of study.

Music has been studied through a considerable number of scientific
points of view: philosophy (most commonly, through aesthetics), physics,
psychology, mathematics and so on. However, during the second half of
the past century, with the accessibility and dissemination of computational
methods, a new perspective of study emerged: the computational one.
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1.1 Music Information Retrieval (MIR)

Since originally coined by Kassler (1966), the term Music Information Re-
trieval (MIR) and its scope have been thoroughly studied and analyzed by
the scientific community. Throughout the years, many authors have devoted
a considerable amount of e↵ort in defining it and also clearly describing the
aims, boundaries, and implications of this research area.

Among the possible definitions in literature, we may find two represen-
tative examples. A rather concise description is proposed by Orio (2006)
who defines this field as “[a] research area devoted to fulfill users’ music
information need”. More recently, the Music Information ReSearch (MIReS)
Consortium describes it in a more technical style as “a field that covers all
the research topics involved in the understanding and modeling of music and
that use information processing methodologies” (Serra et al., 2013).

In addition to these definitions, it is important to consider the “multi-
cultural, multiexperiential, and multidisciplinary aspects of music” present
in this research field, as denoted by Downie (2003). These elements clearly
evince the challenging di�culties when tackling MIR research and proves
the non-triviality of achieving new developments in the field.

Given the above, we may define MIR in our own words as the field that
aims at extracting and retrieving information from music data considering
di↵erent scientific perspectives such as engineering, psychology, mathematics,
or physics, among others.

In spite of the relatively novelty of this field, a large number of spe-
cific research areas has emerged under the scope of MIR. Recently, Schedl,
Gómez, and Urbano (2014) grouped the majority of them into a set of four
main tasks: (i) feature extraction, being music transcription, key estima-
tion or structural analysis some representative subtasks; (ii) similarity, in
which query by humming/tapping or cover song detection may be located;
(iii) classification, which deals with issues such as mood recognition, com-
poser identification or audio tagging; and (iv) applications, in which tasks
such as audio fingerprinting, playlist generation and music recommendation
are included.

Considering the previously exposed taxonomy, this dissertation falls
within the feature extraction group as it focuses on the particular task of
Automatic Music Transcription (AMT). The following section shall properly
define this research area as well as its underlying problems and di�culties.

1.2 Automatic Music Transcription (AMT)

Among the music literature, the definition of the term transcription shows a
clear ambiguity (Herbert, 2009). According to Randel (1944), transcription
is defined in the same terms as arrangement: “adaptation of a composition
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for instruments other than those for which it was originally written (thus, in
a way, the musical counterpart of a literary translation)”.

However, the actual definition which suits this work is the one given
by Gallagher (2009), who defines transcription as “a representation of a
musical performance in standard music notation or tablature”. Thus, for
the rest of the dissertation, music transcription must be understood as the
annotation of the performance of a music piece in some type of symbolic
music notation.

This particular duty is unarguably useful for any task related to the
musicological analysis of a piece (Nettl, 2015), reason why musicians de-
vote a considerable amount of e↵ort to training and developing such skills.
Notwithstanding, it should be noted that this process inherently implies a
certain degree of ambiguity: as studied by List (1974), transcriptions on the
same performance made by di↵erent experts showed some slight di↵erences,
although all of them perfectly codified the piece. This uncertainty, although
somehow implicit to any field related to music, should be taken into account
when tackling transcription and annotation tasks.

In our computational equivalent, Automatic Music Transcription (AMT)
may be directly defined as the automated version of the aforementioned task.
Nevertheless, given that this process has been largely addressed by the MIR
community, we may find a number of definitions for it in the literature. For
instance, Bello (2003) describes it as follows:

“convert a musical recording or performance into a musical score”

Klapuri (2004b) defines it in a similar sense but not restricting the
outcome to a musical score:

“transforming an acoustic signal into a symbolic representation”

Cemgil (2004) focuses on the need for obtaining a high-level representation
capable of being understood by the user:

“extraction of a human readable and interpretable description
from a recording of a music performance”

Similarly, Pertusa (2010) also emphasises the need for the abstraction to
be understood by the user:

“extract a human readable and interpretable representation, like
a musical score, from an audio signal”

As a last example, Benetos (2012) implicitly remarks the need for pro-
ducing a human-readable encoding as the aim of the task:

“process of converting an audio recording into a symbolic repre-
sentation using some form of musical notation”
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Given these representative definitions in the literature, AMT may be
considered, in our own words, as the process of obtaining a high-level ab-
straction of the music content in an audio piece using information retrieval
techniques. To our understanding, this abstraction must be computable in
order to allow other MIR fields to take advantage of that information, which
may not be necessarily human-readable. Besides, this encoding should also
allow the translation of that piece of information to any kind music notation.
A possible existing format which fulfills the requirements exposed could be
the one proposed by the Music Encoding Initiative (MEI).

However, currently the most common representation for the result of
practical AMT systems is the piano roll. This representation is basically
a two-dimensional graph in which the abscissa axis represents the time
evolution of the pieces and the ordinate axis encodes the pitch content of the
piece, most commonly as discrete notes events. Thus, each coordinate of the
graph shows which note events are active or inactive for each time stamp of
the piece. Figure 1.1 shows an example of such representation.
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Time (s)
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Figure 1.1: Example of a piano-roll representation for Automatic Music
Transcription: time and pitch activation are represented by the abscissa and
ordinate axes, respectively.

In relation to this representation issue, it is finally important to mention
the Musical Instrument Digital Interface (MIDI) standard. In spite of being
a communication protocol for the interconnection of musical elements as,
for example, synthesizers, e↵ects units, or sampling devices, the messages of
this protocol can be encapsulated into files that basically encode note events:
pairs of messages in which one is used for starting a note at some point and
the other one for ending it at some other. In this sense, the music content of
a MIDI file is basically a piano roll representation.

The usefulness of AMT is significant in music, up to the point of having
been considered “the Holy Grail in the field of music analysis” (Benetos,
Dixon, Giannoulis, Kirchho↵, & Klapuri, 2012). On the one hand, for tasks
such as music preservation through (digital) scores, the abstraction resulting
from the AMT process constitutes a goal by itself; on the other hand, for
tasks more related to the MIR discipline (e.g., music search, similarity, and
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retrieval), interactive music systems (e.g., score following) or computational
musicological analysis, AMT actually constitutes an intermediate process
from which the resulting abstraction is further processed (Klapuri & Davy,
2007). Figure 1.2 graphically summarizes some of these applications.

AMT

Musicological
analysis

Tonal
analysis

Chord
estimation

Tonality
estimation

AMT

Interactive
music
systems

Score
following

Automatic
impro-
visation

AMT

Music
Information
Retrieval

Music
similarity

Query by
Humming

Genre
recognition

Composer
identi-
fication

Mood
detection

AMT

Heritage
preservation

Music
digital
libraries

Musical
archives

Figure 1.2: Mindmap of representative applications of Automatic Music
Transcription.

The majority of AMT systems comprise two stages (Benetos et al., 2012):
an initial step called Multi-pitch Estimation (MPE), typically considered
the core part of AMT, in which the system estimates the actives pitches
present in the signal; and a second stage known as Note Tracking (NT) which
processes the result of the MPE in terms of a discrete pitch value, note
starting time (onset), and note ending time (o↵set). Thus, while the former
stage aims at retrieving a raw pitch description of the signal, the latter acts as
both a correction and segmentation stage for obtaining musically-meaningful
representations.

The main problematic for MPE methods lies in the polyphony degree
of audio piece at issue (Grosche, Schuller, Müller, & Rigoll, 2012). While
pitch estimation in monophonic pieces has been largely addressed in the
literature, to the point of being considered a solved task by some authors, it
still remains an open question for polyphonic audio pieces (Klapuri, 2004b;
Argenti, Nesi, & Pantaleo, 2011). In contrast, NT has not received the same
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degree of attention (Duan & Temperley, 2014), possibly due to its intrinsic
dependency with the MPE stage.

However, as reported in the literature, a glass ceiling may have been
reached with these classic methodologies (Benetos et al., 2012): apart from
the fact that results seem to have stalled with slight improvements, most
approaches seem to be quite suited for certain types of data, hence lacking the
flexibility expected from such systems, or the fact that very scarce examples
of AMT systems succeed in obtaining user-readable scores, which is one
of its main purposes. Thus, it seems that a need for a paradigm shift is
required (Benetos, Dixon, et al., 2013).

In this regard, some authors have started incorporating additional pro-
cesses to the aforementioned classic scheme. In most cases, these procedures
are directly other MIR tasks which provide additional descriptions of the
signal at issue as, for instance, information about harmony, rhythm, sound
sources, or instrumentation, among others. These pieces of information
impose musical constraints to the MPE and NT stages which narrow the
search space, imitating the human approach to transcription which signifi-
cantly relies on prior knowledge and complementary descriptions (multimodal
sources of information) of the piece at issue.

Nevertheless, even with the use of additional processes for AMT, one of
the main issue lies in the fact that none of those components exhibits an
error-free performance, thus being an external user required to manually
inspect the errors committed by the system and correct them. Hence, due to
the fact that the implication of an external user cannot be neglected for the
actual success of the task, some works start to consider users as an active
elements within the transcription process. Benetos, Dixon, et al. (2013)
summarized these ideas of interaction and multimodality in a conceptual
AMT scheme reproduced in Figure 1.3.

Attending to this proposal, the core of the AMT system still lies in the
MPE and NT processes. Nonetheless, these process are now complemented
with additional descriptions such as information about onset/o↵set events,
rhythm estimation, or harmonic analysis provided to improve the perfor-
mance of the core of the system. Also, prior musical information such as
computational models trained on formal music principles, organology studies
or particularities of the genre of the piece at issue is considered for such aim.
On top of that, this information may be directly estimated from the signal
with computational models but, as aforementioned, approaches considering
the user are currently being considered as an alternative to stand-alone MIR
methods.
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Onset/o↵set detection Beat/tempo estimation

Multi-pitch Detection / Note tracking

Instrument identification Key/chord detection

Source
Separation

Acoustic and
musicological models

Prior Information
(genre, etc.) User Interaction Score Information

Audio Score

Training
Data

Figure 1.3: General Automatic Music Transcription scheme by Benetos,
Dixon, et al. (2013). Dotted lines represent optional subtasks while double
arrows point out information fusion or interaction between the subsystems.

1.3 Motivation and aim

The starting point of this dissertation stands in the aforementioned concepts
of interactivity and multimodality applied to AMT. The use of di↵erent
sources of information aims at resembling the manner human experts act
towards this transcription issue: MIR processes such as chord extraction,
tempo estimation, onset/o↵set detection or instrument separation may be
useful for the success of the task (Benetos, Dixon, et al., 2013).

However, no existing MIR can be considered as error-free, reason why an
external agent is required for correcting the information estimated by these
additional tasks so that it can be reliably used by the AMT engine. Avoiding
the discussing of whether these system shall ever be totally autonomous,
nowadays there is a need for a user to be part of the system.

Taken for granted this need for a human agent to be part of the system,
it seems interesting to explore interactive modalities that allow to include
the user as an active part of the system rather than as an external correc-
tion agent (Toselli, Vidal, & Casacuberta, 2011). Within these interactive
methodologies, the success of the task can be guaranteed, at least up to
the expertise of the user, whilst the main and challenge lies in e�ciently
exploiting and reducing the user e↵ort towards the completion of the task.
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In our case we focus on the idea of interaction with onset events of
the audio signal and its application, as a particular multimodal source of
information, to the NT stage of the AMT process. Onset events constitute
an important source of information for the temporal segmentation and
the rhythmic description of the signal, and have proved to be particularly
helpful in the commented NT stage (Grosche et al., 2012). However, as
onset detection systems still do not exhibit flawless performance, an e�cient
practice to improve this performance gap may be tackling it with human
intervention.

This human intervention task may be approached from a number of
di↵erent points of view, being a considerable amount of the work in this
dissertation developed from a Pattern Recognition (PR) perspective. Hence,
some of the studies are tackled from a general viewpoint whose contributions
and conclusions are applicable to both MIR and PR fields.

1.4 Thesis structure

The rest of the this manuscript is structured as follows:

Chapter 2: Background in Music Information Retrieval. Pro-
vides the Music Information Retrieval concepts necessary for the rest
of the dissertation: an introduction and revision to existing Automatic
Music Transcription approaches and onset detection methods, as well
as their evaluation methodologies.

Chapter 3: Pattern Recognition in Music Information Retrieval.
Introduces the fundamentals of Pattern Recognition and classification
required for the understanding of this work as well as its application in
the field of Music Information Retrieval. Special emphasis is done on
the k-Nearest Neighbor classifier due to its large application along the
dissertation.

Chapter 4: Studies on Prototype Selection for the k-Nearest Neigh-
bor classifier. Presents the studies carried out for the k-Nearest
Neighbor classifier in terms of Prototype Selection and imbalanced data.

Chapter 5: Approaches for Interactive Onset Detection and Cor-
rection. Exposes the works related to the interactive methodologies
developed in this dissertation for the particular task of onset detection.
This includes the definition of a novel set of metrics for the quantitative
evaluation of these tasks as well as a set of particular techniques pro-
posed for the interactive detection/correction paradigm.
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Chapter 6: On the use of Onset Information for Note Tracking.
Presents the research work focusing on the use of multimodal informa-
tion for improving transcription. More precisely, this chapter presents
two studies focusing on the use of onset information for correcting the
transcription obtained by Multi-pitch Estimation systems as a post-
processing stage.

Chapter 7: Conclusions and future perspectives. Summarizes the
contributions of this dissertation and studies future perspectives that
could be addressed from this work.

– Page 9 –





Chapter2

Background in Music
Information Retrieval

“A lot of music is mathematics.
It’s balance”

Melvin Kaminsky “Mel Brooks”

This chapter provides the necessary MIR basis on which the rest of the
work is grounded: first, an in-depth discussion of AMT systems including
interactive and multimodal strategies is included; then, the task of Onset
Detection is introduced and reviewed; after that, a section is devoted to the
presentation of the evaluation methodologies of the aforementioned tasks;
finally, the last section presents a general discussion of the topics discussed
in the chapter.

2.1 Review on AMT systems

As commented in Chapter 1, the core of practical AMT systems comprises two
phases, the Multi-pitch Estimation (MPE) stage and the Note Tracking (NT)
step. Although the aim of each stage is di↵erent, both compute and produce
an abstraction of the input signal: MPE obtains a mid-level abstraction
know as frame-level transcription1 that indicates the active pitches present at
each analysis frame of the input signal; NT obtains a high-level abstraction
known as note-level transcription that describes the events in the signal in

1It might be arguable to consider such frame-by-frame analyis as transcription rather
than detection as it does not retrieve any high-level symbolic equivalent of the audio
content. Nevertheless, we shall restrict to this definition as it is commonly considered in
the AMT field.
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terms of a discrete pitch value, onset, and o↵set (Cheng, Dixon, & Mauch,
2015). Figure 2.1 shows a graphical example of such scheme.

Multi-pitch Estimation
(MPE)

Note Tracking
(NT)

Frame-level

transcription
Audio

Note-level

transcription

Figure 2.1: Diagram the core tasks in an Automatic Music Transcription
system.

Given the relevance of these stages in AMT systems, the following sections
are devoted to its explanation and literature revision. Besides, two additional
sections are dedicated to the issues of interactivity and multimodality applied
to AMT.

2.1.1 Multi-pitch Estimation (MPE)

The aim of the MPE process is describing the input signal in terms of the
fundamental frequencies (F0s) or pitches2 present at each analysis frame
considered. The output of such systems is commonly referred to as pitch
activation matrix or, in cases involving probabilistic frameworks, posteriogram.
Figure 2.2 shows an example of such analysis applied to a piece of piano
music.

While this task is considered to be practically solved for cases in which
monophonic music is considered, for the case of polyphonic data it is still
far from being solved since the number of simultaneous pitches is, a priori,
unknown. Furthermore, this task still gets more complicated when tack-
ling polytimbral pieces since the harmonic and spectral structures of the
simultaneous pitch values from di↵erent instruments may not be the same,
thus making it di�cult to make any assumption about the possible spectral
structure of the mixture.

Given the above, MPE systems are usually complex methods that combine
several processing principles. Thus, as reported by Klapuri (2004a), it is not
trivial to propose a single taxonomy which properly classifies the di↵erent
existing methods into isolated categories.

A classical di↵erentiation found in works such as Brossier (2006) or Yeh
(2008) classifies MPE methods depending on whether the signal is processed
in the time domain or in an alternative one (typically frequency domain, but
also other transformed domains such as the Wavelets, Mel filter-banks or
the Constant Q transform may be considered). A third category based on
combinations of both principles is also considered in some cases (de Cheveigné,

2Although fundamental frequency and pitch refer to the same physical concept, the
latter term implies some psychoacoustic connotations of human perception. Nevertheless,
as in other similar AMT works, we are obviating these perceptual nuances to use both
terms indi↵erently.
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(a) Spectrogram analysis of the piece.
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(b) Pitch activation matrix from an multi-pitch analysis of the piece.

Figure 2.2: Example of multi-pitch analysis applied to a piece of piano
music.

2006). Nevertheless, the main issue with this taxonomy is that, given the
aforementioned complexity of MPE, methods rarely rely on time-domain
representation.

Yeh (2008) classifies MPE systems as either an iterative or a joint pitch
estimation: iterative strategies estimate a single pitch value and then can-
cel its residual harmonic structure before starting the process again, until
a converge criterion is reached; joint estimation methods check di↵erent
pitch combinations and hypotheses, without performing any cancellation,
until a solution is achieved. Iterative methods usually provide computa-
tionally e�cient solutions, but joint strategies often yield more accurate
results. Nowadays most MPE techniques fall on the joint category due to
the improvements in terms of computation.

Finally, other authors such as Klapuri (2004a) or Pertusa (2010) classify
these systems in terms of their core processing technique. In this work
we consider the taxonomy proposed by Benetos, Dixon, et al. (2013) that
classifies MPE techniques into three categories. Note that, even with such
categorisation, some methods may not exclusively belong to one of the
families due to the aforementioned issue. We shall now introduce these three
categories and provide brief review of the most relevant methods for each of
them:
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Feature-based methods

This first category comprises the methods which perform the MPE pro-
cess relying on a set of features typically obtained using signal processing
techniques without the further consideration or use of any specific model.
Early examples of AMT systems belong to this category as, for instance, the
work by Moorer (1977) in which comb filters were used to perform pitch
tracking in the frequency domain, but limited to musical duets of monophonic
instruments.

A major limitation in MPE systems is the assumption that pitch compo-
nents are totally harmonic while in practise this may not be always true. In
this regard, Klapuri (2003) proposed a system which does not assume ideal
harmonicity: the spectrum is divided in 18 single bands and pitch is tracked
individually in each band; then, a weighting function combines the decisions
of the di↵erent bands and a general pitch value is obtained; this process is
applied iteratively until a convergence criterion is satisfied.

Pertusa and Iñesta (2008) proposed an iterative scheme for retrieving
the pitch salience function by tracking the single pitch values as the ones
whose spectral structure (harmonic spectrum) smoothly evolves over time.
Yeh (2008) stated the need for considering the noise components of the
spectrum for a proper pitch tracking. In this sense, noise amplitude is
modelled using a Rayleigh distribution while the source is modelled as quasi
harmonic; iteratively, the spectral peaks are classified as either source or
noise; eventually, pitch values are estimated using a joint estimation scheme
which minimises inharmonicity and maximises spectral smoothness. Recent
approaches such as Kraft and Zölzer (2015) still consider peak selection and
pitch salience to obtain the prominent pitch values in the audio source.

Some authors have also considered MPE methodologies that do not
exclusively rely on frequency information but also consider temporal cues
for the tracking process. For instance, Emiya, David, and Badeau (2007)
consider a temporal analysis based on the autocovariance function and a
harmonic spectral analysis, both of them biased towards piano tones by
considering the inharmonicities present in the resonances of that instrument.
Another example is the one by Su and Yang (2015) which also considers
harmonic spectral search while the periodicity analysis is performed in the
quefrency domain.

Other techniques that may also be categorised within this ground are
the ones that, instead of manually processing the initial features, use some
type of classification scheme. One of the earliest examples of such systems is
the one proposed by Marolt (2004) in which a set of networks comprising
adaptive oscillators were used for MPE and another group of neural networks
was considered for pitch tracking.

Poliner and Ellis (2007) used a scheme based on Support Vector Machines
(SVMs) to perform the pitch tracking: 87 one-versus-all SVM classifiers were
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trained using a set of coe�cients directly derived from the spectrum of the
signal at issue. Additionally, a Hidden Markov Model (HMM) was considered
for smoothing the output of the classifier. Similarly, Nam, Ngiam, Lee, and
Slaney (2011) proposed a system based on SVM classification and HMM
postprocessing but considering a set of features learned from a Deep Belief
Network (DBN) applied to the spectrogram of the signal at issue. More
recently, Kelz et al. (2016) studied the influence of the input representation for
MPE when considering deep neural networks and convolutional architectures.

Böck and Schedl (2012) consider the use of Recurrent Neural Network
(RNN) for the estimation process: two spectrogram analyses of the same
input signal (only di↵ering in the analysis parameters) are obtained and
processed through a set of semitone band-pass filters; the resulting coe�cients
are the features for the network, which consists of a set of Bidirectional Long
Short-Term Memory (BLSTM) neural networks that models the temporal
dependencies in the pitch trajectories.

Finally, a remarkable example of unsupervised learning applied to AMT
may be found in Berg-Kirkpatrick, Andreas, and Klein (2014) in which
spectral profiles and temporal envelopes are jointly learned through the use
of random variables for modeling temporal envelopes, spectral structure,
duration, velocity, and activation state.

Statistical model-based methods

This second family of techniques models the MPE problem within a statistical
framework. The basic idea is to, given a set of possible pitch activations,
finding the subset that maximises a particular statistical criterion in each
analysis frame.

Formally, being x a frame of the signal at issue and C the set containing
all possible pitch combinations, the probability of a subset C 2 C of properly
describing x can be described in terms of Bayesian statistics as:

P (C|x) = P (x|C) · P (C)

P (x)
(2.1)

where P (x|C) stands for the likelihood of frame x given subset C, P (C)
for the prior probability of having subset C, and P (x) for the marginal
probability of frame x.

Having modeled the MPE as a statistical problem, the estimation is
now ideally reduced to a maximum-a-posteriori (MAP) estimation (Emiya,
Badeau, & David, 2010; Benetos, Dixon, et al., 2013):

CMAP = argmax
C2C

P (x|C) · P (C)

P (x)
= argmax

C2C
P (x|C) · P (C) (2.2)

Furthermore, in case no prior probability is known, this problem is
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typically reduced to a maximum likelihood (ML) estimation :

CML = argmax
C2C

P (x|C) (2.3)

Some particular examples following Bayesian principles for MPE may be
found in works such as Cemgil (2004) or Yoshii and Goto (2012). Alvarado
and Stowell (2016) constitutes a particular approach due to its consideration
of Gaussian processes for modelling the statistical distributions.

Other examples relying on a statistical framework may be found in the
literature: Duan, Pardo, and Zhang (2010) proposed an iterative scheme
in which a general likelihood function is derived as likelihood of peak and
non-peak regions in the spectrum and a maximum likelihood criterion is
applied; Peeling and Godsill (2011) proposed a set of generative models for
solving the task, being one of them devoted to modeling the spectral shape
of sinusoids and noise floor in the spectrum and another one to evaluate the
pitch candidates using a likelihood function; or the system by Koretz and
Tabrikian (2011) who proposed an iterative scheme in which, for each iteration
of the estimation process, a general criterion based on the combination of
maximum likelihood and maximum a posteriori tracks one single pitch while
considering the rest as interferences.

Spectrogram factorisation-based methods

This last family of methods is based on the idea that an initial matrix can
be (approximately) decomposed into the product of two simpler matrices.
Due to its large application, such techniques have been largely studied in
many disciplines such as algebra or signal processing.

Matrix factorisation was first introduced to MPE by Smaragdis and
Brown (2003) under a Non-negative Matrix Factorisation (NMF) framework.
Conceptually, in the context of AMT, one of the matrices models the set
of pitch activations (the actual MPE) and the other one approximates the
spectral bases of the instruments in the signal. Formally, the non-negative
spectrogram S 2 RK⇥N

+ of K frequency bins and N analysis frames of signal
s can be approximated as:

S ⇡WH (2.4)

where matrix W 2 RK⇥R

+ models the aforementioned spectral bases, matrix

H 2 RR⇥N

+ the pitch activations and the dimensions satisfy R << K,N .
Figure 2.3 exemplifies this decomposition process.

This particular approach proved to be quite e↵ective for MPE, thus many
research works in the literature have considered similar approaches with
particular adaptations. For instance, Vincent, Bertin, and Badeau (2010)
propose an NMF-based decomposition that includes additional constraints
about the level of harmonicity and spectral smoothness in the resulting
matrices. Similar to this, Weninger, Kirst, Schuller, and Bungartz (2013)
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Figure 2.3: Example of a matrix factorisation process.

also proposed a supervised NMF with spectral templates for pairs of pitch
and instrument, together with constraints about harmonicity, sparseness,
and temporal continuity; additionally, the results of the NMF analysis
are then used as features for an SVM classifier that performs the pitch-
tracking task due to the reported robustness of such schemes. Dessein, Cont,
and Lemaitre (2010) explored NMF in real-time transcription applications,
leading to accuracy results comparable to o✏ine NMF systems. The work
by Arı, Şimşekli, Cemgil, and Akarun (2012) proposes a method for e�ciently
training an NMF-based transcription model in the context of large scales
music collections. As a last example, Cheng, Mauch, Benetos, and Dixon
(2016) proposed a system that, in addition to the NMF decomposition,
provides an note attack/decay model biased towards piano sounds to improve
the obtained results.

The Probabilistic Latent Component Analysis (PLCA) model, which
is the probabilistic extension of NMF, has also attracted the attention of
a number of authors for years. The basic idea is that the input time-
frequency representation is considered a bivariate probability distribution
(time and frequency dimensions) to be able to use statistical techniques for
its analysis (Smaragdis, Raj, & Shashanka, 2006). Some examples of remark-
able works considering this framework are the ones that follow: Fuentes,
Badeau, and Richard (2011) proposed a system that considers the temporal
variation of both the spectral envelope and pitch of the harmonic events;
Grindlay and Ellis (2011) addressed the issue of multi-instrument polyphonic
transcription and considered the spectral structure of di↵erent instruments
during the training stage; Benetos and Dixon (2012) introduced a similar
multi-instrument transcription approach but introducing multiple spectral
templates per pitch and instrument; this last approach has subsequently
been improved introducing note models with the use of HMMs (Benetos &
Dixon, 2013); finally, due to the computational cost this technique implies,
some works such as Benetos and Weyde (2015) have addressed this issue and
proposed e�cient versions of PLCA schemes.

Another commonly consider variant to the NMF methodology is the
so-called sparse coding. This framework basically performs very restrictive
constraints about the sparseness in the resulting matrices obtained. Some
works addressing the MPE problem from this perspective are the ones by
Lee, Yang, and Chen (2012), O’Hanlon, Nagano, and Plumbley (2012) and
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Cogliati, Duan, and Wohlberg (2015), among others.

2.1.2 Note Tracking (NT)

As previously commented, the aim of the NT stage is to process the results
obtained in the MPE one to provide a note-level description of the signal
in terms of discrete pitch values, onset points, and o↵set events such as the
piano-roll description shown in Fig. 2.4. However, although this stage is
the one providing musically-meaningful representations, it has not been as
thoroughly studied as the MPE one. Due to the relevance of this process
in the dissertation, we now provide a revision of the di↵erent techniques
considered for this process.
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(a) Result of a simple thresholding process for Note Tracking.
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(b) Ground truth data of the piece.

Figure 2.4: Example of Note Tracking analysis applied to the piece in
Fig. 2.2.

A very simple but yet commonly considered method consists of binarising
the MPE result by directly applying a global threshold to the pitch activations:
values over the threshold are considered active pitch elements while the ones
below it are considered silence. Some works considering this approach are
the ones by Vincent et al. (2010) and Grindlay and Ellis (2011). However,
due to its simplicity, this type of approaches are not robust enough against
errors that might occur in the MPE stage as, for instance, false voice alarms
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or over-segmentation of long activations.
In this regard, alternative techniques which postprocess the initial binari-

sation are also considered to palliate those types of errors. Most commonly,
these techniques are based on combinations of minimum-length pruning pro-
cesses for eliminating spurious detections and, occasionally, gap-filling stages
for removing small gaps between between consecutive note events. Quite
often, these techniques are implemented as rule-based systems. For example,
works by Dessein et al. (2010) and Benetos and Weyde (2015) considered
simple pruning stages for removing false detections, while the system in
Bello, Daudet, and Sandler (2006) studied a more sophisticated set of rules
comprising both pruning and gap-filling stages.

Probabilistic models have also been considered for this NT process. In
this regard, HMMs have reported remarkably good results in the literature:
the work by Ryynänen and Klapuri (2005) considered HMMs to model note
events in terms of their attack, sustain, and noise phases; Cheng et al. (2015)
also proposed an HMM with four stages to model the phases of a musical
note; finally, other works such as Poliner and Ellis (2007); Benetos and Dixon
(2013); Cañadas-Quesada, Ruiz-Reyes, Vera-Candeas, Carabias-Orti, and
Maldonado (2010) proposed systems in which binary HMM models used for
modeling events as either active or inactive.

Alternative methodologies to the commented ones may also be found in
the literature. For instance, Raczyński, Ono, and Sagayama (2009) proposed
a probabilistic model based on dynamic Bayesian networks that takes as input
the result of an NMF analysis. Other examples are the proposal by Duan
and Temperley (2014) that models the NT issue as a maximum likelihood
problem, the one by Pertusa and Iñesta (2012) that addresses this task by
favoring smooth transitions among partials, or the work by Weninger et al.
(2013) that proposed a classification-based approach for the NT stage based
on SVMs taking as features the results from an NMF analysis.

It must be noted that, in general, MPE systems are rather imprecise in
terms of timing. Examples of typical issues are their tendency to miss note
starts, mainly due to the irregularity of the signal during the attack stage,
the over-segmentation of long notes or the merge of repeated notes (e.g.,
tremolo passages) into single events. Hence, the use of timing information in
this context is clearly necessary and useful.

Under this premise some works have considered the use of onset informa-
tion to palliate such issues. Examples of works taking advantage of onset
information may be found in Marolt and Divjak (2002), which considers onset
information for tackling the problem of tracking repeated notes, the work
by Emiya, Badeau, and David (2008), in which onset information is used
for segmenting the signal before the pitch estimation phase, the proposal by
Iñesta and Pérez-Sancho (2013), which postprocesses the result of the MPE
stage with the aim of correcting timing issues with onset information, or
the system by Grosche et al. (2012), which also considers onset information
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under an HMM framework. In addition, some authors such as Benetos and
Dixon (2011) have considered o↵set information additional to the onset one
to still improve the obtained results.

2.1.3 User interaction

As introduced, user interaction has been recently considered as an alternative
framework to tackle some issues found in classical autonomous systems.
However, this change of paradigm has some implications (Kirchho↵, 2013):
firstly, one of the challenges in interactive systems is to find areas in which
the user input can be beneficial; secondly, this paradigm is not applicable to
the analysis of large databases given that these systems are not completely
autonomous; lastly, as the success of the task can be guaranteed at the
expense of user e↵ort, one of the challenges remains in developing approaches
that optimize the user e↵ort invested (Iñesta & Pérez-Sancho, 2013).

Among the MIR literature, a large number of authors have explored the
use of interactivity in the particular field of source separation. For example,
Smaragdis and Mysore (2009) proposed a system in which the main melody
is separated aided by its hummed version provided by an external user.
With the same aim of separating the main melody of the signal, Fuentes,
Badeau, and Richard (2012) considered the use of a mid-level representation
of the signal in which the user notes such melody. Another example may
be found in Ozerov, Vincent, and Bimbot (2012) in which a framework for
incorporating prior information about the number and types of sources to a
source separation scheme is implemented.

In contrast to the source separation problem, few authors have considered
the use of interactivity applied to AMT. One of the first examples is the one
in Dittmar and Abeßer (2008) who proposed an interactive system for the
transcription of melody, bass, chord, and percussion that allows to adjust
the tracked notes to an estimated beat grid and to the diatonic scale derived
from the tonality (particularly, the key of the piece) specified by the user.
Nevertheless, no formal evaluation was proposed in this work.

Kirchho↵, Dixon, and Klapuri (2012) proposed an study comparing two
types of user input for an NMF transcription system: in the first variant
the user specifies the instruments present in the piece, thus a set of learned
instrument spectra are used for the decomposition; in the second variant
the user is allowed to label notes in the piece as belonging to di↵erent
instruments, and thus the instrument spectra is directly estimated from
those annotated notes. As a conclusion, the latter variant provided better
results than the former one. In a further development, Kirchho↵, Dixon, and
Klapuri (2013) expanded the previous one to minimise the user intervention
by reducing the amount of data required to be labelled. More precisely, this
approach reduced the need for labeling examples at each pitch value and
instrument with methods such as replicating spectra from other labelled
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examples, interpolating partial amplitudes from adjacent notes or adapting
pre-learned spectra, among others.

Iñesta and Pérez-Sancho (2013) proposed an AMT system for monotim-
bral polyphonic music transcription in which the user is allowed to interact
with note onsets: assuming that the user corrects the estimation in a left-
to-right fashion, an interaction at a certain point implicitly validates all
estimations before that mark and the results after that point are recomputed
somehow taking into consideration the implicitly validated information.

A recent example is the one by de Andrade Scatolini, Richard, and Fuentes
(2015) in which a PLCA system is proposed in which the user interaction
consists in providing a transcription of an excerpt of the signal for training
the model, being the remaining part transcribed using this model.

Figure 2.5: Screenshot of the computer-assisted transcription tool by Pérez-
Garćıa et al. (2011) for monotimbral polyphonic music.

Finally, it must be pointed out that, besides research examples, some
authors have also developed tools for performing interactive transcription of
music pieces. For instance, Pérez-Garćıa et al. (2011) implements the mono-
timbral polyphonic transcription system3 described in the paper by Iñesta
and Pérez-Sancho (2013) and shown in Fig. 2.5. Also, the work by Mauch et
al. (2015) presents the so-called Tony4 tool (Fig. 2.6 shows a screenshot of
the system) specifically designed for melody transcription. Finally, the work
by Dixon (2001) presents a visualisation tool for interactively correcting beat

3http://miprcv.prhlt.upv.es/index.php?option=com content&task=view&id=
234&Itemid=205

4https://code.soundsoftware.ac.uk/projects/tony
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information obtained from a beat tracking system.

Figure 2.6: Screenshot of the Tony software (Mauch et al., 2015) for
computer-assisted melody transcription.

2.1.4 Multimodality

In practice, human transcribers do not only rely on a single description of
the piece to transcribe. Intuitively, any complementary information that
narrows the uncertainty of performing a transcription from scratch clearly
simplifies this task: for instance, knowing the tonality and key of a certain
piece makes particular notes more likely to appear than others (Krumhansl,
2001). Similarly, other descriptions such as chords, instrumentation or
beat information may also provide certain constraints in the search space
of the AMT system (Cambouropoulos, 2010). Actually, in practice most
AMT systems make silent assumptions about those parameters to make the
transcription problem tractable (Kirchho↵, 2013). Thus, the use of MIR
processes to provide the required additional descriptions or even considering
interactive methodologies in which the user provides these high-level pieces
of musical information stands as a clear need to develop complete AMT
systems.

So far, onset information has been one the most commonly considered
complementary descriptions (Benetos, Dixon, et al., 2013). As aforemen-
tioned, onset information is essential for the correct temporal description of
the signal, and it is typically considered in the NT stage of AMT systems.
O↵set information has been also considered in some works, but this particular
task has, by far, received less attention than the former one.
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Timbre information has been also been studied as a way of improving
transcription, especially in factorisation-based MPE approaches: although
those approaches are commonly trained following an unsupervised fashion,
some authors include timbre templates in the process. An example of this
methodology may be found in the system by Cazau, Revillon, Krywyk,
and Adam (2015) in which the authors propose a PLCA-based system that
incorporates information about the three types of instruments considered:
piano, guitar, and zither. Also, Cazau, Wang, Chemillier, and Adam (2016)
explored the use of timbral information as a prior for an MPE system based
on PLCA for the particular case of the marovany zither. This last work also
studied the use of additional constraints for the AMT system by incorporation
both music language models, which shall be later introduced, and modelling
the style of the player.

Beat information is another source of information whose utility in AMT
has been considered by researchers. For instance, Raphael (2005) considered
a system for singing voice transcription through a graphical model that jointly
estimates pitch, rhythm, temporal segmentation, and tempo information.
Other examples of works considering beat information but focusing on
polyphonic music is the one by Kameoka, Ochiai, Nakano, Tsuchiya, and
Sagayama (2012), which combines tempo and onset information with the
MPE considering a Bayesian framework, and the work by Kameoka, Nakano,
et al. (2012), which incorporates musically-meaningful constraints based on
note onsets, beat locations, and tempo to the activation matrix of an NMF
process, among others.

As commented previously, tonality and key implicitly provide a certain
probability distribution of a particular pitch value to appear in the piece. In
this regard, some researchers have considered the use of that principle to
further incorporate restrictions and knowledge to AMT schemes. Ryynänen
and Klapuri (2005) proposed a system in which key information is used
for estimating possible note transitions in the transcription of melody and
bass lines. More recently, Benetos, Jansson, and Weyde (2014) considered a
scheme in which key information is considered within a PLCA-based acoustic
model rather than in a postprocessing fashion.

Chord information has also been studied as it also provides a description
of the piece in terms of harmony. Laaksonen (2014) proposed a system for
melody transcription that considers chord information for segmenting the
audio signal into single units and then applying a rule-based approach for
estimating the notes of the melody in each segment. Raczyński, Vincent,
Bimbot, and Sagayama (2010) proposed a probabilistic framework that jointly
models the temporal dependencies between the notes and the underlying
chords based on musicological models in a Bayesian framework. More recently,
the same authors proposed an improvement of this work for solving a series
of limitations and approximations in the previous work (Raczyński, Vincent,
& Sagayama, 2013).
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Finally, in a similar way to language models for speech recognition, music
language models have been considered as a possible tool for improving AMT
results by modeling music dependencies in a symbolic domain (Cemgil, 2004).
However, the long-term dependencies found in music as well as the complexity
of modeling concurrent pitches in polyphonic music due to the combinatorial
issue it supposes have limited the use of models typically considered in speech
recognition such as n-grams or HMMs. Boulanger-Lewandowski, Bengio,
and Vincent (2012) proved that an appropriate scheme for tackling them is
considering RNNs for modeling time dependencies and energy-based methods
as Restricted Boltzmann Machines (RBM) for the polyphony issue. Based
on that, Sigtia et al. (2014) proposed a music language model in which
prior information given by the RNN-based symbolic model is incorporated
to a PLCA-based MPE scheme that improves transcription results when
compared to exclusively relying on the acoustic model. More recently, the
same authors proposed a graphical probabilistic model that gathers the
acoustic model (frame-level classifier) with the symbolic one within a hybrid
architecture so that training can be jointly done (Sigtia et al., 2015). Finally,
a last example can be found in the work by Ojima, Nakamura, Itoyama, and
Yoshii (2016) in which a hierarchical Bayesian model that fuses an NMF
acoustic model with an HMM symbolic one that relates pitch and chord
information is studied.

2.2 Onset Detection

Onset detection stands for the automatic estimation of the starting points
of note events in music audio signals (Bello et al., 2005). Despite its con-
ceptual simplicity, onset information has proved to be undoubtedly useful
for a wide range of MIR tasks as, for example, beat detection (Ellis, 2007),
tempo and meter estimation (Alonso, Richard, & David, 2007) or audio
transformations (Dorran & Lawlor, 2004), among others. In this regard, the
particular interest of this information in this work is its utility in the field of
AMT (Benetos & Dixon, 2011). Figure 2.7 shows an example of audio signal
together with its onset events.

Onset estimation approaches may be categorised in two families depen-
ding on the principle in which the process is based (Chuan & Chew, 2008;
Schlüter & Böck, 2014): methods considering a signal processing approach
or schemes based on machine learning techniques.

While most research e↵orts have been typically devoted to the signal
processing paradigm, some examples may be found in the literature for the
machine learning case. In this context, one of the earliest examples of this
paradigm is the work by Marolt, Kavcic, and Privosnik (2002) in which
a set of neural networks were considered for the task taking as input the
bands of the signal obtained from a bank of auditory filters. Lacoste and
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Figure 2.7: Example of onset detection process. Dashed vertical lines
represent the onset events in the signal.

Eck (2007) also exploited the use of neural networks but meant for obtaining
an enhanced spectrogram representation for the onset detection process.
Kapanci and Pfe↵er (2006) proposed a system for tracking soft onsets based
on a hierarchical architecture of SVM classifiers. Giraldo, Ramı́rez, and
Rollin (2016) proposed an ensemble method evaluating di↵erent classifiers
for this particular task, being an SVM-based ensemble the one achieving
the best results. Finally, more recent approaches based on Deep Learning
have also been considered as in the works by Schlüter and Böck (2013, 2014)
in which Convolutional Neural Networks are applied to the spectrogram
of the signal at issue by considering it an image, or the works by Eyben,
Böck, Schuller, and Graves (2010); Marchi et al. (2014) which exploit the
use of RNNs, more precisely Long Short-Term Memory neural networks, for
performing a time-aware classification scheme to track onset events.

On the other hand, signal processing schemes generally base its per-
formance on a two-stage approach (Glover, Lazzarini, & Timoney, 2011;
Zhou, Mattavelli, & Zoia, 2008): a first stage known as Onset Detection
Function (ODF) that processes the target signal computing a time series O(t)
whose peaks represent the positions of the estimated onsets by measuring the
change in one or more audio features; and a second stage called Onset Selec-
tion Function (OSF) that evaluates O(t), selects the most promising peaks
as onsets and retrieves them as a list of L time stamps, (o

i

)L
i=1. Figure 2.8

graphically shows this process.

Detection Function
(ODF)

Selection Function
(OSF)

O(t)
Audio (o

i

)L
i=1

Figure 2.8: Diagram a two-stage onset detection system. The Detection
stage processes the initial audio piece, thus retrieving time series O(t); this
function is then evaluated by the Selection stage that eventually retrieves
the list of estimated onset events (o

i

)L
i=1.

Due to its relevance in this work, we shall thoroughly describe this process
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in the following sections.

2.2.1 Onset Detection Function (ODF)

As aforementioned, the ODF stage computes time series O(t) by measuring
changes in one or more audio features that depict the presence of onsets
in the signal. This O(t) function is typically meant to depict likely onset
positions as local maxima in the function, thus a spiky shape is generally
expected for this time series. Figure 2.9 shows an example of this O(t)
function.
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Figure 2.9: Example of time series resulting from an Onset Detection
Function analysis.

Among the di↵erent possible features, one of the most commonly consi-
dered ones is signal energy. Under this principle the idea is tracking energy
rises in the signal that might depict a note onset event. Some works con-
sidering such representation are the ones by Klapuri (1999); Goto (2001);
Duxbury, Sandler, and Davis (2002); Pertusa, Klapuri, and Iñesta (2005).

The use of signal energy for onset detection has been reported to achieve
remarkably good results in the case of sounds with sharp attack phases, such
as plucked instruments (e.g., guitar, harpsichord or balalaika) or struck in-
struments (e.g., piano, marimba or clavichord). Nevertheless, for instruments
depicting soft attack phases (e.g., non-staccato violin or hurdy-gurdy), this
approach does not generally perform that well. In such situations, onset
events are alternatively tracked considering changes in the phase information
of the signal. Examples of works considering such principle are the one
by Bello and Sandler (2003) or the work by Holzapfel, Stylianou, Gedik, and
Bozkurt (2010).

Alternatively, pitch information has been also considered for this task. In
this case, the idea is to obtain a contour of the pitch information of the signal
to then track changes in that contour. An example of this principle is found
in the work by Collins (2005) in which an onset detector and segmentation
scheme was proposed for monophonic data.

Finally, it must be mentioned that some methods consider the use of
combinations of the di↵erent approaches previously described. Some examples
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of works following this approach are the ones by Bello, Duxbury, Davies, and
Sandler (2004); Zhou and Reiss (2007); Benetos and Stylianou (2010).

2.2.2 Onset Selection Function (OSF)

The OSF stage evaluates the O(t) time series resulting from the ODF process
and selects the most promising points as onsets. Ideally, if the ODF method
would perfectly track the onset events present in the signal, this stage would
not be required. However, given that no ODF is capable of doing so, the
OSF is required in order to discriminate between actual onsets and artifacts,
thus constituting a key point in the overall performance of the onset tracking
system (Rosão, Ribeiro, & Martins de Matos, 2012; Dixon, 2006).

In general, OSF methods evaluate the O(t) function by seeking for peaks
above a certain threshold, which is generally considered to eliminate noisy
elements and artifacts that may have appeared during the ODF stage. Peaks
are generally tracked by seeking for local maxima in the O(t) function, but
as this process is not causal, some authors considered threshold-triggering
processes so that they can be used in real-time processing systems (Stowell
& Plumbey, 2007). Figure 2.10 shows the di↵erence between these two OSF
methods applied to an O(t) function when considering a basic thresholding
process.

Regardless of the peak picking methodology considered, OSF techniques
generally di↵er in the way this threshold is obtained. The most basic approach
consists in manually establishing a static threshold value (Klapuri, 1999), as
the one in Fig. 2.10. This technique does not consider any particularities of
the signal in the sense that no prior knowledge is taken into account but the
value is simply heuristically set.

In order to consider the particularities of the signal, other authors consider
the possibility of computing some statistical descriptor on the O(t) function
and set it as the static threshold value (Böck et al., 2012). Typical descriptors
considered are the mean or the median of the function, being the latter
a commonly addressed one as it has been thoroughly studied for noise
deletion (Kauppinen, 2002).

The issue with the aforementioned strategies is that they do not consider
the temporal evolution of O(t): once the threshold value is set, this value
does not change throughout the function, which may be inappropriate. Thus,
adaptive techniques that consider the temporal evolution of the O(t) are also
used. Instead of obtaining a global static threshold value, these methods
consider a sliding window, whose size is generally set in an empirical way, for
performing the analysis at each point of the O(t) function (Duxbury, Bello,
Davies, & Sandler, 2003). As before, a statistical descriptor is considered
for obtaining the threshold value for each window, being the median value a
typically considered one. Figure 2.11 shows an example of both the sliding
window analysis and the resulting O(t) function.
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Figure 2.10: Example of static threshold Onset Selection approach. Figures
compare the obtained onsets (#) when the Selection Function estimates onsets
as local maxima above a certain threshold (a) or at the point in which a
threshold is surpassed (b).

Extending these ideas, some authors have considered more sophisticated
ideas to improve the performance of the systems. Examples of such work
comprise the one by Bello et al. (2006), who consider an OSF strategy that
includes low-pass filtering for O(t) to additionally remove noisy peaks in the
function, or the work by Dixon (2006), who considers an additional set of
thresholds for further discarding noisy elements.

Finally, it must be mentioned that machine learning techniques have
been also considered in opposition to the commented hand-crafted metho-
dologies. Some examples are the work by Abdallah and Plumbley (2003),
which considers an HMM-based clustering approach to evaluate the result
of an ODF process, or the work by Böck, Schlüter, and Widmer (2013),
in which an RNN (unidirectional and bidirectional for non-real time and
causal processing, respectively) is trained for evaluating the result of a
state-of-the-art ODF method.
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(b) Resulting threshold (dashed line) when considering the median
statistical descriptor and a window of W = 0.5 s.

Figure 2.11: Example of adaptive threshold Onset Selection based on a
sliding window.

2.3 Evaluation methodologies

A large number of the tasks addressed by the MIR community imply a high
degree of subjectivity: assessment for tasks such as music similarity, genre
classification or mood detection is not easily addressable since even for human
beings there is no a clear consensus about what makes two pieces similar or
where the actual frontier of a music genre is.

Ideally, AMT should not exhibit such degree of subjectivity: one would
expect to obtain an exact copy of the original score of a piece after applying
an AMT to its audio version. However, as proved by List (1974), even expert
human transcribers di↵er usually when annotating music pieces, especially
in relation to rhythmic aspects of music. This fact points out that di↵erent
annotations may be perfectly valid despite showing variations among them.

Nevertheless, the MIR community has been largely studying the develop-
ment of measures to objectively assess and compare di↵erent MIR systems,
being the annual Music Information Retrieval Evaluation eXchange (MIREX)
contest5 the most representative example of such e↵orts.

The following sections introduce the MIREX measures related onset

5http://www.music-ir.org/mirex/wiki/MIREX HOME
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detection and to AMT schemes as they constitute the ones of interest for
the rest of the work.

2.3.1 Onset detection

As frequently reported in the literature, the start of a musical event is not
a specific point in time but rather a time lapse known as rise or transient
time (Lerch & Klich, 2005; Bello et al., 2005). This is graphically shown in
Fig. 2.12: a sound with a typical Attack-Sustain-Release envelope is shown;
the onset position o

i

is marked as being in the middle of the transient, but
any of the points fulfilling o

i

± W
o

is equally valid as they belong to the
transient time as well.
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Figure 2.12: Example of onset event in a sound showing a typical Attack-
Sustain-Release envelope. Position o

i

reveals the point selected as onset
while range [o

i

�W
o

, o
i

+W
o

] contains the rest of the possible positions for
the onset event.

Owing to this loose definition, onset detection algorithms are given a
certain time lapse in which the detection is considered to be correct. Most
commonly, this acceptance window has been set to W

o

= 50 ms following
the criterion in the MIREX contest. More recent works have considered
more restrictive tolerance windows as, for instance, the one by Böck et al.
(2012) in which this value is lowered to W

o

= 30 ms as the authors point
out it represents a proper time lapse for human beings to be able to detect
onsets. Nevertheless, except where noted, this Thesis work considers the
W

o

= 50 ms tolerance window considered by the MIREX contest.
Let us now define True Positives (TPs) as the detected onsets that match

a reference annotation within the W
o

tolerance window, False Positives (FPs)
as the detected onsets not matching any reference annotation, and False
Negatives (FNs) as the reference annotations not matching any detected
element. With such concepts, onset detection systems are typically assessed
in terms of their Precision and Recall using Eqs. 2.5 and 2.6, respectively.

P =
TP

TP + FP
(2.5)
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R =
TP

TP + FN
(2.6)

Given that these two measures are generally opposed, the F-measure is
usually considered for obtaining a global measure that properly summarizes
the performance of system. This metric is obtained as the harmonic mean of
both Precision and Recall measures:

F
�

= (1 + �2) · P · R
�2 · P + R

(2.7)

being � a parameter for giving more relevance to one of the previous measures.
Most often, a weight of � = 1 (both measures are equally weighted) is typically
considered, giving the following expression:

F1 =
2 · P · R
P+ R

=
2 · TP

2 · TP + FP + FN
(2.8)

Finally, Fig. 2.13 shows the best and worst results obtained for the three
measures considered for the onset detection task in each of the editions of
the MIREX contest. In general these figures suggest that some systems show
a remarkably accurate performance, especially in the latest editions of the
contest with results of F1 ⇡ 0.9, although there is still room for improvement.
Nevertheless, it must be noted that the MIREX dataset remains exactly
the same since its inception, thus not being realistic results in the sense of
representing real-life applications.

2.3.2 Automatic Music Transcription (AMT)

Evaluation of AMT systems is typically performed considering a piano-roll
representation, such as the one in Fig. 1.1: for each analysis frame, the
system outputs the set of both active and inactive pitch elements, which are
then compared to the set of annotations.

With such representation two di↵erent types of evaluation may be per-
formed (Bay, Ehmann, & Downie, 2009): a frame-based assessment that
evaluates the correctness of the estimation in a frame-by-frame basis, or a
note-based evaluation that characterizes the events in the piano roll as notes
defined by an onset, an o↵set, and a pitch value and compares them to the
events in the annotations.

These two assessment methodologies, which also constitute the ones
considered in the MIREX contest, are explained in the following sections.

Frame-based

A first figure of merit defined for the frame-based analysis is the so-called
Accuracy. As in the onset detection case, this figure is defined in terms of
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Figure 2.13: Results of the onset detection task for the di↵erent MIREX
editions. Only best and worst results per year are shown. No information
about the 2008 edition is included as the task was not considered for the
contest.

TPs, FPs, and FNs as follows:

Accuracy =
TP

TP + FP + FN
(2.9)

being now TP a pitch element detected as active that matches an active
pitch annotation within less than half semitone (±3 % in terms of pitch
value).

However, as reported by Bay et al. (2009), this Accuracy measure is not
descriptive in terms of error analysis. In that sense, other figures of merit
have been devised to perform such type of analysis and thus complement the
aforementioned metric.

The first of them is the frame-level transcription error and was initially
used by Poliner and Ellis (2007) for AMT. This metric summarizes the total
number of errors in the estimation as a single value and is defined as:

E
tot

=

P

T

t=1max(NGT(t),NEST(t))�NCOR(t)
P

T

t=1NGT(t)
(2.10)
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where NGT(t) stands for the total number of active pitches at frame t in the
reference annotations, NEST(t) is the total number of estimated active pitches
at frame t, and NCOR(t) is the number of correct TPs for that frame. E

tot

is not bounded as errors in the estimation may suppose this metric to span
over the unit. However, the value of 0 occurs when a perfect transcription is
reported and a value of 1 when no single pitch value is correctly tracked.

To further analyze the errors of the system, E
t

may be decomposed into
three types of di↵erent errors: substitution errors, missed elements errors,
and false alarm errors. We shall now introduce these types of errors.

The substitution error rate accounts for the number of annotated pitch
elements for which an incorrect pitch value was returned instead. This rate
is obtained as:

E
sub

=

P

T

t=1min(NGT(t),NEST(t))�NCOR(t)
P

T

t=1NGT(t)
(2.11)

The missed errors figure of merit describes the amount of annotated pitch
elements that are missed by the AMT system but for which no substitution
value is given. This metric is related to the Recall one in Eq. 2.6 and is
obtained as:

E
miss

=

P

T

t=1max(0,NGT(t)�NEST(t))
P

T

t=1NGT(t)
(2.12)

The last component of these errors is the false alarm error rate. This
metric accounts for the extra pitch elements detected by the AMT system
that are not part of the substitution elements set and is related to the
Precision one in Eq. 2.5. This measure may be obtained as:

E
fa

=

P

T

t=1max(0,NEST(t)�NGT(t))
P

T

t=1NGT(t)
(2.13)

Finally, Fig. 2.14 shows the results obtained in the di↵erent MIREX
editions in terms of these frame-based evaluation measures introduced. Due
to the large number of results, only the best and worst results obtained for
each metric and edition of the context are included. As a very broad and
qualitative analysis, it can be seen that the accuracy of the systems has
not significantly improved for a number of years, as if a glass ceiling had
been reached as suggested by Benetos et al. (2012). Nevertheless, it can be
checked that the total number of errors committed by the systems (E

tot

) has
remarkably decreased, e↵ect that seems to be mostly due to the reduction
in both the number of false alarm errors (E

fa

) and the number of missed
events (E

miss

).

Note-based

As aforementioned, note-based metrics assess AMT systems by considering
note events described by an onset time, an o↵set time, and a pitch value
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Figure 2.14: Results of the frame-based metrics for the multi-pitch detection
task for the di↵erent MIREX editions for general music. Only best and worst
results per year are shown.

rather than single frames in the piano roll.
In such terms, an annotated note event is considered to be correctly

tracked (a TP event) if there exists an estimated note event that accomplishes
three conditions: (i) their pitch values di↵er in less than a quarter of tone
(±3 % in terms of frequency values); (ii) the onset time of the estimated
event is within a 100ms range of the onset of the annotated event; and
(iii) the o↵set value of the estimated event is within a 20 % range of the
o↵set of the annotated event. In a similar sense to onset detection a to the
frame-base AMT measures, FPs occur when estimated events do not have a
corresponding note among the annotated corpus and FNs when no annotated
event has a corresponding detected note. With these definitions, the figures
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of Precision, Recall, and F-measure are derived using Eqs. 2.5, 2.6, and 2.8,
respectively.

Alternatively, an evaluation methodology that avoids the o↵set criterion is
considered. This is referred to as a onset-based evaluation and, although this
relaxation in the assessment clearly implies an improvement in the figures,
this is typically done as onset events are considered to be more musically
relevant than o↵set information.

In both cases, a last figure of merit is considered to further analyze the
results. This is known as Overlap Ratio (OR) and basically compares how
well estimated and annotated note events overlap. This measure is only
computed for the TP events as this overlapping assessment requires of a
correspondence between estimated and annotated events. For each i note
event of the set, this measure is obtained as:

OR
i

=
min(tGT

i,o↵, t
EST
i,o↵ )�max(tGT

i,on, t
EST
i,on )

max(tGT
i,o↵

, tEST
i,o↵

)�min(tGT
i,on

, tEST
i,on

)
(2.14)

where t
i,on and t

i,o↵ refer to onset and o↵set times of the i-th event, respec-
tively, and super indexes EST and GT indicates whether the note event comes
from either the estimated or the annotated set. A global OR is eventually
obtained as the average of all individual scores.

Finally, the results obtained for the note-based assessment in the MIREX
contest are now included. The evaluation in MIREX is done using two di↵e-
rent datasets: a first one considering a general set of instruments (bassoon,
clarinet, flute, horn, oboe, violin, cello, guitar, saxophone, and electric bass
guitar) and a second one comprising a set of piano recordings. The best and
worst results obtained for each of the two datasets in the di↵erent editions of
the context are shown in Figs. 2.15 and 2.16 for the general and piano sets,
respectively.

In a qualitative analysis of such figures, it can be checked that Note
Tracking (NT) still shows a remarkable room for improvement: although in
the last editions (2014, 2015, and 2016) there is a remarkable improvement
with respect to the previous editions, especially in terms of the F1 measure,
results still are far from being perfect. This e↵ect is even more accused when
considering the onset-o↵set evaluation criterion as results in terms for the
F1 rarely go above the value of 0.5, especially for the case of piano music.
Thus, given the observed results, NT constitutes a topic to further explore
and improve.

2.4 General discussion

AMT is considered to be one of the most powerful, yet challenging, tasks in
the field of MIR. The possibility of obtaining symbolic versions from audio
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Figure 2.15: Results of the Note Tracking detection task for the di↵erent
MIREX editions for general music. Only best and worst results per year are
shown.

pieces is unarguably appealing for music-related tasks such as musicological
analysis, music preservation, similarity-based retrieval and so on.

As commented, AMT systems generally follow a sequential two-stage
basis for carrying out the task: an initial MPE stage devoted to retrieving
the pitch values of the signal in a frame-based analysis; and second NT phase
that retrieves a note-level description of the signal.

From the literature review, it is clear that MPE approaches have been
throughly studied in contrast to NT methods. While a wide range of
studies and methods may be found for MPE schemes, the set of existing NT
approaches is significantly smaller. This is a remarkable fact given that both
stages play, in principle, a key role in the overall success of the transcription
task. In this sense, it seems interesting to further the influence of NT in
transcriptions duties and also contribute with new approaches for it.

Current results, as seen in the MIREX scores and also pointed out by
some authors like Benetos et al. (2012), seem to be stagnant for a number
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Figure 2.16: Results of the Note Tracking detection task for the di↵erent
MIREX editions for piano music. Only best and worst results per year are
shown. Onset-o↵set based evaluation was first introduced in 2009.

of years, with slight and marginal improvements being achieved, at least in
the typical benchmark datasets. This lack of improvement suggests that the
classically considered paradigm may have reached a limit in performance,
a glass ceiling, and alternative paradigms should be considered to further
develop AMT systems.

Given such limitations, in practical scenarios, AMT users need to ma-
nually post process the output of such systems to retrieve an accurate enough
score-like representation. In that sense, assuming this need for a human
presence in the process, the idea of tackling AMT from a human-computer
interaction perspective (or paradigm) is totally justified and hence addressed
in this work.

Multimodality, the use of di↵erent sources of information for solving a
particular task, is also starting to be relevant among AMT systems, as stated
in the literature review. This fact makes perfect sense given that this premise
somehow mimics the human methodology: not only the use of harmony
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or rhythmic information may improve the result of the transcription, but
also information about the composer (e.g., preference for scales, modes, or
influences), the genre of the piece or the instrumentation basically narrow the
amount of possibilities, that is alternative transcriptions. From the existing
possibilities we restrict ourselves to onset information as they both constitute
a remarkably valuable source of information for fixing timing issues in the
detection and allow to work on an interactive basis, as it shall be explained
in this Thesis.
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Chapter3

Pattern Recognition in
Music Information Retrieval

“Oh, people can come up with
statistics to prove anything. Forty
percent of all people know that”

Homer J. Simpson

This chapter introduces the concepts of Pattern Recognition relevant for the
rest of the work: first, Pattern Recognition is defined and contextualized,
being also introduced their interactive variants of particular relevance for
the current work; then, a brief introduction of MIR works addressed using
Pattern Recognition techniques is introduced; thirdly, the k-Nearest Neighbor
is thoroughly explained given its relevance in the present work; finally, a
general discussion about the topic in this chapter is presented.

3.1 Pattern Recognition and Machine Learning

Pattern Recognition (PR) is defined as the process of discovering regularities
and patterns in sets of data in an automatic fashion, typically with the use
of computer algorithms (Bishop, 2006).

A possible strategy for finding such regularities in data is the use of
heuristics and handcrafted approaches. These strategies are designed consid-
ering the particularities of the problem at issue and lead to ad-hoc solutions
for it. Although e↵ective, these approaches generally imply very complicated
solutions to the task that, in most cases, are not general enough but rather
overfitted to the data at issue.

In opposition to these approaches, PR has often taken advantage of
Machine Learning techniques in order to automatically infer the aforemen-

– Page 39 –



Chapter 3: Pattern Recognition in Music Information Retrieval

tioned relations. Such automatic inference does not only solve the previous
drawbacks but also opens the possibility to extend those processes to incom-
mensurate amounts of data not manageable in with such manual approaches.

Formally, let X and Y represent two data distributions (origin and target)
related by function f : X ! Y. In general, these data distributions are
unknown and simply a set of examples or instances T = {(x

i

, y
i

) : x
i

2
X , y

i

2 Y}|T |
i=1 known as training set is accessible. The aim of supervised PR

is to obtain a function f̂ that approximates as much as possible to f using
the set of examples T .

Under this generic premise, di↵erent types of PR schemes may be consi-
dered depending on the representation of the input elements x 2 X , the model
used for estimating the approximated function f̂ , and the representation of
the output elements y 2 Y. These concepts are now discussed.

Depending on the representation for the input data x 2 X , PR
schemes are typically divided into two categories (Duda, Hart, & Stork,
2001): a first category known as syntactical or structural schemes, in which
data is represented using flexible high-level data structures (e.g., strings,
trees or graphs) that are only tractable by certain PR techniques; and a
second one known as statistical or feature-based representations, in which
data is encoded with numerical feature vectors with limited representation
flexibility but addressable by any PR technique (Bunke & Riesen, 2012).

The nature of the output elements y 2 Y defines two types of PR
tasks: when the target distribution comprises a set of discrete categories
or labels (Y = {C1, C2, ..., C|Y|}), the problem is known as classification;
alternatively, when the target distribution is takes continues values (Y 2 R),
this task is known as regression (Murphy, 2012)

In terms of the strategies for estimating function f̂ , methods may
be distinguished as being parametric or non-parametric: in the former case,
some type of assumption over the underlying function f (e.g., the number
of free parameters) is assumed, whereas in the latter no assumption is
considered (Russell & Norvig, 2010).

Additionally, these methods may also be considered as being eager or
lazy learners depending on when the generalization over training data T ,
that is the estimation of function f̂ , is performed: the former methods
estimate function f̂ before any query is made to the system whereas the
latter ones infer function f̂ each time a query is made. While it is clear
that eager strategies show a superior time e�ciency as function f̂ is only
derived once, lazy learning allows to derive a local approximations of f̂ for
each query (Mitchell, 1997), which may lead to better results. A particular
case of the lazy paradigm is the so-called instance-based learning in which no
explicit generalization process is performed but new instances are instead
directly compared to all the examples in the training set T .

Finally, PR may also be pursued in scenarios in which T only has exam-
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ples of the origin distribution X , that is T = {(x
i

) : x
i

2 X}|T |
i=1. In such

cases the process is known as unsupervised learning or clustering and its
aim is to automatically group the input elements into clusters (groups) of
elements that maximize both the similarity among them and the dissimilarity
to elements in other clusters (Duda et al., 2001).

3.1.1 Interactive Pattern Recognition (IPR)

In general, PR systems are still far from been perfect and error-free. While
this imprecision is tolerable for certain applications, in the cases in which
accuracy is a must, human agents are required to verify and correct the
results obtained by the PR system to retrieve a completely accurate result.

Assuming this need for a human agent to be part of the system, an
alternative to PR known as Interactive Pattern Recognition (IPR) has
recently emerged (Toselli et al., 2011). Instead of considering the human
agent as simply a verification and correction element in the system, IPR aims
at studying ways of actively exploiting the correction feedback by the agent
and iteratively improve the core PR model. Figure 3.1 shows a graphical
description of this idea: an initial set of data is given to a PR model, which
proposes a hypothesis about it; this hypothesis is presented to the user, who
assesses it and returns that information to the PR model, which modifies its
performance according to this feedback provided.

PR modelInput data Hypothesis

x

Feeback

Figure 3.1: Diagram of an IPR system. The hypotheses proposed by the
model are validated by the user as in a classic PR task, but in IPR the model
is given a certain feedback so that its performance is modified accordingly.

As commented, IPR approaches are able to obtain fairly accurate models
at the expense of human intervention. In that sense, performance evaluation
must be assessed in terms of the user e↵ort invested in the corrections instead
of accuracy since the latter one is guaranteed by the expertise of the user in
the field (Vidal, Rodŕıguez, Casacuberta, & Garćıa-Varea, 2008). Thus, for
the same input data, the number of interactions required for correcting the
result of an IPR system is expected to be lower than the amount required to
manually correct the result of a classic PR one as the model in the former
case somehow learn from the mistakes committed.

A remarkable drawback in IPR is that, each time the user performs a
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correction, the model is expected to incorporate this new piece of information
by training the system. This need for constantly training supposes a clear
limitation, especially when considering that within an interactive system
the user should not perceive any kind of delay between the correction and
the new hypothesis. In this sense, instance-based algorithms are clearly
advantageous as incorporating new information to the model is achieved by
just adding new instances to the training set.

Interactive Sequential Pattern Recognition (ISPR), a particular case of
IPR in which the system deals with sequential data (Calvo-Zaragoza &
Oncina, 2017), is of large interest in this Thesis as music information has
this nature. In ISPR it is assumed that the user verifies the result following
the order of the sequence, most typically a left-to-right fashion. Under this
premise, a user correction at a certain point implicitly validates all data
between this interaction and the previous interaction performed. Thus, a
single interaction provides a larger amount of data to update the model
compared to the general IPR case, which is expected to benefit the overall
performance of the system.

Finally, given that a large amount of real-world data follows some type of
structure, ISPR may be found in a large number of contexts. Some examples
of such disparate tasks are human karyotyping (Oncina & Vidal, 2011),
computer-assisted translation (Barrachina et al., 2009) or image-to-text
transcription (Toselli, Romero, Pastor, & Vidal, 2010), among others.

3.2 Applications to Music Information Retrieval

Given the usefulness of PR for automatically discovering patterns in data,
MIR has considerably taken advantage of the di↵erent methods and tech-
niques available and adapting them to the particular needs of each task.

A straightforward application of PR to MIR is the task of music genre
classification. Remarkable examples of such tasks are the works by Tzanetakis
and Cook (2002) in which audio data was considered and a model based on
Gaussian Mixture Models (GMMs) was used, the work by Conklin (2013)
in which ensemble-based methods were considered for the classification of
a set of folk tune songs in terms of both their genre and their geographic
localization, or the work by Lidy, Rauber, Pertusa, and Iñesta (2007) in
which, considering audio data, a set of descriptors derived from both the
audio representation and its symbolic equivalent obtained using an AMT
system is considered for training a genre classifier.

Emotion identification and recognition in music constitutes another exam-
ple of MIR tasks typically addressed with PR techniques. Yang and Chen
(2012) performs a review in this topic, highlighting the use of PR as a
successful approach.

Music similarity has been also studied from a PR point of view. In
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this context, some remarkable works are the ones by Rizo (2010) in which
symbolic music melodies are encoded as tree data structures and similarity
is measured as distances among trees, the work by Bernabeu, Calera-Rubio,
Iñesta, and Rizo (2011) in which the previous work is expanded to consider
probabilistic tree automata, or the work in Bellet, Bernabeu, Habrard, and
Sebban (2016) that also expands the previous ideas to consider tree edit
distances directly learned from data.

Some other particular examples of PR in MIR are, for instance, the use
of stochastic language models, and particularly, n-grams, for genre, style,
and composer identification (Pérez-Sancho, 2009), melody identification in
symbolic MIDI files modeling the problem as a classification task (Ponce de
León, 2011) or the use of PR techniques for Optical Music Recognition (OMR)
as an alternative to heuristic-based analysis methods (Calvo-Zaragoza, 2016).
In addition, the work by Poliner (2008) is of particular interest to this work as
it considers PR methods for AMT, more precisely using classification-based
methods for both the MPE an NT stages.

While the commented works consider the use of supervised learning,
unsupervised PR has been also considered for MIR. As a particular example
it seems interesting to highlight the use of Self-Organizing Maps (SOM).
These methods are a special type of neural network for unsupervised learning
that map data in a high-dimensional space to a lower-order one (most
usually, a two-dimensional space) while preserving the topological relations
of the initial domain as faithfully as possible. In this sense, SOM has been
considered for both the unsupervised organization of music genre (Frühwirth
& Rauber, 2002) and style (Ponce de León & Iñesta, 2002). Figure 3.2 shows
a conceptual example of an SOM process.

mapping

Initial space Self-Organized Map

Figure 3.2: Example of an Self-Organizing Map process. The initial
high-dimensional data distribution, which is conceptually represented by
an amoeba, is mapped into a two-dimensional space in which classes are
separated as clusters.

Finally, it is important to highlight the presence of some of the afore-
mentioned tasks as part of the annual MIREX contest, mostly for audio
data. Examples of such considered tasks are genre classification (for family
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genres of US, latin, and K-POP music), mood detection (for both general
and K-POP music), classical composer identification, tag classification, and
music/speech classification.

3.3 k-Nearest Neighbor (kNN)

Since initially proposed by Fix and Hodges (1951), the k-Nearest Neigh-
bor (kNN) constitutes one of the most well-known instance-based algorithms
in PR for supervised non-parametric classification (Duda et al., 2001). Most
popularity for kNN in classification tasks is due to its conceptual simplicity
and straightforward implementation, as it basically relies on distance com-
parisons between instances: given a query element, the kNN rule assigns it
the most frequent label among the k-nearest prototypes of the training set,
where k is a parameter to be set. In addition, the probability of error of
this classifier is bounded by twice the Bayes error rate for the case of binary
classification (Cover & Hart, 1967). Figure 3.3 shows an example of this
classification rule.

x1

x2

?

k
=

3

k
=
9

Figure 3.3: Example of the kNN classification rule. As shown, when
setting k = 3 or k = 9, query point is assigned the classes circle or square,
respectively.

Again, let T = {(x
i

, y
i

) : x
i

2 X , y
i

2 Y}|T |
i=1 define our training set

where Y is a set of discrete labels or classes. Also let ⇣(x) be a function that
retrieves the corresponding label Cx of instance x from training set T and
d : X ⇥ X ! R+ [ {0} a dissimilarity measure. Given a query instance a,
class Ca is estimated using the 1NN rule1 as:

Ca = ⇣

✓

argmin
x2T

d(x,a)

◆

. (3.1)

This can be generalized to the kNN rule by finding k neighbors instead and
assigning to Ca the most frequent label among them.

1Particular case of kNN when considering k = 1.
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As in any PR scheme, the kNN rule contains a set of parameters to be
tuned for the di↵erent classification problems, which in this case is two: the
number of neighbors k and the dissimilarity measure d. We shall now discuss
their implications on the context of this classifier.

On the one hand, the number of neighbors k generally depends on the
noise present in the training set T : for hardly noisy sets, the value of k is
usually kept low but, as noise figures increase, k is typically raised so as to
cope with outliers in the data.

On the other hand, dissimilarity measures are totally dependent on the
input representation considered. In this sense, while structural representa-
tions show a scarce collection of measures to be considered (e.g., the Edit
Distance for strings (Wagner & Fischer, 1974)), in statistical representations
we may consider the Minkowski distance:

d(x,a) =

0

@

|x|
X

i=1

|x
i

� a
i

|p
1

A

1

/p

(3.2)

being the particular cases of p = 1 and p = 2 the well-known Manhattan
and Euclidean distances, respectively. Figure 3.4 shows some examples of
Minkowski dissimilarity measures.

x1

x2

.

(a) Manhattan distance
(p = 1).

x1

x2

.

(b) Euclidean distance
(p = 2).

x1

x2

.

(c) Chebyshev distance
(p = 1).

Figure 3.4: Examples of Minkowski measures on a two-dimensional space
for a fixed distance value (dashed line). Values in parenthesis show the
corresponding p exponent of the Minkowski distance.

3.3.1 Limitations

Despite its aforementioned popularity, kNN su↵ers from several drawbacks
that limit its application (Garćıa, Derrac, Cano, & Herrera, 2012): (i) as an
instance-based classifier, storage memory requirements tend to be high for
keeping all training data; (ii) the method shows low computational e�ciency
as, for each new query, many distance computations are repeated due to
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the lack of a model; (iii) it may sometimes be sensitive to noisy instances,
especially for low k values.

These shortcomings have been widely analyzed in the literature and
several strategies have been proposed to tackle them. In general, they can
be divided into three categories:

a) Fast Similarity Search: these methods aim at improving the speed
issues in kNN with the creation of search indexes for fast consul-
ting in the training set. Some examples of such techniques are the
k-dimensional tree (Friedman, Bentley, & Finkel, 1977) or the Approxi-
mating and Eliminating Search Algorithm (AESA) (Vidal, 1986).

b) Approximated Similarity Search: the main issue with the former
strategies is that they do not scale well to high-dimensional spaces (Liu,
Moore, Yang, & Gray, 2004); to avoid such issue, approximated simi-
larity search methods work on the premise of searching su�ciently
similar prototypes to a given query in the training set instead of
retrieving the exact nearest instance. Among the existing proposals, a
very successful technique is the Local Sensitive Hashing (Gionis, Indyk,
& Motwani, 1999).

c) Data Reduction: opposite to the previous strategies, this set of
techniques are commonly considered for kNN to reduce the size of
the training set while maintaining, if not improving, the classification
accuracy as with the original data (Garćıa, Luengo, & Herrera, 2015).

While the two first approaches focus on improving time e�ciency, they
do not have any consideration towards the reduction of memory consumption
or the noise removal, thus limiting their application especially for real-world
scenarios. In this sense, the Data Reduction framework rises as a suitable
option to consider as it is conceptually capable of tackling all the drawbacks
previously introduced by removing both redundant and noisy instances from
the initial training set. In fact, the resulting set from such reduction process
should, in principle, require a lower k value than the unprocessed initial
training set due to the noise removal capabilities of the process (Pekalska,
Duin, & Pacĺık, 2006).

Data Reduction for instance-based classification can be divided into two
basic approaches (Nanni & Lumini, 2011): Prototype Generation (PG) and
Prototype Selection (PS). The main di↵erence is that the former approach
creates new artificial data to replace the initial training set while the latter
one simply selects certain elements from that set2. Figure 3.5 shows a
graphical example of these two families of processes.

2In some sense, PS can be seen as a particular case of PG in which the process is
constrained to selecting instances rather than creating new ones.
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x1

x2

(a) Initial set.

x1

x2

(b) Reduced set after PS.

x1

x2

(c) Reduced set after PG .

Figure 3.5: Comparison between the reduction methodologies of PS and
PG. Shaded elements depict instances discarded for the reduced set while
the colored ones represent the result of the reduction process.

Finally, as reported in the literature, PG generally leads to better results
than PS but such methods also show considerable constraints, especially
in terms of the representation used for encoding the data (Calvo-Zaragoza,
Valero-Mas, & Rico-Juan, 2016a). Due to this constraint, in this Thesis we
focus on the use of PS techniques. These techniques are now thoroughly
contextualized in the following section, being a particular methodology for
their assessment also introduced.

3.3.2 Prototype Selection (PS)

Given the relevance of PS for kNN, it is possible to find a large number of
strategies devoted to perform the aforementioned size reduction and noise
removal tasks in the sets. Given that, di↵erent authors have proposed taxo-
nomies to group such strategies under di↵erent criteria. In this work we rely
on the one proposed by Garćıa et al. (2012) that divides PS strategies into
three groups: Condensing, Editing and Hybrid techniques. These families
are now introduced.

The Condensing family of strategies is based on the idea of keeping
only the most representative prototypes of each class and reducing the size
of the set as much as possible. While accuracy on training set is usually
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maintained, generalization tends to be decreased, especially in noisy scenarios.
Some successful examples of such techniques are the Condensed Nearest
Neighbor (CNN) by Hart (1968) or its fast and deterministic version, the
Fast Condensed Nearest Neighbor (FCNN) by Angiulli (2007).

Methods based on the Editing approach focus on eliminating instances
that produce some class overlapping, typical situation of elements located
close to the decision boundaries or noisy data. For these algorithms, set
size reduction is usually lower than the one achieved with Condensing-
based strategies but generalization accuracy tends to be higher. The Edited
Nearest Neighbor (ENN) byWilson (1972) constitutes the most representative
example of this family, being also the Repeated Edited Nearest Neighbor
(RENN) algorithm a commonly-considered variant based on repeating ENN
until a certain convergence criterion is achieved.

Hybrid approaches seek for a compromise between Condensing and
Editing strategies, that is obtaining the smallest set size while improving,
or at least maintaining, the generalization accuracy of the former set. A
straight-forward implementation of this idea is found in the Repeated Con-
densed Nearest Neighbor (RCNN) by Dasarathy, Sánchez, and Townsend
(2000), which basically performs an RENN followed by a CNN stage. Also
in this category, a very successful approach has been the use of genetic algo-
rithms for accomplishing such objectives, as in the work by Cano, Herrera,
and Lozano (2006) with the Cross-generational elitist selection, Heteroge-
neous recombination and Cataclysmic mutation (CHC) genetic algorithm
by Eshelman (1990).

Additionally, a new family of approaches known as rank methods has
been recently proposed additionally to the commented ones. For such cases,
instances of the training set are ordered in terms of their relevance with
respect to classification accuracy, which is a score obtained following a parti-
cular heuristic. Eventually, prototypes are selected starting from the highest
score until a certain point when a certain criterion is accomplished. Examples
of such techniques are the NE and the FaN algorithms by Rico-Juan and
Iñesta (2012)

Finally, it is important to highlight that, unfortunately, PS methods
commonly carry an accuracy loss with respect to directly using the original
training set. In this sense, PS methods have been occasionally hybridized
with other paradigms to somehow solve those issues. Examples of hybrid
schemes may be found in the work by Garćıa-Pedrajas and de Haro-Garćıa
(2014) in which PS was combined with ensemble methods, or the works
by Derrac, Cornelis, Garćıa, and Herrera (2012); Tsai, Eberle, and Chu
(2013) in which feature selection processes were considered.
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Multi-objective Optimization Problem (MOP) for Prototype Selec-
tion (PS) evaluation

In general, evaluation of PS algorithms is not a trivial issue3. Most often,
minimization of the set size and maximization of the classification accuracy
are opposing goals as improving one of them generally implies a deterioration
of the other one.

From this point of view, PS-based classification can be seen as a Multi-
objective Optimization Problem (MOP) in which two functions are meant to
be optimized at the same time: minimization of prototypes in the training set
and maximization of the classification success rate (Calvo-Zaragoza, Valero-
Mas, & Rico-Juan, 2015a). The usual way of evaluating this kind of problems
is by means of the non-dominance concept. One solution is said to dominate
another if, and only if, it is better or equal in each goal function and, at least,
strictly better in one of them. The set of non-dominated elements, which is
known as Pareto frontier, represents the di↵erent optimal solutions to the
MOP. Each of them is referred to as Pareto-optimal solution, being all of
them considered the best without any particular order.

In formal terms, let U = {u1, ...,u|U|} be the set of solutions of a given
MOP. Each solution u

i

of the set is a vector with the results for the M

evaluation criteria considered, u
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being i, j 2 [1, ..., |U|], i 6= j, and m,m
o

2 [1, ...,M ].
Note that Eq. 3.3 considers the optimization of the functions by seeking

for minima. Nevertheless, MOP is totally equivalent when optimization is
achieved by seeking for maxima, or even for combinations of both maxima
and minima, in the evaluation functions.

As previously described, for the case of PS evaluation, there are M = 2
functions to be optimized: set size and classification accuracy, which are
optimized by minimizing and maximizing processes, respectively.

Finally, Fig. 3.6 shows a graphical representation of a two-dimensional
MOP highlighting the Pareto-optimal set of solutions.

3.4 General discussion

The field of PR has shown large application for generic data analysis and, in
particular interest of this Thesis, in MIR. In general, finding patterns in sets
of data to initially categorize and then further processing them significantly

3This problem also takes place when assessing PG techniques; nevertheless, in this
dissertation we focus on the exclusive use of PS methods.
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Figure 3.6: Example of a two-dimensional Pareto graph. The global optimal
solution is found at the origin of coordinates. Dashed line shows the Pareto
frontier with the non-dominated solutions (U⇤) whereas the gray area covers
the entire set of posible of the problem (U). Additional, the stripped regions
covers the area dominated by Pareto-optimal point u

x

.

reduces the complexity of the data analysis task. In the case when PR
is combined with Machine Learning, this discovery process is remarkably
improved as it allows its application to large amounts of data not addressable
on a manual basis.

In general, PR systems are not capable of retrieving perfect results,
being human post processing hence required to manually correct the errors
committed. In this context IPR stands as an appealing alternative to
e�ciently exploit this human interaction and eventually reduced the workload
of a potential user of such systems. Moreover, of particular interest to this
work is the case of ISPR as it particularizes the general IPR idea to the
case of data following a sequential structure, for which music information
constitutes a particular example.

The major limitation in interactive systems is that the user must not
perceive any delay in the response of the system. Thus, when a user performs
a correction in an IPR system, the core PR model has to be updated as fast
as possible, which may not be always possible for very complex models. In
this context, instance-based algorithms stand as a remarkably interesting
alternative as the model update is done by simply including new instances
in the training set. Among them, the one of particular interest for this work
in the kNN, mainly because of its fairly conceptual simplicity and the good
results typically obtained with it.
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Chapter4

Studies on Prototype
Selection for the k-Nearest

Neighbor classifier

“Do not fear mistakes – there are none”

Miles Davis

A considerable deal of the work in this dissertation entails the use of su-
pervised classification for time-series analysis. As shall be presented in
Chapter 5, we address the estimation of onset events in audio signals as a
classification task: each analysis frame of the piece, which typically spans
for tens of milliseconds, may be labelled as either containing an onset or its
absence. Given that onset events are generally scarce, the onset detection
task eventually results in a problem of imbalanced classification in which
the non-onset class is remarkably more frequent than the onset one. Such
imbalance situations tend to harm the classifier as they bias the performance
of the method towards the class representing the majority of examples.

As previously introduced, the use of the k-Nearest Neighbor (kNN)
classifier is of particular interest for this Thesis as it is naturally suited
to interactive environments due to being an instance-based method: for
adapting its behaviour this classifier simply needs to modify its training set
without the further need for a training stage. Nevertheless, kNN exhibits
low e�ciency figures as the number of instances in the training set grows due
to the commented lack of generalization model, which is a frequent situation
in the aforementioned onset estimation problem.

This chapter presents two studies on Prototype Selection (PS) for tackling
the commented issues of low e�ciency and imbalanced classification in the
context of the kNN classifier. The first piece of research focuses on analyzing
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the rather novelty of the rank methods introduced in Chapter 3 and comparing
them to the performance of conventional PS strategies. Then, the second
part studies the consequences of considering PS in large-scale class-imbalance
scenarios, that is, cases in which the number of instances for each class in
the dataset is not balanced but there are enough prototypes to require a
reduction in the amount of data for improving the e�ciency of the kNN rule.
Finally, a last section is included to discuss the main ideas gathered from
the studies.

For a compact explanation of the methods discussed in this chapter, we
shall now introduce some notation. Let T represent a training set of data and
⇣(p) a function that retrieves the class corresponding to an instance p 2 T .
We define friends of a prototype f

p

as the set of instances in T that share the
same class as p, that is f

p

= {p0 2 T \ {p} : ⇣(p0) = ⇣(p)}, being the rest of the
set the enemies of prototype p, e

p

= {T �f
p

} = {p0 2 T \ {p} : ⇣(p0) 6= ⇣(p)}.
Consider d(·, ·) a dissimilarity function between two data prototypes and
kNN(p,X , k) the method that retrieves the k closest instances to prototype p
in space X . Lastly, we define the nearest enemy to p as its closest prototype
with a di↵erent class, that is e

p

|
min

= argmin
p

02e
p

d(p0, p).

4.1 Experimental study of rank methods for Pro-
totype Selection

This first work performs an experimental study on Prototype Selection
(PS) techniques for tackling the low-e�ciency issues of the kNN classifier
when tackling large-scale data collections such as the onset estimation case
introduced. The precise idea of the study is to assess the performance of
conventional PS methodologies for large collections of data with a particular
emphasis on the so-called rank methods introduced in Chapter 3. Given
the relative novelty of the latter family of PS algorithms, it is unclear its
competitiveness against conventional methodologies. We shall therefore
perform a comprehensive experimental study on the performance of rank
methods for PS compared to a representative series of conventional PS
algorithms selected from the literature in a number of scenarios di↵ering in
their size and amount of mislabelled samples (to simulate noisy conditions).

For this study we shall initially introduce the gist of rank methods; then
the di↵erent conventional PS methods against which rank methods are com-
pared to shall be introduced; after that we shall explain the experimentation
scheme proposed, introducing the datasets considered, the algorithms to be
compared to, and the evaluation measures; then the results are introduced
and commented; finally, a discussion section closes the study.
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4.1.1 Introduction to rank methods

The main idea behind rank methods is that instances in the training set are
not selected but simply ordered (Valero-Mas, Calvo-Zaragoza, Rico-Juan,
& Iñesta, 2016). Following a certain type of heuristic, instances are given
a score that indicates its relevance with respect to classification accuracy
and ranks them according to this relevance score. Eventually, a selection
process is performed by keeping elements starting from the top of the rank
(instances with higher relevance) until a certain criterion is accomplished.

A particular approach for rank methods is to follow a voting heuristic in
which instances in the training set vote for the rest of the prototypes that
help them to be correctly classified. After all instances in the training set
have performed this voting process, the score is normalized to produce a
relevance rate so that the sum over these rates for all the prototypes of a
given class equals the unit. Then, the training set is sorted according to those
values and the best candidates are selected until their accumulated score
exceeds an external manual parameter ↵ 2 (0, 1] that allows the performance
of the rank method to be tuned. Low values of this parameter shall lead to a
higher reduction of the size of the training set, while high values shall remove
just the most irrelevant prototypes. While an external tuning parameter
may, in principle, be considered an inconvenient in a data preprocessing
framework, it must be pointed out that this characteristic allows the user to
enhance a particular objective (either reduction or accuracy) depending on
the requirements of the system.

The experimental study presented here focuses on the voting heuristics
proposed by Rico-Juan and Iñesta (2012): Farthest Neighbor (FaN) and
Nearest to Enemy (NE). Both strategies are based on the aforementioned
idea of each instance in the training set voting to the prototype that fulfills
a certain criterion, simply di↵ering in the policy for performing such search.
These techniques are now introduced.

The FaN policy searches for an instance c 2 f
p

that is the farthest friend
of prototype p but closer than nearest enemy e

p

|
min

. That is, instance p
emits a vote for prototype c that fulfills:

c = argmax
p

02f
p

d(p0, p) : d(p0, p) < d(p0, e
p

|
min

) . (4.1)

On the other hand, in the NE strategy prototype p votes for an instance
c 2 f

p

that is the closest element to nearest enemy e
p

|
min

with the same
class as p. Additionally, this friend must also be within the area centered at
p and radius d(e

p

|
min

, p). Formally, p votes to the prototype c that fulfills:

c = argmin
p

02f
p

d(p0, e
p

|
min

) : d(p0, p) < d(e
p

|
min

, p) . (4.2)

It is also important to remark that these methods may be extended by
letting e

p

|
min

be the n-nearest enemy instead of the first one to reduce the
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influence of possible outliers in the set. These strategies shall be denoted
by n-FaN and n-NE. Figure 4.1 shows a graphical example of the 1-NE and
1-FaN algorithms for PS.

Training set T

p

e
p

|
min

d(p, e
p

|
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)

(a) Initial situation.

Training set T

p

e
p

|
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|
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)

d(c, p)

c

(b) Farthest Neighbor
(FaN).

Training set T

p

e
p

|
min

d(p, e
p

|
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)

d(c, e
p

|
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)

c

(c) Nearest to Enemy
(NE).

Figure 4.1: Examples of the Farthest Neighbor (FaN) and Nearest to
Enemy (NE) schemes (Rico-Juan & Iñesta, 2012) for Prototype Selection
on a two-dimensional case: Figure 4.1a shows the nearest enemy e

p

|
min

of prototype p; Figure 4.1b highlights the selected prototype c using FaN;
Figure 4.1c depicts the selected prototype c using NE. These examples
consider Euclidean distance as dissimilarity measure.

Once the voting stage is finished, a normalization process is applied so
that the sum of all votes accumulated by all the prototypes of a particular
class sums up to the unit. Finally, the most relevant prototypes are selected
using the external ↵ parameter, referred to in these methods as probability
mass: instances from each class are selected from the top to the bottom of
the rank until their accummulated probability exceeds the ↵ parameter. In
terms of notation, these parameter is usually shown as a subscript to the
actual rank-based PS strategy, that is n-NE

↵

and n-FaN
↵

.

4.1.2 Conventional Prototype Selection schemes

In terms of conventional PS schemes, we shall consider a set of methodologies
that su�ciently cover the di↵erent families introduced in Chapter 3.

As of condensing schemes, we consider the Condensed Nearest Neighbor
(CNN) proposed by Hart (1968). This method is based on the following
principle: (i) it creates an empty set TCNN; (ii) a prototype p is extracted
from T ; (iii) prototype p is classified with the kNN rule but using set TCNN;
(iv) if the estimated class for p mismatches the actual class, p is added to
TCNN; (v) the process is repeated from (ii) until no more prototypes are left.

The counterpart with CNN is that the reduction in size is not guaranteed
as this is highly dependent on the order in which T is queried. For that, we
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also include the Fast Condensed Nearest Neighbor (FCNN) by Angiulli (2007)
that solves such inconveniences as well as improves its time performance.
For this explanation, let Centroids(T ) be the set containing the centroids
for each class in T . Also consider the Voronoi set as the set of elements
of T that are closer to p than to any other element p0 2 TFCNN, that is
V or(p, TFCNN, T ) = {p0 2 T : 8q 2 TFCNN, d(p, p0)  d(q, p0)}. Additio-
nally, let the so-called Voronoi enemies set be V oren(p, TFCNN, T ) = {p0 2
V or(p, TFCNN, T ) : ⇣(p0) 6= ⇣(p)}. Taking those concepts into consideration,
FCNN is described in Algorithm 4.1.

Algorithm 4.1: Description of the Fast Condensed Nearest Neighbor
(FCNN).

Data: Training set T
Result: Reduced set TFCNN

1 TFCNN  ;; �T  Centroids(T ) ;
2 while �T 6= ; do
3 TFCNN  TFCNN [ �T ;
4 �T  ; ;
5 foreach p 2 TFCNN do
6 �T  �T [ {kNN(p, V oren(p, TFCNN, T ), k = 1)} ;
7 end

8 end

Regarding editing methodologies, we have considered the Edited Nearest
Neighbor (ENN) introduced by Wilson (1972). This algorithm is based on
the following procedure: (i) creates a set TENN equal to the initial set T ;
(ii) a prototype p is extracted from T ; (iii) prototype p is classified using the
kNN rule on set T ; (iv) if the estimated class for p mismatches the actual
class, prototype p is removed from set TENN; (v) the process is repeated from
(ii) until all prototypes in T have been queried.

We have also studied a collection of techniques belonging to the Hybrid
approaches. The most straight-forward methods are based on combinations
of algorithms from the previous families: initially, ENN is applied to set T
and the result is processed using CNN or FCNN, known as Edited Condensed
Nearest Neighbor (ECNN) and Edited Fast Condensed Nearest Neighbor
(EFCNN) respectively.

In addition to the conventional combinations previously described, we
have also considered more sophisticated methodologies. One of them is the
Decremental Reduction Optimization Procedure 3 (DROP3) hybrid approach
by Wilson and Martinez (2000), which also implements an initial ENN for
then performing a condesing-based reduction methodology. This approach is
described in Algorithm 4.2.

Another algorithm considered for the comparative study is the Iterative

– Page 55 –



Chapter 4: Studies on Prototype Selection for the k-Nearest Neighbor
classifier

Algorithm 4.2: Description of the Decremental Reduction Optimiza-
tion Procedure 3 (DROP3).

Data: Training set T
Result: Reduced set TDROP3

1 TDROP3  ENN(T , k) ;
2 foreach p 2 T do
3 a(p) = {p0 2 TDROP3 \ p : p 2 kNN(p0, TDROP3, k)} ;
4 Wi = # of a

p

elements classified correctly considering TDROP3 ;
5 Wo = # of a

p

elements classified correctly considering TDROP3 \ p ;
6 if Without > With then TDROP3  TDROP3 \ p ;

7 end

Case Filtering (ICF) proposed by Brighton and Mellish (2002). As in
DROP3, this algorithm performs an initial ENN stage and then implements
a strategy for data reduction to obtain a more compact set. The explanation
of this method is described in Algorithm 4.3. For understanding it, consider
L(p) = {p0 2 T : d(p0, p) < e

p

|
min

} the set that contains all instances inside
the largest hypersphere around prototype p containing only instances with
the same class as p.

Algorithm 4.3: Description of the Iterative Case Filtering (ICF).

Data: Training set T
Result: Reduced set TICF

1 TICF  ENN(T , k) ;
2 do
3 foreach p 2 TICF do
4 C(p) = {p0 2 TICF : p 2 L(p0)} ;
5 R(p) = {p0 2 TICF : p0 2 L(p)} ;

6 end
7 progress = false ;
8 foreach p 2 TICF do
9 if |R(p)| > |C(p)| then

10 TICF  TICF \ p ;
11 progress = true ;

12 end

13 end

14 while progress;

Finally, due to its considerable good results reported in the literature, we
have also considered the use of the Cross-generational elitist selection, Hetero-
geneous recombination and Cataclysmic mutation (CHC) genetic algorithm
applied to PS as in the work by Cano et al. (2006). This algorithm obtains a
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reduced set TCHC ✓ T by following the following steps, which are iteratively
repeated for a series of generations fixed by the user: (i) an initial population
of N instances is selected; (ii) then, the N individuals are randomly paired
and used to generate N potential o↵spring; (iii) finally, a survival stage is
held and the best N chromosomes from the parent and o↵spring populations
are selected for the next generation. For our experiments, we have considered
the same parameters as in the work by Cano et al. (2006), which consists of
10, 000 generations with populations of N = 50 elements.

4.1.3 Experimentation

Regarding the experimental set-up, five multiclass corpora were considered for
the experiments: the National Institute of Standards and Technology Special
Database 3 (NIST3) of handwritten characters (Wilkinson et al., 1992),
from which a subset of the upper case characters was randomly selected;
the United States Postal O�ce (USPS) handwritten digits dataset (Hull,
1994); the Handwritten Online Musical Symbols (HOMUS) dataset (Calvo-
Zaragoza & Oncina, 2014) with images of handwritten isolated music figures;
and two additional corpora of the UCI collection (Lichman, 2013), the
Penbased compilation of handwritten isolated digits and the Letter collection
of handwritten capital characters from the English language. A 4-fold cross
validation scheme over each dataset was performed.

For the NIST3 and USPS cases, contour descriptions with Freeman
Chain Codes (FCC) (Freeman, 1961) were extracted and the Edit Distance
(ED) (Wagner & Fischer, 1974) was used as dissimilarity measure. In the
case of the HOMUS set, Dynamic Time Warping (DTW) (Sakoe & Chiba,
1990) was used due to its good results in the baseline experimentation.
Since datasets from the UCI may contain missing values in the samples, the
Heterogeneous Value Di↵erence Metric (HVDM) (Wilson & Martinez, 1997)
was used for the two datasets considered from this family. Table 4.1 shows a
summary of the main features of these collections.

Table 4.1: Description of the datasets used the experimentation for the
assessment of ranking-based methods for Prototype Selection.

Name Instances Classes Dissimilarity

USPS 9,298 10 ED

NIST3 6,500 26 ED

HOMUS 15,200 32 DTW

Penbased 10,992 10 HVDM

Letter 20,000 26 HVDM

Additionally, in order to test the robustness of PS methods, synthetic noise
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was artificially induced in the datasets by swapping labels between pairs of
instances randomly chosen from the training set. The noise rates (percentage
of prototypes that change their label) considered were 0 %, 20 %, and 40 %
as they constitute typical values in this kind of experimentation (Natarajan,
Dhillon, Ravikumar, & Tewari, 2013).

For the comparative we have the conventional PS strategies explained is
Section 4.1.2 and we also included the ALL case in which no PS process is
performed and the initial training set is entirely kept.

The configurations tested for the rank-based strategies have been 1-FaN,
2-FaN, 1-NE, and 2-NE. For each of them values of ↵ within the range (0, 1)
with a granularity of 0.1 were considered, being extreme values discarded
since ↵ = 0 would mean an empty set and ↵ = 1 is equivalent to not
performing any selection process (equivalent to the ALL case).

Finally, the evaluation of the results is performed by assessing the classi-
fication accuracy achieved after the PS process as well as the size of the
resulting set. Additionally, the Multi-objective Optimization Problem cri-
terion introduced in Chapter 3 is considered to assess both accuracy and
reduction figures under a single optimization premise.

4.1.4 Results

Table 4.2 shows the results obtained for the experimentation. Each figure
represents the arithmetic mean of the accuracy and set size values obtained for
the considered datasets. Bold values represent the non-dominated solutions,
which can be graphically seen in Figs. 4.2 and 4.3 for the di↵erent induced
noise cases considered and shall be later discussed in the Multi-objective
Optimization Problem assessment part.

Non-induce noise scenario

Let us pay attention first to the case when no induced noise is considered.
It can be observed that, when no information was discarded (ALL scheme),
conventional kNN achieved some of the highest accuracy values for all k
configurations. Note that increasing this k parameter did not have any
noticeable e↵ect. Given that the datasets considered are hardly noisy, the
ENN algorithm did not significantly reduce the size of the set (a reduction
rate around 10 %), maintaining similar accuracies to those achieved by the
conventional kNN strategies.

On the other side, the condensing family of algorithms (CNN and its
extensions) showed some remarkable results: all of them achieved great
reduction rates, especially ECNN and EFCNN, which simply required around
a 10 % of the set size, and performed well in terms of accuracy (only around
3 % lower than the ALL configurations).

DROP3 also achieved high reduction rates (around 9 % of the maximum
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Table 4.2: Average figures of the results obtained for the assessment of rank-based methods for Prototype Selection in
terms of their achieved classification accuracy (Acc) and resulting set size (Size), in percentage. Bold values represent the
non-dominated elements defining the Pareto frontier.

PS strategy
Noise 0 % Noise 20 % Noise 40 %

PS strategy
Noise 0 % Noise 20 % Noise 40 %

Acc Size Acc Size Acc Size Acc Size Acc Size Acc Size

ALL (k = 1) 93.4 100 76.3 100 63.3 100 ALL (k = 3) 93.5 100 86.3 100 75.7 100
ALL (k = 5) 93.4 100 90.9 100 86.1 100 ALL (k = 7) 93.1 100 91.5 100 89.0 100

CNN 90.3 18.0 67.8 57.3 55.7 72.6 ENN 92.3 93.3 91.0 67.1 88.4 48.7
FCNN 90.4 17.7 67.5 55.1 55.5 71.2 ECNN 90.0 10.4 87.6 9.0 84.4 8.5

EFCNN 90.1 10.5 88.0 8.9 84.3 8.1 DROP3 84.6 9.5 74.4 9.9 63.5 10.7
ICF 77.3 15.3 68.2 17.1 59.0 18.4 CHC 84.4 3.1 71.5 2.6 60.2 2.3

1-FaN0.10 80.8 3.6 83.1 4.2 83.5 4.9 1-NE0.10 71.7 1.3 81.6 3.3 83.4 4.4
1-FaN0.20 86.2 8.3 87.1 10.0 85.7 11.5 1-NE0.20 79.9 3.3 86.6 8.1 86.0 10.7
1-FaN0.30 88.5 14.2 88.3 16.8 81.7 19.3 1-NE0.30 85.3 6.4 88.6 14.4 82.3 18.4
1-FaN0.40 90.1 20.3 86.0 24.9 73.4 29.3 1-NE0.40 89.1 10.7 86.9 22.4 75.0 28.4
1-FaN0.50 91.3 28.3 80.4 34.9 68.1 39.3 1-NE0.50 91.3 17.3 80.8 32.3 68.8 38.4
1-FaN0.60 92.0 38.3 76.9 44.9 64.1 49.2 1-NE0.60 92.2 27.8 76.7 42.2 64.5 48.3
1-FaN0.70 92.6 48.4 75.2 54.9 62.9 59.2 1-NE0.70 92.8 41.8 74.5 52.2 62.8 58.3
1-FaN0.80 93.0 60.6 73.3 64.9 60.0 69.2 1-NE0.80 93.2 60.2 72.7 62.6 60.0 68.4
1-FaN0.90 93.4 80.1 74.0 80.1 59.8 80.5 1-NE0.90 93.5 80.1 74.3 80.1 60.0 80.3

2-FaN0.10 80.4 3.6 82.9 3.9 83.4 4.3 2-NE0.10 71.2 1.3 80.5 2.7 82.9 3.6
2-FaN0.20 85.7 8.2 86.8 9.1 85.3 10.3 2-NE0.20 79.6 3.3 86.0 6.8 86.1 9.0
2-FaN0.30 88.2 14.0 87.8 15.7 84.6 17.3 2-NE0.30 84.7 6.2 88.0 12.3 85.3 15.8
2-FaN0.40 89.8 19.8 86.8 22.8 76.8 26.6 2-NE0.40 88.7 10.4 88.3 19.3 77.7 25.0
2-FaN0.50 90.9 27.5 80.3 32.7 68.1 36.7 2-NE0.50 91.0 16.4 81.4 28.9 68.8 35.0
2-FaN0.60 91.7 37.5 75.9 42.7 63.6 46.6 2-NE0.60 92.1 26.9 75.8 38.8 63.8 44.9
2-FaN0.70 92.4 47.9 73.3 52.7 61.2 56.6 2-NE0.70 92.7 41.2 72.0 48.8 60.6 54.9
2-FaN0.80 93.0 60.4 71.2 62.8 58.1 66.6 2-NE0.80 93.2 60.1 70.9 60.7 57.5 64.9
2-FaN0.90 93.4 80.1 73.5 80.1 59.0 80.1 2-NE0.90 93.5 80.1 74.0 80.1 59.3 80.1
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size), but with a significant drop in accuracy when compared to the conven-
tional kNN algorithm (decreased around 10 % with respect to the scores
in the ALL cases). ICF, however, achieved neither a high reduction nor a
remarkable accuracy. The CHC evolutionary algorithm obtained one of the
highest reduction rates, as it only required around a 3 % of the total amount
of prototypes. The accuracy achieved, although lower than in most of the
previous cases, was close to an 84 %, which is a good result given the high
data reduction performed.

The NE and FaN rank methods showed a very interesting behavior.
When considering their probability mass parameter ↵  0.5, the reduction
figures obtained covered a similar range to the reductions obtained with
the other strategies: for instance, 1-NE0.20 achieved a similar reduction to
CHC (around 3 % of the initial set size) or 1-FaN0.40 is comparable to FCNN
(approximately, 20 % of the total amount of prototypes). As it can be seen,
these configurations can produce an aggressive reduction in the set size, which
is often paired with a substantial accuracy loss (e.g., 2-NE0.10 which reduces
the set to approximately 1 % of its size achieving an accuracy figure around
70 %). However, more conservative configurations such as when considering
↵ = 0.5 achieved results quite close to the ALL case, with around a third or
a fourth of the total number of prototypes.

When considering ↵ > 0.5, these methods progressively tend to the ALL
case as they also include prototypes located at the lowest positions of the
rank (i.e., the ones with the least number of votes). This increase in the
reduced set size (up to an 80 % of the complete set size when ↵ = 0.9) did not
carry a remarkable accuracy improvement (less than a 3 % of improvement
with respect to the ↵ = 0.5 cases). Nevertheless, it should be noted that the
1-NE0.90 improved the accuracy of the ALL case with 80 % of the initial set
size, possibly because the method discarded noisy instances in the datasets.

In summary, rank methods proved their capability of producing a good
trade-o↵ between reduction and classification accuracy in terms of their
reduction parameter ↵. This way, the user is able to tune the reduction
degree prioritizing either accuracy or reduction depending on the particular
requirements of the application.

Induced noise scenario

The following lines present the analysis of the performance when noise is
induced in the set. As results show qualitatively similar trends, remarks will
not focus on a particular noise configuration but on the general behavior.

The mislabelling noise in the samples dramatically changed the previous
situation. Accuracy results for conventional kNN su↵ered an important drop
as noise figures raised. Nevertheless, the use of di↵erent k values palliated
this e↵ect and improved the accuracy rates. Especially remarkable is the
k = 7 case in which kNN scored the maximum classification rate compared
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to the other schemes in both noisy configurations considered.
ENN algorithms proved their robustness in these noisy environments,

as their classification rates were always among the best results obtained.
Moreover, the reduction rates achieved were higher than in the noiseless
scenario, since the prototypes these approaches remove are the ones actually
producing class overlapping.

Results with CNN and FCNN schemes depicted their sensitiveness to
noise as they obtained some of the worst accuracies in these experiments. Due
to the impossibility of discarding noisy elements, the reduction is not properly
performed, leading to a situation in which there is neither an important size
reduction nor a remarkable performance. Furthermore, the use of di↵erent k
values did not upturn the accuracy results.

EFCNN and ECNN, on the contrary, were less a↵ected than CNN and
FCNN due to the introduction of the editing phase in the process. This
improvement is quite noticeable as, while the latter approaches obtained
accuracy rates of around 50 % and 60 % with a reduction rate between 50 %
and 70 %, the former algorithms achieved precision rates over 80 % with
roughly 10 % of the prototypes.

Hybrid algorithms DROP3 and ICF, just like the CNN and FCNN ap-
proaches, were not capable of coping with noisy situations either. Accuracy
rates obtained were quite poor as, for instance, the case of the ICF method
with a 40 % of synthetic noise was not able to reach a 60 % of accuracy.
However, it must be pointed out that, despite achieving similar accuracy
rates, hybrid algorithms still showed better reduction figures than the CNN
and FCNN strategies. For example, for an induced noise rate of 40 %, CNN
obtained an accuracy of 55.7 % with 72.6 % of reduction while DROP3
achieved 63.5 % with only a 10.7 % of prototypes.

Results obtained with the CHC evolutionary scheme showed its relative
sensitivity to noise. In these noisy scenarios, although it still depicted one
of the highest reduction figures amongst the compared methods with rates
around 2 %, its classification performance was significantly a↵ected as no
result was hardly higher than 70 %.

The NE and FaN rank-based methods demonstrated to be interesting
algorithms in the noiseless scenario: for low ↵ values, the reduction rates
achieved, together with the high accuracy scores obtained, are very com-
petitive against other methods; at the same time, high ↵ values achieved
accuracy figures comparable to, or even higher than, the ALL case with just
20 % to 40 % of the initial amount of prototypes. Results in the proposed
noisy situations reinforce these remarks for the former case: on average, none
of these algorithms showed accuracy rates lower than 80 % while, at the
same time, the number of distances computed never exceeded the 20 % of the
maximum. It is also important to point out that, while ECNN and EFCNN
schemes also showed a remarkable reduction rate with good accuracy figures,
these approaches internally incorporate an editing process for tackling the
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noise in the data, whereas the rank methods depicted a clear robustness to
these situations by themselves, as long as ↵ remains low. Nevertheless, if
↵ is increased, the accuracy of these methods noticeably lowers since the
algorithm is forced to include all prototypes in the computed rank, which
progressively leads to the ALL case. In such situation, the 1NN search is not
able to cope with the noise, resulting in the low accuracy figures obtained.

Multi-objective Optimization Problem assessment

In addition to the commented results, we now tackle the PS-based classifi-
cation from the point of view of a Multi-objective Optimization Problem
problem. Considering the case with no induced noise (Fig. 4.2), the solution
portraying the maximum accuracy result with the least number of prototypes
is the 1-NE0.90, defining the right-hand end of the Pareto frontier1. The
ALL and ENN configurations do not belong to this frontier as, although they
achieved roughly the same accuracy as the previous method, they required a
larger amount of prototypes. The rest of the solutions, in spite of exhibiting
lower accuracy results, in some cases the loss was not so accused. Examples
of this behavior can be checked in the non-dominated algorithm EFCNN,
which achieved accuracy results around 3 % lower than the maximum, com-
puting roughly a fifth of the maximum number of distances, respectively.
Regarding the proposed rank methods (in red), it can be observed that
in the non-dominated frontier, in the region of up to 20 % of the total of
distances (the one in which most of the PS algorithms studied lie) there is
a clear balance between them and the rest of the strategies. This proves
the competitiveness of these methods with respect to other classic strategies.
Additionally, rank methods also cover the region above the 20 % of distances
since the probability mass ↵ allows the selection of the amount of prototypes
to maintain.

With respect to the datasets with induced noise (see Fig. 4.3), the first
di↵erence is that the ALL case (with k = 7) belongs to the Pareto frontier for
both noise figures considered. However, other schemes were equally capable
of achieving the same accuracy with a lower computational cost. For instance,
when considering the case of inducing 40 % of noise in the datasets, both
the 7NN and ENN configurations achieved very similar accuracies but, while
the former method requires the computation of all the distances, the latter
requires less than a half of them.

Rank methods depicted remarkable compromises between accuracy and
number of prototypes when considering low ↵ values. An important number
of configurations proved to be capable of dealing with these noise figures
since they constituted part of the non-dominance frontier. For instance, in

1As a reminder, the Pareto frontier represents the set of optimal solutions to the Multi-
objective Optimization Problem. Reader is referred to Chapter 3 for a formal description
of this concept.
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Figure 4.2: Graphical representation of the results obtained for the ex-
perimental comparative of rank methods against conventional Prototype
Selection techniques. No noise is considered. Circled symbols remark the
non-dominated elements defining the Pareto frontier. The area with the
largest number of points has been enlarged for its better comprehension.

the 20 % of noise situation, the 1-NE0.30 configuration only di↵ered in a 3 %
of accuracy with respect the maximum (given by 7NN) but computes roughly
a 15 % of the total amount of distances. However, when setting ↵ to a high
value, accuracy was noticeably a↵ected since the algorithms were forced to
include noisy prototypes with fewer votes located at the lower parts of the
rank. In this case, points moved away from the Pareto frontier, proving not
to be interesting configurations for such amount of noise.

4.1.5 Discussion

This comparative study of rank-based and conventional PS methods points
out several interesting insights to remark. A first one is that, in scenarios with-
out any artificial noise, rank methods are able to achieve considerably small
set sizes comparable to the ones obtained by more sophisticated techniques,
as for instance the CHC, algorithm without much accuracy loss.

When noise is induced in the sets, these rank methods seem to properly
manage the confusion introduced by the mislabelling of the samples, as
opposed to other techniques such as CHC or DROP3. More precisely, when
rank methods are fixed to a low probability mass (that is, keeping a reduced
set size), the samples that are removed from the set are typically the mis-
labelled ones, probably due to being the ones receiving a low number of
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Figure 4.3: Graphical representation of the results obtained for the ex-
perimental comparative of rank methods against conventional Prototype
Selection techniques in noisy conditions. Circled symbols remark the non-
dominated elements defining the Pareto frontier. The area with the largest
number of points has been enlarged for its better comprehension.

votes. This particularity is especially interesting since these rank methods
do not incorporate an ENN stage, as opposed to other conventional (most
often from the hybrid family) schemes, thus stating their robustness for such
scenarios.
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Finally, it is also important to mention that, while the probability mass
parameter may be seen as a drawback as there is a need to tune it for the
particular application at issue, it is actually the opposite. This feature is
not typically found in conventional PS schemes. However, it allows the
user to look for the proper compromise between accuracy and size for each
situation, that is boosting one at the expense of the other depending on the
requirements of the system.

4.2 Prototype Selection in large-scale imbalanced
binary classification problems

Most standard classification algorithms assume that the classes of the data at
issue are equally represented (He & Garcia, 2009). However, this assumption
turns out not to be realistic since most data sources do not necessarily exhibit
such equilibrium among the di↵erent classes. This issue is typically known
as the class imbalance problem (Garćıa, Sánchez, & Mollineda, 2007) and
generally results in a bias in the performance of the classifier towards the
class representing the majority of the elements (López, Fernández, Garćıa,
Palade, & Herrera, 2013).

The imbalance issue takes special relevance in the context of this Thesis.
As introduced, the estimation of onset points in audio streams may be
addressed as an imbalanced classification task in which each analysis frame
of the piece may be labelled as either containing an onset (minority class) or
its absence (majority class). Since this task requires a temporal resolution of
around tens of milliseconds, the analysis of pieces spanning for several minutes
entails dealing with thousands of instances. Therefore, it seems interesting to
study the issue of classification tasks in imbalanced and large-scale scenarios
in the context of the kNN rule.

Prototype Selection (PS) schemes for kNN, as one of the tools for impro-
ving the e�ciency of this classifier, do not generally consider class-imbalance
situations in the set to be reduced and thus the performance of such schemes
in large-scale imbalance contexts remains unexplored. Nevertheless, for cases
as the one above, there is a need for exploring the performance of PS schemes
in such imbalance contexts for large-scale sets that require of a reduction
process and compare them to the case in which a preprocessing strategy to
deal with imbalance situations is applied.

For this study we shall initially describe the general issue of classification
in imbalance scenarios; then, we shall introduce the set of class-balancing
strategies considered for this study; after that, the experimental scheme
proposed for the assessment of PS techniques in such scenarios is described;
afterwards, the results of the experimentation are introduced and analyzed;
finally, a brief discussion with the main insights obtained is presented to
close the study.
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4.2.1 Classification with imbalanced data

Formally, imbalanced classification refers to the cases in which the prior
probabilities of the classes at issue significantly di↵er among them. This
particularity generally results in a tendency of the classifier to bias towards
the majority class, thus decreasing the overall performance of the system.

Di↵erent proposals may be found in the literature to palliate this issue,
being typically grouped into three categories (Garćıa, Sánchez, & Mollineda,
2012): (i) data-level methods that either create artificial data for the minority
classes and/or remove elements from the majority one to equilibrate the
class representation; (ii) algorithmic-level approaches that internally bias the
classifier to compensate the skewness in the data; (iii) cost-sensitive training
methodologies that consider higher penalties for the misclassification of the
minority class than for the majority one.

In general, instance-based algorithms such as kNN report a superior
tolerance to such imbalance situation as they consider all instances during
the classification stage. Nevertheless, when this imbalance e↵ect is combined
with class overlapping, performance is severely a↵ected (Fernández, Garćıa,
& Herrera, 2011).

While PS methods tackle the well-known issues of kNN for large and
noisy (overlapped) datasets, these processes have not been devised for class-
imbalanced sets. Thus, it seems interesting to explore the performance of PS
algorithms in both balanced and imbalanced datasets. To model these two
situations we shall consider a collection of imbalanced and overlapped data
collections and apply to them a series of data-level balancing methods to test
the performance of PS schemes on both situations. Note that we discard the
use of any other class-balancing approach as data-level methods are the only
ones that do not require to modify the PS algorithm itself.

4.2.2 Data-level balancing techniques

Data-level balancing methods equilibrate the class distribution by oversam-
pling the minority class and/or undersampling the majority one. To assess
their relevance in the context of this experiment, we considered a set of
methods of each of the two paradigms as well as combinations of them. For a
clear description of these techniques, let TMAJ and TMIN be the sets containing
all the instances from the majority and minority classes of an initial set T ,
respectively.

As of oversampling techniques, due to being one of the most conventional
and widely considered balancing methods, we have considered the Synthetic
Minority Over-sampling Technique (SMOTE) algorithm by Chawla, Bowyer,
Hall, and Kegelmeyer (2002). In essence, this technique populates the
minority class TMIN by creating new instances in the space between pairs
of instances from that minority subset. This technique is described in
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Algorithm 4.4.

Algorithm 4.4: Description of the Synthetic Minority Over-sampling
Technique (SMOTE) algorithm.

Data: Training set T , number of new instances N per old one
Result: Balanced set TSMOTE

1 TSMOTE  T ;
2 foreach p 2 TMIN do
3 TkNN  kNN(p, TMIN, k) ;
4 for i=1 to N do
5 nn random-select(TkNN) ;
6 for j=1 to #attributes in p do
7 dif = p[j]� nn[j] ;
8 gap = random(0, 1) ;
9 p0[j] = p[j] + gap · dif ;

10 end
11 ⇣(p0) Minority class ;
12 TSMOTE  TSMOTE [ p0 ;

13 end

14 end

Han, Wang, and Mao (2005) proposed two extensions to the original
SMOTE algorithm. Instead of a general populating approach, these exten-
sions focus on detecting and remarking transition zones between classes. For
that, these methods initially obtain a set TDANGER following this process:
(i) a prototype p is extracted from the set of data containing the minority
class TMIN; (ii) the kNN rule is applied to p in the entire train set T ; (iii) if
more than a half of the neighbors belong to the set of the majority class
TMAJ, instance p is included in TDANGER; (iv) the process is repeated until all
prototypes in TMIN have been queried.

Once TDANGER has been obtained, the SMOTE extensions can be clearly
explained. On the one hand, Borderline 1 (B1) populates the minority class
using the same process as SMOTE but exchanging the set TMIN in Line 2
of Algorithm 4.4 by set TDANGER. Borderline 2 (B2), on the other hand,
maintains the idea of B1 but additionally generates instances for pairs of
prototypes from sets TDANGER and TMAJ, always populating the region closer
to the instance representing the minority class.

In terms of undersampling techniques, a straightforward yet e↵ective
technique is the CNN algorithm for PS adapted by Kubat and Matwin (1997)
to be used as a balancing technique. The idea is totally equivalent to the
CNN algorithm in PS but with the particularity of initializing the target
set TCNN with all the instances of the minority class, that is TCNN  TMIN,
instead of considering an empty initial set.
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Just as with the previous CNN case, the ENN method for PS also has its
analogue for class-balancing tasks, which was proposed by Laurikkala (2001)
under the name of Neighborhood Cleaning Rule (NCL). For undersampling
the set, this method considers the following procedure: (i) creates a set TNCL

equal to the initial set T ; (ii) a prototype p is extracted from T and its class
is estimated using the kNN rule in set T ; (iii) if p is misclassified, then its
actual class is checked; (iv) if p belongs to the majority class, p is removed
from TNCL; (v) if p belongs to the minority class, all its neighbors belonging
to the majority class are removed from TNCL; (vi) the process is repeated
until all prototypes have been queried.

Another method we considered for balancing through undersampling
is based on the Tomek Links (TL) proposed by Tomek (1976). A TL is a
pair of prototypes that are the closest to each other but with di↵erent class
labels. Because of that, the set TTL of all TL defines the decision frontiers of
the di↵erent classes in the training set T . Mathematically, two prototypes
p 2 TMAJ and p0 2 TMIN form a link (p, p0) 2 TTL if and only if:

argmin
a2TMAJ

d(a, p0) = p ^ argmin
b2TMIN

d(b, p) = p0 . (4.3)

Eventually, this can be used for obtaining a balanced set TTOMEK by remov-
ing only the elements of the majority class in TTL from the initial set T .
Mathematically, this is done as TTOMEK = T \ {TMAJ \ TTL}.

It must be mentioned that, while both oversampling and undersampling
techniques aim at balancing the class distributions, the latter ones cannot
guarantee that the resulting set has the exact number of instances for all
classes. Thus, we have also included combinations of the undersampling and
oversampling methods previously described, done in that precise order, to
test their influence in the experiment.

4.2.3 Experimentation

Figure 4.4 shows the scheme implemented for the experiments. The basic
idea is that the train set may undergo a class-balancing process and/or a PS
method before getting to the kNN classifier, which are the situations to be
compared. For our experiments, we fixed a value of k = 1 for the kNN stage
as well as the Euclidean distance as dissimilarity measure.

For the experimentation we have considered three datasets from the
UJI2 repository (scrapie, spam, and phoneme) and two from the KEEL3

collection (segment0 and yeast3). Additionally, we have considered the music
dataset prosemus4 meant for onset detection, whose features have been
extracted with the methodology in Valero-Mas, Iñesta, and Pérez-Sancho

2http://www.vision.uji.es/⇠sanchez/Databases/
3http://sci2s.ugr.es/keel/datasets.php
4http://grfia.dlsi.ua.es/cm/projects/prosemus/database.php
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Figure 4.4: Scheme proposed for the assessment of Prototype Selection
schemes in imbalanced scenarios.

Table 4.3: Description of the datasets considered for the experimentation
of Prototype Selection in imbalanced classification environments in terms of
the amount of instances of the majority (Maj.) and minority (Min.) classes.

Dataset Min. Maj. Dataset Min. Maj.

prosemus 1,041 4,045 phoneme 3,673 5,170
scrapie 531 2,582 segment0 329 1,979
spam 1,813 2,788 yeast3 163 1,321

(2014)5. All these datasets only contain two classes as it constitutes a common
practice in studies about imbalanced classification and all of them show a
statistical/feature-based representation. Table 4.3 describes them in terms of
the number of instances for each class. Also note that, except for yeast3, all
these sets contain more than 2,000 instances, which constitutes a typical size
threshold for which PS is considered to be necessary (Garćıa et al., 2012).
For all these sets, a 5-fold cross-validation scheme has been considered.

In terms of PS methods, we have contemplated a representative selection
of the conventional schemes described in Section 4.1.2, more precisely the
condensing-based schemes CNN and FCNN, the ENN algorithm, and the
hybrid approaches EFCNN, DROP3, and CHC. Additionally, we have also
considered the rank-based strategies 1-NE and 1-FaN. For all these methods
we fixed a value of k = 5 so that noise present in the set can be managed as
well as a low probability mass of 0.1 for the rank methods to obtain a very
compact set. Additionally, we contemplate the case in which no PS process
is applied with the ALL case.

As of balancing techniques, we have considered the strategies explained
in Section 4.2.2. For all of them we fixed a value of k = 5 to be robust
against the intrinsic noise that may be present in the sets.

Regarding figures of merit, we considered the F-measure (F1) as it consti-
tutes a typical measure in the context of imbalanced classification. Focusing
on the minority class, this metric summarizes the correctly classified elements
(True Positive (TP)), the misclassified elements from the majority class as

5The methodology for extracting the features is also described in Chapter 5. Nevertheless,
consider it for this case to be a generic set of two-class imbalance data.
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minority ones (False Positive (FP)), and the misclassified elements from the
minority class as majority class (False Negative (FN)) in a single value using
Eq. 2.8. Note that for the case of the prosemus set this classification task
is actually an onset detection process. Thus, for this particular set we have
considered the common evaluation procedure for onset detection described
in Chapter 2. Finally, for all cases we also consider the Multi-objective
Optimization Problem-based evaluation criterion for PS to assess the results
in terms of the non-dominance criterion.

4.2.4 Results

The results obtained are shown in Table 4.4. These figures depict the average
F1 score and reduction rate (in percentage) obtained for the considered
datasets in terms of the balancing techniques and PS strategy used.

According to the results, the use of PS on the initial imbalance situation
implies a decrease in the F1 measure for all cases. For instance, CHC
lowers performance from the average score of F1 = 0.69 in the ALL case
to an F1 = 0.52 of the reduced case. In this context of applying PS to an
imbalanced set, the results achieved by FCNN are the ones of particular
interest since, although there is a decrease in the F1 value as with the other
PS cases, this score is just slightly lower than the original case (0.02 points
of di↵erence) but with less than a third of its set size.

When an oversampling technique is considered for artificially balancing
the set, the F1 results show a slight improvement at the expense of an
expected increase in the set size. For instance, the SMOTE case improves
the result to an F1 = 0.70 but with a set size of, roughly, a 150 % compared
to the original. Nevertheless, if a PS stage is added afterwards, some cases
retrieve very competitive F1 results but still with a large reduction rate.
For instance, the FCNN and EFCNN selection schemes when considering
SMOTE as a balancing technique obtain an F1 figure similar to the ALL
case in the original situation with roughly a third and a fifth of the set size,
respectively. Thus, this balancing and PS scheme seems as an appropriate
preprocessing stage for large-scale imbalanced sets.

Regarding the undersampling-based balancing schemes, it can be checked
that this process generally results in slightly worse scores than when over-
sampling the set. Particularly, the use of the CNN balancing method implies
a general decrease in the F1 results when PS is applied. However, when
this CNN method is used without any PS, results are remarkably good as it
achieves the same F1 as in the initial set but with roughly half of its set size.
NCL and TL schemes show better performance when coupled with PS as F1

results get to improve when compared to their corresponding PS schemes in
the initial imbalanced situation.

As of combined balancing strategies, these techniques generally obtain
intermediate figures between the solely use of oversampling or undersampling.
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Table 4.4: Results obtained for the experimentation of Prototype Selection in imbalanced classification environments. The
resulting figures show the F1 and reduction rate (in percentage referred to the initial case without Prototype Selection) for
each combination of Prototype Selection algorithm and balancing method. Bold results remark the elements belonging to the
non-dominated set.

Balancing Metric Prototype Selection method

ALL CNN FCNN ENN EFCNN DROP3 CHC EN0.1 FN0.1

Original F1 0.69 0.64 0.67 0.64 0.63 0.58 0.52 0.52 0.58
Size (%) 100.0 30.6 28.2 85.6 7.2 8.0 0.7 1.6 3.3

SMOTE F1 0.70 0.64 0.68 0.68 0.67 0.60 0.62 0.53 0.59
Size (%) 150.3 40.4 34.0 132.0 13.3 14.7 2.1 2.3 4.9

B1 F1 0.70 0.64 0.68 0.68 0.67 0.60 0.59 0.48 0.55
Size (%) 150.3 37.9 32.8 132.2 12.5 13.9 2.5 2.8 4.9

B2 F1 0.69 0.64 0.67 0.67 0.66 0.60 0.58 0.49 0.54
Size (%) 150.3 40.7 35.9 129.5 12.7 14.9 2.2 3.1 5.0

CNN F1 0.69 0.62 0.66 0.60 0.60 0.56 0.47 0.52 0.54
Size (%) 49.2 27.1 26.4 34.2 4.8 5.3 0.4 2.5 2.7

NCL F1 0.69 0.64 0.67 0.66 0.65 0.56 0.59 0.53 0.59
Size (%) 78.2 18.6 16.7 71.6 5.9 6.2 0.8 1.0 2.5

TL F1 0.69 0.63 0.67 0.66 0.66 0.58 0.54 0.52 0.59
Size (%) 92.3 25.6 23.2 80.8 7.1 7.3 0.7 1.4 3.0

CNN-SMOTE F1 0.69 0.63 0.66 0.66 0.64 0.60 0.56 0.49 0.52
Size (%) 65.8 32.4 30.0 49.1 8.4 9.4 1.0 2.9 3.2

CNN-B1 F1 0.69 0.63 0.67 0.66 0.64 0.57 0.54 0.47 0.53
Size (%) 65.9 31.3 29.3 49.1 8.5 9.4 1.1 3.0 3.2

CNN-B2 F1 0.69 0.62 0.66 0.65 0.63 0.56 0.55 0.47 0.50
Size (%) 65.9 32.3 31.1 47.9 8.9 9.3 1.0 3.1 3.3

NCL-SMOTE F1 0.69 0.65 0.67 0.67 0.67 0.61 0.59 0.52 0.58
Size (%) 109.7 22.6 18.3 101.6 9.6 10.5 1.7 1.2 3.5

NCL-B1 F1 0.69 0.65 0.68 0.68 0.67 0.59 0.58 0.49 0.54
Size (%) 109.5 21.9 18.4 101.7 9.4 10.3 2.0 1.7 3.4

NCL-B2 F1 0.69 0.64 0.67 0.67 0.66 0.60 0.58 0.49 0.53
Size (%) 109.7 23.5 20.1 100.3 9.8 11.7 1.9 1.8 3.5

TL-SMOTE F1 0.69 0.65 0.67 0.68 0.67 0.59 0.61 0.52 0.59
Size (%) 134.9 32.9 27.8 120.6 11.5 11.3 1.7 1.9 4.3

TL-B1 F1 0.69 0.64 0.68 0.67 0.66 0.59 0.59 0.48 0.54
Size (%) 134.9 31.2 26.7 120.3 10.9 11.4 2.3 2.3 4.3

TL-B2 F1 0.69 0.64 0.67 0.67 0.65 0.59 0.58 0.48 0.53
Size (%) 134.9 33.6 29.5 117.9 11.2 12.6 2.1 2.6 4.4
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For instance, focus on the ENN scheme for PS: considering the initial
balancing process CNN-B1, an F1 = 0.49 with a 49.1 % of set size is achieved;
when simply considering the oversampling scheme B1, an F1 = 0.68 score
with a set size of 132.2 % is obtained and if only the CNN undersampling is
performed, an F1 = 0.60 is scored with only 34.2 % of the initial prototypes.
Thus, these combined balancing solutions together with PS may suit cases
with medium reduction requirements, being undersampling techniques the
ones indicated for drastic size reductions.

Figure 4.5 shows graphically the results obtained and allows their analysis
in terms of the non-dominance criterion. A first point to highlight is that most
of the non-dominance set of solutions comprises cases in which some type of
balancing stage is considered before applying PS. While all these solutions
entail a (sometimes slight) decrease in the F1 score when compared to the
case without any type of PS process, the resulting set is remarkably more
compact than the original situation. For instance, the NCL-B1 balancing
method coupled with FCNN achieves an F1 = 0.68 with less than a fifth of
the total number of prototypes.

As of the case of considering PS without any balancing stage, it may
be observed that the case of using the CHC technique constitutes the only
case among the non-dominated solutions. Thus, it may be mentioned that,
according to the non-dominance criterion, solutions involving PS without a
balancing stage may not generally be considered as optimal.

The cases that only consider the balancing scheme and avoid the PS
stage are also present among the non-dominant solutions. Particularly, the
non-dominated solutions by the CNN and CNN-B1 balancing cases achieve
the same F1 scores than the initial imbalanced case but with a remarkable
set reduction.

Finally, it must pointed out the case of the B1 oversampling algorithm.
This configuration stands as an interesting option from an accuracy point of
view as it achieves the best F1 score overall, but it entails a remarkable set
size increase compared to the the initial one. Thus, while in the particular
context of these experiments should be discarded as the premise is to reduce
the initial set size, this result evinces a possible path to explore for cases
with less retrictive requirements regarding the size of the sets or the cost of
the dissimilarity metric.

4.2.5 Discussion

This study of PS in the context of class-imbalance situations points out
several insights that are interesting to remark. A first point is that, as
expected, the use of PS schemes in imbalanced sets generally lowers the
performance of the system as these algorithms are not generally prepared to
handle such situations. Thus, a possible alternative is the use of data-level
balancing methods that aim at artificially equilibrating the classes at issue
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Figure 4.5: Graphical representation of the results obtained for Prototype
Selection in imbalanced classification environments. Balancing paradigms
are represented by the symbols in the legend. The use or not of Prototype
Selection is shown by being these symbols either empty or filled, respectively.
Circled symbols remark the elements belonging to the non-dominance set
whereas the vertical dashed line refers to the original set size. Symbol
(⌅) in the dashed line depicts exhaustive search without any balancing or
selection technique. To avoid graph overload, the grey region depicts the
space occupied by all results obtained in this work from the combinations of
balancing techniques (oversampling, undersampling, and combination) and
PS strategies studied.

for making the data suitable for conventional PS schemes.
The use of oversampling-based methodologies as preprocessing stage

stands as a proper option for tackling the imbalance problem. Even though
these methods retrieve sets with larger sizes, the fact that the classes are
properly balanced allows the correct performance of the PS techniques as it
may be checked in the results.

As of undersampling techniques, the first point to remark is that these
methods reduce the set size without the need of an additional PS stage.
However, when sharper reduction rates are required, the use of a PS stage is
usually considered. Nevertheless, in such cases the accuracy figures generally
show a drop in performance that may be due to the fact that undersampling
techniques do not guarantee a balanced resulting set, thus harming the
performance of the PS algorithm.

When considering combinations of oversampling and undersampling tech-
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niques for preprocessing the set before PS, the results obtained generally
describe an intermediate tendency between the exclusive use of undersam-
pling and oversampling. In general, accuracy figures tend to be higher than
the ones achieved with undersampling schemes but also set sizes are more
compact than the ones achieves with oversampling methods.

Finally, as a general conclusion we may point out that, while data-level
balancing techniques improve the results when applied before a PS stage,
the particular type of strategy (oversampling, undersampling, and combined
methodologies) is totally dependent on the memory requirements of the
eventual application as they achieve di↵erent reduction figures and, thus,
di↵erent accuracy figures.

4.3 General discussion

Prototype Selection (PS) algorithms for the kNN classifier are undoubtedly
useful in the context of large and noisy datasets. These algorithms aim at
producing a compact and robust subset out of the initial data that maintains,
or even improves, the accuracy of an initial set by selecting the most important
instances according to a certain heuristic. This chapter studied the use of
PS methods for the kNN classifier due to its interest for the rest of the
dissertation. A direct application of such study is found in onset detection:
when addressed as a classification problem, this task supposes a challenge
for the kNN rule as it entails operating with large-scale and imbalanced
binary data collections. In this regard, we performed two studies to review
the performance of PS schemes in general large-scale sets and to assess their
behaviour in the particular context of class-imbalance data collections.

The first of those studies focused on a comparative experimentation of
conventional PS algorithms (condensing-based, editing-based, and hybrid
approaches) with a rather new methodology known as rank methods. Our
comprehensive experimentation proved these latter methods to be remar-
kably competitive compared to conventional PS techniques, especially when
considering noisy environments in which they might be considered as a
possible alternative to the classic Edited Nearest Neighbor (ENN) by Wilson
(1972). Additionally, these rank methods allow the explicit specification of
the resulting set size, thus highlighting its adaptability to the requirements
of the task at issue by boosting either reduction or accuracy.

The second work studied the issue of PS techniques in datasets that re-
quire of a set size reduction (large-scale sets) but that show a class-imbalance
issue. Given that general PS techniques are not prepared for such cases, a
data-level preprocessing stage may be considered for artificially balancing
the classes and then apply PS. The study confirmed the initial hypothesis
that PS techniques are a↵ected by the imbalanced in the sets and that
artificially balancing the class distribution by oversampling, undersampling
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or combinations of them provides a proper solution to the issue. Specifically,
each of the strategies proved to be useful in terms of the resulting set size
requirement, being undersampling techniques interesting for cases in which a
minimal set size is required, combined balancing methods for the cases in
which set size is restrictive but not in such a prohibitive sense and, finally,
oversampling methods for the least restrictive set size cases.
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Onset Detection and

Correction

“If my calculations are correct, when
this baby hits 88 miles per hour...
you’re gonna see some serious shit”

Dr. Emmett Brown

As pointed out by di↵erent authors in the Music Information Retrieval
community, current state-of-the-art approaches for Automatic Music Tran-
scription seem to have reached a glass ceiling. New techniques, schemes, and
proposals do not report significant advances but simply subtle improvements
in the standard bechmark data collections (e.g., the MIREX one).

The proposal of alternative paradigms for Automatic Music Transcription
seems appropriate to further develop this field. Given such need, we consider
the study of interactive schemes in which the user is not only used as a
validation agent but also an active part in the success of the task. While
considering the user as an active part of the system may be seen as a
drawback, given the limitations found in current transcription systems, the
user is indeed always required for post-processing the output of the system.
Taking this need into consideration, the study and proposal of schemes for
the e�cient exploitation of the user e↵ort is a necessary point to address.

In this work we address the task of onset detection from this interactive
point of view. Onset information represents the starting points of note events
in audio streams and, in spite of the large amount of research carried out
in this field, no existing method is error-free. A conceptual description is
shown in Fig. 5.1: an onset detection algorithm performs an initial estimation
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on the signal; the user validates the output and provides feedback to the
detection model, which is iteratively improved. Note that in this context
the quality in the result is guaranteed by the expertise of the user, and thus
the point to assess is whether such interactive provides a workload reduction
compared to a non-interactive correction paradigm.

Data Onset Detector x

User

(ô
i

)L
i=1

(o
i

)N
i=1

Figure 5.1: Generic scheme for the Interactive Onset Detection and Cor-
rection paradigm. Stand-alone onset estimation methods do not consider the
feedback provided by the dashed line.

In terms of the precise work presented in this chapter, four di↵erent
studies related to the aforementioned ideas of interactive schemes and onset
detection are presented. The first work studies several aspects of the onset
selection stage in stand-alone onset detection systems to gather conclusions
that shall be later used in interactive systems; due to the lack of evaluation
criteria for interactive onset detection and correction schemes, the second
work proposes a set of measures for quantitatively measuring the e↵ort
invested by users. The third and fourth studies propose a set of interactive
onset correction schemes addressed from signal processing and machine
learning perspectives, respectively. Finally, a last section is devoted for the
discussion of the main ideas presented in this chapter.

5.1 Analysis of descriptive statistics and adaptive
methodologies for Onset Selection Functions

As explained in Chapter 2, the most extended methodology for estimating
onsets in audio streams is based on a two-stage approach: the initial Onset
Detection Function (ODF) step that processes the target signal computing a
time series whose peaks represent the positions of the estimated onsets; and
the Onset Selection Function (OSF) stage that filters out the results of the
previous stage retrieving only the most promising peaks as onsets.

Given that no ODF process is totally neat, the OSF constitutes a key
point in the performance of the system. Nevertheless, except for some
particular works explicitly assessing the influence of the OSF process in the
overall performance of the system (e.g., the work by Rosão et al. (2012)), there
is still a need to further study such processes. Thus, in this work we propose
a survey of OSF strategies that both consider the use of di↵erent statistical
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descriptors and sliding window analyses for performing the selection task.
Note that such survey is also relevant for the main aim of the chapter,

the case of Interactive Onset Detection systems. As it shall be explained,
interactive systems improve their performance by adapting themselves to
the particularities of the task through the interactions with the user. In the
case of Onset Detection systems, one possibility is to progressively adapt
the parameters of either the ODF stage, the OSF one, or even both at the
same time. In this regard, studying the influence of the OSF stage in the
overall performance of the system shall provide relevant insights about the
achievable results when considering an OSF-based interactive correction
system, which is the case that we shall later address.

For this study we initially introduce the di↵erent OSF schemes considered
to be compared; after that, the evaluation methodology comprising the data
considered, the assessment figures, and the set of ODF functions for the
comparison are presented; then the results obtained are introduced and
analyzed to gather the most relevant conclusions; finally, the study ends up
with a brief discussion.

5.1.1 Onset Selection Functions

In this work we perform an experimental study comparing di↵erent ideas
for OSF that, to our best knowledge, has not been previously performed.
Particularly, we aim at studying the following premises: i) considering other
percentile values (i.e., other statistical tendency measures) di↵erent to the
median, somehow extending the work by Kauppinen (2002) but particularized
to onset detection; ii) assessing the relation between the window size in
adaptive detection methodologies and the overall performance of the system;
and iii) comparing the di↵erence in performance between static and adaptive
methodologies. Mathematically, these criteria can be formalized as:
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, W denotes the size of the sliding window,

µ{·} and P(n){·} denote the average and n
th

percentile value of the sample
distribution at issue, respectively, and O(t) stands for the time series resulting
from an ODF process.

For assessing the influence of the percentile, 20 values equally spaced in
the range n 2 [0, 100] were considered. Note that the particular case of P(50)

is equivalent to the median value of the distribution. As of window sizes, 20
values equally space in the range W 2 [0.2, 5] s were also considered. The
value by West and Cox (2005) of W = 1.5 s was included as a reference.

To simulate a case of static OSF strategy, W was set to the length of
the O(t). Also, the case of manually imposing the threshold value ✓(t

i

) = T
was considered. For that we establish 20 values equally spaced in the range
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T 2 [0, 1] 1.
For the rest of the section, consider the following notation for referring

to the di↵erent OSF configurations: µ and P denote the exclusive use of the
mean or the percentile, respectively, whereas µ+ P stands for the sum of
both descriptors; adaptive approaches are distinguished from the static ones
by incorporating the t as a subindex, showing their temporal dependency
(i.e., µ

t

, P
t

, and µ
t

+ P
t

in opposition to µ, P, and µ+ P); T evinces the
manually imposition of the threshold value; lastly, B is used to denote the
case in which no threshold is applied and all local maxima are retrieved as
onsets: B ⌘ ✓(t

i

) = 0.

5.1.2 Evaluation methodology

The dataset used for the evaluation is the one introduced in Böck et al. (2012).
It comprises a set of 321 monaural real world recordings sampled at 44.1 kHz
covering a wide range of timbres and polyphony degrees. The total duration
of the set is 1 hour and 42 minutes containing 27,774 onsets with an average
duration of 19 seconds per file (the shortest lasts 1 second and the longest
one extends up to 3 minutes) and an average figure of 87 onsets per file
(minimum of 3 onsets and maximum of 1,132 onsets). A detailed description
of the collection in terms of instrumentation and number of onsets is shown
in Table 5.1. Note that this partitioning is only for informative purposes; in
our experiments, as the idea is to assess the influence of the OSF stage in a
generic fashion, we obviate the nature of the data and thus consider a single
partition.

Table 5.1: Description of the onset detection dataset by Böck et al. (2012)
used for evaluation in terms of instrumentation and number of onsets.

Instrumentation Files Onsets

Complex mixtures 193 21,091
Pitched percussive 60 2,981
Wind instruments 25 822
Bowed strings 23 1,180
Non-pitched percussive 17 1,390
Vocal 3 310

Total 321 27,774

Regarding performance assessment we consider the standard evaluation
strategy for onset detection introduced in Section 2.3.1 with a 50 ms tolerance
window. Although the results obtained are assessed in terms of the figures

1To ensure this range is equally relevant to all resulting O(t) functions, these time series
are normalized to range [0, 1] as explained in the Section 5.1.2.
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of Precision (P), Recall (R), and F-measure (F1), in order to be concise we
shall only present the last of them as it properly summarizes the initial two
metrics.

We selected two di↵erent ODF strategies according to their good results
reported in the literature for the experiments: the Semitone Filter Bank
(SFB) method by Pertusa et al. (2005) and the SuperFlux (SuF) algorithm
by Böck and Widmer (2013a, 2013b).

As an energy-based ODF method, SFB analyses the evolution of the
magnitude spectrogram with the particular assumption of considering that
harmonic sounds are being processed. A semitone filter bank is applied to
each frame window of the magnitude spectrogram, being the di↵erent filters
centered at each of the semitones marked by the well temperament, and the
energy of each band (root mean square) is retrieved. After that, the first
derivative across time is obtained for each single band. As only energy rises
may point out onset information, negative outputs are zeroed. Eventually,
all bands are summed and normalized to obtain the O(t) function.

The SuF method bases its performance on the idea of the Spectral
Flux (Masri, 1996) signal descriptor and extends it. Spectral Flux obtains
positive deviations of the bin-wise di↵erence between the magnitude of two
consecutive frames of the magnitude spectrogram for retrieving the O(t)
function. SuF substitutes the di↵erence between consecutive analysis windows
by a process of tracking spectral trajectories in the spectrum together with
a maximum filtering process for suppressing vibrato articulations that tend
to increase false detections.

Given that these ODF processes may not span in the same range, we
apply a normalization process to time series O(t) to ensure that the resulting
function only spans within the range [0, 1].

Finally, the analysis parameters of both algorithms have been configured
to a window size of 92.9 ms with a 50 % of overlapping factor. With such
configuration we match the resolution of the system with the tolerance
window considered for the assessment methodology.

5.1.3 Results

We now introduce and analyze the results obtained for the di↵erent exper-
iments proposed. All figures presented depict the weighted average of the
results obtained for each of the audio files considering the number of onsets
each one contains.

Table 5.2 shows the results obtained for the proposed comparative of static
and adaptive threshold methodologies for the two ODF processes considered.
In this particular case, the window size for the adaptive methodologies has
been fixed to the reference value of W = 1.5 s as in West and Cox (2005).

An initial remark to point out according to the results obtained is that,
in general, the figures obtained with the sliding window methodology do not
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Table 5.2: Results in terms of the F1 score for the descriptive statistics and adaptive methodologies study when considering
a 1.5-second sliding window. Bold elements represent the best figures for each Onset Detection Function considered. Due to
space requirements we have selected the threshold and percentile parameters (Th/Pc) showing the general tendency. Also,
threshold and percentile parameters are expressed in the range [0, 1].

Th/Pc
SFB SuF

T µ P µ+ P µ
t

P
t

µ
t

+ P
t

T µ P µ+ P µ
t

P
t

µ
t

+ P
t

0.00 0.65 0.73 0.65 0.73 0.72 0.65 0.72 0.64 0.77 0.64 0.77 0.74 0.64 0.76
0.11 0.71 0.73 0.65 0.72 0.72 0.65 0.71 0.76 0.77 0.64 0.77 0.74 0.64 0.76
0.21 0.75 0.73 0.66 0.71 0.72 0.66 0.70 0.65 0.77 0.65 0.77 0.74 0.64 0.76
0.32 0.73 0.73 0.66 0.70 0.72 0.66 0.69 0.51 0.77 0.66 0.77 0.74 0.65 0.76
0.42 0.66 0.73 0.68 0.68 0.72 0.67 0.67 0.39 0.77 0.68 0.76 0.74 0.67 0.75
0.53 0.56 0.73 0.69 0.66 0.72 0.69 0.63 0.29 0.77 0.70 0.75 0.74 0.69 0.74
0.63 0.44 0.73 0.70 0.62 0.72 0.70 0.58 0.21 0.77 0.73 0.73 0.74 0.71 0.71
0.74 0.31 0.73 0.70 0.53 0.72 0.70 0.50 0.15 0.77 0.74 0.68 0.74 0.72 0.65
0.84 0.19 0.73 0.65 0.39 0.72 0.63 0.36 0.10 0.77 0.68 0.56 0.74 0.65 0.54
0.95 0.10 0.73 0.40 0.13 0.72 0.42 0.12 0.06 0.77 0.42 0.29 0.74 0.44 0.27
1.00 0.05 0.73 0.05 0.00 0.72 0.27 0.00 0.05 0.77 0.05 0.00 0.74 0.29 0.00
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remarkably di↵er to the ones obtained with the static one, independently
of the ODF process. This can be clearly seen when P and µ + P are
respectively compared to P

t

and µ
t

+ P
t

: all percentile values considered
retrieve considerably similar results except for the case when high percentile
values are considered, in which the P

t

method shows its superior capabilities.
Additionally, while P approaches show their best performance for percentile
values in the range [60, 75], the µ+ P methods obtain their optimal results
in the lower ranges, more precisely around [0, 30].

Regarding the use of the µ methodologies, results obtained for the static
and adaptive methodologies did not di↵er for the SFB function. On the
contrary, when considering the SuF function, the adaptive methodology
performed slightly worse than the static one. Finally, as these methods do
not depend on any external configuration, their performance does not vary
with the percentile parameter.

In terms of the T strategy, its performance matched the static P and
µ + P methods in the sense that the performance degrades as the intro-
duced threshold was increased. Nevertheless, this method shows its best
performance when the threshold value considered lies in the range [0.10, 0.30].

As a general comparison of the methods considered, the µ methods
showed a very steady performance paired with high performance results.
Also, while µ+P methods generally outperform P strategies in terms of peak
performance, the particular case of P

t

approaches showed less dependency
on the percentile configuration value.

Given that all previous experimentation has been done considering a fixed
window value of W = 1.5 s, we need to study the influence of that parameter
in the overall performance of the system. In this regard, Tables 5.3 and
5.4 show the results for the P

t

and µ
t

+ P
t

methods considering di↵erent
window sizes for the SFB and SuF processes, respectively. Additionally,
Figures 5.2 and 5.3 graphically show these results for the P

t

and µ
t

+ P
t

methods, respectively.
As the figures obtained for both ODF processes qualitatively show the

same trends, we shall analyze them jointly. Checking Tables 5.3 and 5.4,
the results for the P

t

method show that larger windows tend to increase
the overall performance of the detection, at least when not considering an

extreme percentile value. For instance, let us focus on the P(74)
t

method for
the SuF process (Table 5.4): when considering a window of W = 0.20 s, the
performance is set on F1 = 0.67, which progressively improves as the window
size is increased, getting to a score of F1 = 0.73 when W = 5.00 s.

As commented, this premise is not accomplished when percentile values
are set to its possible extremes. For low percentile values, window size seems
to be irrelevant to the system. For instance, when considering the SFB

method, P(11)
t

, the performance measure was always F1 = 0.65 independently
of the W value considered.
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Table 5.3: Results in terms of the F1 score for the descriptive statistics and adaptive methodologies study for the Semitone
Filter-Bank Onset Detection Function. Bold elements represent the best figures obtained for each percentile value considered.
Due to space requirements, the most representative percentile parameters (Pc) and window sizes (W ) have been selected to
show the general tendency.

Pc
W = 0.20 W = 0.71 W = 1.50 W = 2.22 W = 2.98 W = 3.99 W = 5.00
P
t

µ
t

+ P
t

P
t

µ
t

+ P
t

P
t

µ
t

+ P
t

P
t

µ
t

+ P
t

P
t

µ
t

+ P
t

P
t

µ
t

+ P
t

P
t

µ
t

+ P
t

0 0.65 0.66 0.65 0.71 0.65 0.72 0.65 0.72 0.65 0.72 0.65 0.72 0.65 0.73
11 0.65 0.65 0.65 0.70 0.65 0.71 0.65 0.71 0.65 0.72 0.65 0.72 0.65 0.72
21 0.65 0.63 0.65 0.69 0.66 0.70 0.66 0.70 0.66 0.71 0.66 0.71 0.66 0.71
32 0.65 0.60 0.66 0.68 0.66 0.69 0.66 0.69 0.66 0.69 0.66 0.70 0.66 0.70
42 0.65 0.56 0.67 0.65 0.67 0.67 0.67 0.67 0.67 0.68 0.67 0.68 0.68 0.68
53 0.65 0.49 0.68 0.62 0.69 0.64 0.69 0.64 0.69 0.65 0.69 0.65 0.69 0.65
63 0.65 0.42 0.69 0.56 0.70 0.59 0.70 0.59 0.70 0.60 0.70 0.60 0.70 0.60
74 0.67 0.32 0.69 0.48 0.69 0.51 0.70 0.51 0.70 0.51 0.70 0.52 0.70 0.52
84 0.67 0.12 0.66 0.35 0.64 0.36 0.64 0.36 0.64 0.37 0.64 0.37 0.64 0.37
95 0.67 0.00 0.47 0.15 0.45 0.12 0.42 0.12 0.42 0.12 0.41 0.12 0.40 0.12
100 0.67 0.00 0.47 0.00 0.23 0.00 0.21 0.00 0.17 0.00 0.13 0.00 0.11 0.00
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Table 5.4: Results in terms of the F1 score for the descriptive statistics and adaptive methodologies study for the SuperFlux
Onset Detection Function. Bold elements represent the best figures obtained for each percentile value considered. Due to
space requirements, the most representative percentile parameters (Pc) and window sizes (W ) have been selected to show the
general tendency.

Pc
W = 0.20 W = 0.71 W = 1.50 W = 2.22 W = 2.98 W = 3.99 W = 5.00
P
t

µ
t

+ P
t

P
t

µ
t

+ P
t

P
t

µ
t

+ P
t

P
t

µ
t

+ P
t

P
t

µ
t

+ P
t

P
t

µ
t

+ P
t

P
t

µ
t

+ P
t

0 0.64 0.72 0.64 0.74 0.64 0.76 0.64 0.76 0.64 0.77 0.64 0.77 0.64 0.77
11 0.64 0.72 0.64 0.75 0.64 0.76 0.64 0.77 0.64 0.77 0.64 0.77 0.64 0.77
21 0.64 0.72 0.64 0.75 0.65 0.76 0.65 0.76 0.65 0.77 0.65 0.77 0.65 0.77
32 0.64 0.71 0.65 0.75 0.65 0.76 0.65 0.76 0.65 0.76 0.66 0.76 0.66 0.76
42 0.64 0.70 0.66 0.74 0.67 0.75 0.67 0.75 0.67 0.76 0.67 0.76 0.68 0.76
53 0.64 0.65 0.68 0.73 0.69 0.74 0.69 0.74 0.70 0.74 0.70 0.74 0.70 0.75
63 0.64 0.61 0.70 0.69 0.71 0.71 0.71 0.71 0.72 0.72 0.72 0.72 0.72 0.72
74 0.67 0.55 0.70 0.63 0.72 0.66 0.72 0.66 0.73 0.66 0.73 0.67 0.73 0.67
84 0.67 0.38 0.68 0.52 0.67 0.54 0.67 0.54 0.67 0.55 0.67 0.55 0.67 0.55
95 0.67 0.00 0.48 0.32 0.47 0.27 0.44 0.27 0.44 0.27 0.43 0.28 0.42 0.28
100 0.67 0.00 0.48 0.00 0.24 0.00 0.21 0.00 0.18 0.00 0.15 0.00 0.12 0.00
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On the other extreme, very high percentile values su↵er a performance
decrease as larger window sizes are used. As an example, for the SuF

configuration, P(100)
t

with W = 5.00 s achieved an F1 = 0.12, while when
W = 0.20 s this figure raised up to F1 = 0.67.

Results for the µ
t

+ P
t

method showed similar tendencies since, when
not considering extreme percentile values, the overall performance increased
as larger windows were used. Nevertheless, in opposition to the P

t

case,
this particular configuration showed an improvement tendency as W is
progressively increased for low percentile values.

In general it was observed that, for all W window sizes, the best percentile
configurations seemed to be in the range [60, 70] for the P

t

approach and
in the range [0, 20] for the µ

t

+ P
t

case. This fact somehow confirms the
hypothesis suggesting that the median value may not always be the best
percentile to consider.

Checking now the results considering Figs. 5.2 and 5.3, some additional
remarks more di�cult to be checked in the aforementioned tables may be
pointed out.

The first one is that the selection of the proper parameters of window
size and percentile factor is crucial. For both P

t

and µ
t

+ P
t

methods, there
is a turning point in which the performance degrades to values lower than
the considered baseline B (no OSF applied). For the P

t

method there is a
clear point for this change in tendency around the 85th percentile for any
window size considered. However, for the µ

t

+ P
t

approach there was not a
unique point but a range, which remarkably varied depending on the type of
ODF and window size considered.

Another point to highlight is that the static methodologies (P and µ+P)
consistently define the upper bound in performance before the so-called
turning point. This fact somehow confirms the initial idea of using large
windows (in the limit, one single window considering the whole O(t) function)
in opposition to small windows.

The results obtained when considering window sizes in the range [0, 1]
seconds, which include the performance of the considered reference window of
W = 1.5 s, achieved results similar to the obtained upper bound. The other
considered window sizes showed a remarkable variability in the performance,
ranging from achieving figures similar to the upper bound to figures close to
the baseline B.

As a general summary for all the experimentation performed, we may
conclude that adaptive OSF methodologies may be avoided as static ap-
proaches obtain similar results with less computational cost. Particularly, in
our experiments, methods considering percentile (P) or mean and percentile
(µ+ P) reported the upper bounds in performance.

Nevertheless, the particular percentile value used remarkably a↵ects the
performance. For P , the best results seem to be obtained when the percentile
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Figure 5.2: Evolution of the F1 score when considering the P
t

strategy for
the Onset Selection Function process.
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Figure 5.3: Evolution of the F1 score when considering the µ
t

+P
t

strategy
for the Onset Selection Function process.
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parameter was set in the range [60,70]. For µ + P the best figures were
obtained when this parameter was set to a very low value.

Finally, the commonly considered median value for the OSF did not
report the best results in our experiments. These results point out that the
median statistical descriptor may not always be the most appropriate to be
used, being necessary to be tuned for each particular dataset.

Statistical significance analysis

In order to perform a rigorous analysis of the results obtained and derive
strong conclusions out of them, we considered a set of statistical tests.
Specifically, these analyses were performed with the non-parametric Wilcoxon
rank-sum and Friedman tests (Demšar, 2006), which avoid any assumption
about the distribution followed by the figures obtained. The former method
is helpful for comparisons of di↵erent distributions in a pairwise fashion while
the latter one generalizes this pairwise comparison to a generic number of
distributions.

The Wilcoxon rank-sum test was applied to assess whether there are
significant di↵erences among all the methods proposed using the results in
Table 5.2. The single scores obtained for each Th/Pc constitute a sample
of the distribution for the OSF method to be tested. The results obtained
when considering a significance level of p < 0.05 can be checked in Table 5.5.

Attending to the results of the Wilcoxon test, an initial point to comment
is that method T was the less robust due to its significantly lower performance
in all cases. Oppositely, method µ can be considered the best strategy as it
outperformed all other strategies. The adaptive equivalent to this technique,
µ
t

, achieved similar performances to the static one except for the case of SuF,
in which it did not outperform the rest of the methods as consistently as in the
static case. Methods P and P

t

showed an intermediate performance among
the previously commented extremes. Their results were not competitive
with any of the µ or µ

t

strategies. These strategies are generally tied with
methods µ + P and µ

t

+ P
t

as they typically showed significantly similar
performances with punctual cases in which one of those methods improved
the rest.

We now consider the statistical analysis of the influence of the window size
(W ) and the percentile values (Pc) on the overall performance. Given that
we have two variables to be evaluated, we considered the use of the Friedman
test. The idea with this experiment was to assess whether variations in these
variables reported statistically significant di↵erences in the F1 score, so we
assume that the null hypothesis to be rejected was that no di↵erence should
be appreciated. Note that this type of analysis does not report whether
a particular strategy performs better than another one but simply if the
di↵erences when using di↵erent parameters are statistically significant.

For performing this experiment we considered the data in Tables 5.3 and
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Table 5.5: Results for the Wilcoxon rank-sum test of the F1 score for the descriptive statistics and adaptive methodologies
study when considering a 1.5-second sliding window size.. Symbols 3, 7, and = state that the onset detection capability of the
method in the row is significantly higher, lower, or not di↵erent to the method in the column. Symbol – depicts that the
comparison is obviated. A significance level of p < 0.05 has been considered.

Method
SFB SuF

T µ P µ+ P µ
t

P
t

µ
t

+ P
t

T µ P µ+ P µ
t

P
t

µ
t

+ P
t

T – 7 7 7 7 7 7 – 7 7 7 7 7 7

µ 3 – 3 3 3 3 3 3 – 3 3 3 3 3

P 3 7 – = 7 = = 3 7 – = 7 3 =
µ+ P 3 7 = – 7 = 3 3 7 = – = = 3

µ
t

3 7 3 3 – 3 3 3 7 3 = – 3 =
P
t

3 7 = = 7 – 3 3 7 7 = 7 – =
µ
t

+ P
t

3 7 = 7 7 7 – 3 7 = 7 = = –
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5.4 as they contained all the information required for the analysis. In this
regard Tables 5.6 and 5.7 showed the p significance values obtained when
measuring the influence of W and Pc, respectively.

Attending to the results obtained, we can check the remarkable influence
of the W parameter in the overall results as all cases reported very low p
scores that reject the null hypothesis. The only exception is the P

t

in the
SFB case in which p was not that remarkably low, but still would reject the
null hypothesis considering a typical significance threshold of p < 0.05.

As of the percentile value (Pc), the p significance values obtained clearly
show the importance of this parameter in the design of the experiment. This
points out the clear need to considered this as another parameter in the
design of onset detection systems.

Finally, it is important to highlight that this statistical analysis confirmed
the initial conclusions depicted previously: static approaches are significantly
competitive when compared to adaptive methods; window sizes for adaptive
methods remarkably influence the performance of the system; when using
OSF methods considering statistical descriptions, the percentile should be
considered as another design parameter due to its relevance in the results.

5.1.4 Discussion

This comparative study of the influence of the OSF stage in onset detection
schemes points out several conclusions that are relevant to highlight. As
a first conclusion to remark is that, as suspected, the OSF stage plays a
key role in the overall success of the task. Actually, depending on the
parameterization of the stage, the results range from completely mistaken
estimations to fairly accurate results. This fact supports the premise that
shall be later introduced of considering Interactive Onset Detection schemes
based on interacting with the parameters of the OSF stage to reduce the
annotation/correction workload of a user.

Additionally, it has been shown that, somehow in opposition to general
intuition, non-adaptive OSF schemes get to improve the results of adaptive
methodologies when properly configured. This is a quite relevant point as
the latter ones usually imply a much superior computational cost compared
to the former ones. Nevertheless it is also important to highlight that, in
the context of adaptive schemes, the proper configuration of the window size
constitutes a key point in the success of the task.

As a last conclusion to comment, it must be mentioned that the use
of percentiles di↵erent to the typical median descriptor has also proved its
influence in the task. Thus, this element should also be considered another
design parameter to be adjusted for the proper consecution of the onset
detection task.
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Table 5.6: Statistical significance results of the Friedman test when mea-
suring the influence of the window size (W ) in the overall performance.

Method SFB SuF
P
t

0.03209 4.917 · 10�9

µ
t

+ P
t

< 2.2 · 10�16 < 2.2 · 10�16

Table 5.7: Statistical significance results of the Friedman test when mea-
suring the influence of the percentile (Pc) in the overall performance.

Method SFB SuF
P
t

< 2.2 · 10�16 < 2.2 · 10�16

µ
t

+ P
t

< 2.2 · 10�16 < 2.2 · 10�16

5.2 User e↵ort assessment in Interactive Onset De-
tection

In this second section we introduce the issue of the assessment of interactive
methodologies for the particular case of onset detection. As previously
introduced, interactive methodologies are progressively being considered in a
larger number of fields, among which both MIR and PR are included.

Nevertheless, to our best knowledge, interactive methodologies have not
been rigourously applied to onset detection. Thus, there is a lack of not only
systems and schemes capable of performing such task but also, and maybe
more critical, of evaluation and assessment strategies capable of objectively
compare di↵erent proposals. We shall now formalize this idea to then propose
a set of measures designed for such aim.

Onset detection algorithms rarely retrieve a perfect result in terms of
precision. The two types of error that a↵ect this performance are: i) the
algorithm misses onsets that should be detected – False Negatives (FNs)
– and ii) the algorithm detects onsets than do not actually exist – False
Positives (FPs). In these terms, let NFP and NFN be the amount of FP and
FN errors committed after processing a given signal with an Onset Detection
algorithm. Let also NGT denote the total number of onsets to be annotated
in an audio file (ground truth) and NOK represent the number of correctly
detected onsets.

The amount of onsets obtained by a detection algorithm may be expressed
as ND = NOK +NFP whereas the total number of onsets to be estimated can
be expressed as NGT = NOK+NFN. Therefore, a user starting from the initial
ND analysis should manually eliminate the NFP erroneous estimations and
annotate the NFN missed onsets, thus requiring a total of CT = NFP +NFN

corrections to obtain the appropriate annotation.
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User interaction, meaning that the system attempts to adjust its per-
formance based on the corrections performed by the user, is proposed to
reduce CT. The idea is that the total number of corrections performed
in an interactive system Cint

T is lower than, or in the worst-case scenario,
equal to, the amount required in a complete manual correction Cman

T , i.e.
Cint

T  Cman

T .

5.2.1 Measures for Interactive Onset Detection

Based on the theoretical framework presented before, we shall now introduce
the two measures we propose. Note that in all cases we assume that the
e↵ort in the correction task is represented by the amount of interactions CT

the user needs to perform.

Total Corrections ratio

The first of the two proposed metrics is the Total Corrections ratio, RTC.
The idea behind this measure is comparing the amount of corrections a
user needs to perform when using an interactive system

�

Cint

T

�

to a manual
correction (Cman

T ). This ratio is obtained as:

RTC =
Cint

T

Cman

T
=

Nint

FP +Nint

FN

Nman

FP +Nman

FN
(5.2)

Depending on the resulting ratio value, it is possible to assert whether
the interactive scheme reduces the workload:

RTC

8

>

<

>

:

> 1 ) Increasing workload

= 1 ) No di↵erence

< 1 ) Decreasing workload

Corrections to Ground Truth ratio

Although the previous metric is able to assess whether an interactive scheme
requires less e↵ort than a manual correction, a certain premise is being
assumed: an automatic onset detection stage reduces the annotation workload
since it tracks, at least, part of the elements that must be annotated.

However, it is possible that the automatic detection algorithm will not
be able to perform this task as expected (for instance, when dealing with a
noisy signal). In such cases, the number of correctly tracked onsets NOK may
be negligible, or even non-existing, thus leading to ND = NOK +NFP ⇡ NFP.
The user would be required to annotate all the onsets NGT plus eliminating
the NFP errors committed, i.e. CT = NGT + NFP = NOK + NFN + NFP.
Under these circumstances, it would be arguable the need for an initial onset
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detection as the manual annotation of the signal from scratch would imply
less workload.

To cope with this issue, the Corrections to Ground Truth ratio, RGT,
compares the amount of interactions required CT in relation to the total
amount of ground truth onsets NGT for both interactive systems (Eq. 5.3)
and manual corrections (Eq. 5.4).

Rint

GT =
Cint

T

NGT
=

Nint

FP +Nint

FN

NGT
=

Nint

FP +Nint

FN

NOK +NFN
(5.3)

Rman

GT =
Cman

T

NGT
=

Nman

FP +Nman

FN

NGT
=

Nman

FP +Nman

FN

NOK +NFN
(5.4)

Bearing in mind that a ratio of 1 is equivalent to manually annotating
all the onsets, the results depict whether the system forces the user to make
more corrections than without any initial detection, thus making the system
useless in practice:

RGT

8

>

<

>

:

> 1 )More than manual

= 1 ) Same as manual

< 1 ) Less than manual

Finally, it must be pointed out the existing relation among measures
Rint

GT (Eq. 5.3) and Rman

GT (Eq. 5.4) with measure RTC (Eq. 5.2) by using the
following expression:

RTC =
Rint

GT

Rman

GT

=
Nint

FP +Nint

FN

Nman

FP +Nman

FN
(5.5)

5.2.2 Discussion

Onset detection constitutes one of the mostly addressed tasks in the MIR field
and thus its evaluation methodology has been largely discussed. Nevertheless,
these classic measures are designed for stand-alone onset detection algorithms
in which no intervention from a user is expected.

When interactivity is considered, there is a lack of methodology for
assessing such strategies. Thus, in this work we proposed a set of figures
of merit that shall be considered in the evaluation of the Interactive Onset
Detection methodologies to be described in the following sections. More
precisely, the two measures proposed assess: i) the potential workload
reduction when comparing an interactive correction method compared to the
case of manually correcting all errors spotted; and ii) the potential workload
reduction when considering an interactive correction strategy compared to
the case of manually annotating all onsets in an audio stream.

While we are aware that these measures simply constitute a first proposal
for assessing such type of interactive schemes that may be significantly
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improved, it must be considered that they provide a first tool that allows to
objectively and quantitatively compare the user workload invested in such
tasks.

5.3 Signal processing methods for Interactive On-
set Detection

In this section we introduce a set of schemes for Interactive Onset Correction.
The proposals explained in this section are based on the well-known two-
stage Onset Detection approach: an initial Onset Detection Function (ODF)
process and a posterior Onset Selection Function (OSF) stage. The idea
is that, as the user points out errors in the detection, the system gathers
information to modify its performance accordingly. Note that the strategies
described in this section are based on a signal processing framework, thus the
di↵erent user interactions shall, in general, modify the analysis parameters
of the scheme.

The study starts with the introduction and explanation of the Interactive
Onset Detection strategies proposed; then we introduce the evaluation scheme
proposed, data, and figures of merit considered for assessing the proposed
interactive strategies; after that, the results are presented and analyzed;
finally, a brief discussion is included for summarizing the relevant points
observed.

5.3.1 Interactive methodologies proposed

In the context of onset detection, user interaction should adapt the perfor-
mance of the system by changing the parameters involved in the ODF and/or
OSF processes. Due to the previously shown influence of the OSF stage in
the overall success of the onset detection task (cf. Section 5.1), in this work
we assume that the detection errors are exclusively produced by considering
an inappropriate configuration of a given OSF. Although we are aware that
this constitutes a simplification, there is strong evidence to restrict the work
to this hypothesis.

The premise introduced is that the OSF process may not be properly
parameterized: a particular OSF configuration may not be suitable for
the entire O(t) due to factors as, for instance, changes in instrumentation,
dynamics, articulation, and so on. Thus, a given ODF should be examined by
an OSF particularly tuned and adjusted for di↵erent regions. These regions
would be defined by the user as the FP and FN errors are pointed out, and
the new local OSF parameters are estimated through the interactions.

As of OSF on which to implement the interactive methods we shall
restrict ourselves to variations of the strategy of finding local maxima above
or equal to a certain threshold ✓ in function O(t). The idea is that, while
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the local maximum condition is kept unaltered, threshold ✓ now becomes a
function ✓ ⌘ ✓(t) whose value is defined by both the feedback provided by
the user and according to one of the interactive policies to be explained.

Note that given that user interactions may not match the actual local
maxima in the ODF, the system needs to provide a particular temporal
tolerance window. Thus, given an interaction at time point t

int

, the energy
value retrieved from the ODF for the adaptation process is given by:

O(t
int

) ⌘ max {O(t
m

)} with t
m

2 [t
int

�W
T

, t
int

+W
T

] (5.6)

where W
T

represents the tolerance window considered. We consider a window
of W

T

= 30 ms since, as pointed out by Böck et al. (2012), this time threshold
represents a proper tolerance for human beings to perceive onset events.

Exceptionally, Eq. 5.6 may retrieve a value O(t
int

) = 0 in the tolerance
time lapse. This issue occurs when the ODF process has not obtained a
proper O(t) representation and some onsets are not represented by a peak in
this function. In those cases, the correction is performed (the onset is added)
but the threshold value is kept unaltered.

Note that, given the time dependency in the output of an onset detection
algorithm, we may assume the same premise as in the Interactive Sequential
Pattern Recognition (ISPR) framework introduced in Chapter 3: when the
user interacts at position t

int

of the O(t), all information located at time
frames t < t

int

is implicitly validated. Corrections are therefore only required
in time frames t � t

int

.
After this introduction to the general framework, we shall now explain

the two interactive correction policies proposed.

Threshold-based interaction

This first policy, which was initially presented in Iñesta and Pérez-Sancho
(2013) bases its performance on directly modifying the threshold value ✓ of
the OSF. In this case, the global threshold is substituted by an initial (static)
proposal ✓0, and whenever the user interacts with an onset o

int

(either an
FP or an FN) located at a time frame t

int

, its energy O(t
int

) is retrieved.
This figure, once modified by a small value ✏ compared to the variation range
in O(t), becomes the new threshold ✓

int

for the new detection process that
will be performed for t � t

int

:

✓
int

=

8

<

:

O(t
int

)� ✏ if o
int

/2 (ô
i

)L
i=1 (FN)

O(t
int

) + ✏ if o
int

2 (ô
i

)L
i=1 (FP)

(5.7)

where ✏ has been set to 0.001 for this work, as it constitutes a value an order
of magnitude lower than the sensibility considered for the O(t) functions.

Figure 5.4 shows an example of the threshold variation as a result of the
di↵erent interactions performed by the user.
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Figure 5.4: Evolution of threshold ✓(t) throughout time as the result of
user interaction in the sliding window threshold-based approach: symbol ⇥
shows the ground truth onsets while� represents the performed interactions.
Dashed and solid lines represent the static and interactive thresholds obtained
with the sliding window approach, respectively. Initial percentile ✓(t

i

= 0)
has been set to 50th (median value).

Percentile-based interaction

This second approach is inspired by the idea of using an adaptive threshold
for assessing the ODF. As previously introduced, a typical method for doing
so consists of using an analysis window around the target point in O(t) and
setting as the, now variable, threshold ✓(t) the median value of the window.

In our case, instead of using the median value of the sample distribution,
we find useful the use of other percentiles for setting the threshold. The
idea is that when the user performs an interaction at time frame t

int

, its
energy O(t

int

) is retrieved for calculating the n
th

percentile it represents with
respect to the elements contained in a W -length window around that point,
i.e.:

n
th

| P (n) {O(t
w

int

)} = O(t
int

) with t
w

int

2


t
int

� W

2
, t

int

+
W

2

�

(5.8)

where P (n){·} retrieves the value representing the n
th

percentile of the sample
distribution.

Then, for calculating threshold ✓(t
i

) for time positions t � t
int

, the rest of
the signal is evaluated with a W -length sliding window using the percentile
index n

th

obtained at the interaction point t
int

as it follows:

✓(t
i

) = P (n){O(t
w

i

)} with t
w

i

2


t
i

� W

2
, t

i

+
W

2

�

^ t
i

2 t � t
int

(5.9)

Conceptually, the premise of using this approach is that, when a correction
at t

int

is made, the particular threshold ✓ value is not relevant by itself but
by its relation with the surrounding values. For example, if O(t

int

) is a low
value compared to the elements in the surrounding W -length window, the
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Figure 5.5: Evolution of threshold ✓(t) throughout time as the result of
user interaction in the sliding window percentile-based approach: symbol ⇥
shows the ground truth onsets while� represents the performed interactions.
Dashed and solid lines represent the static and interactive thresholds obtained
with the sliding window approach, respectively. Initial percentile ✓(t

i

= 0)
has been set to 50th (median value).

successive analysis windows should use low ✓ values as well, which can be
obtained by using low percentiles. On the other hand, if O(t

int

) is high
compared to the surrounding elements, the percentile should be high. Ideally,
this approach should adapt the performance of the OSF to the particularities
of the ODF.

The duration of the W -length window has been set to cover 1.5 seconds,
using as a reference the work by West and Cox (2005) in which windows
ranging from 1 to 2 seconds were used.

Figure 5.5 graphically shows the evolution of threshold ✓ when using this
approach.

5.3.2 Experimental configuration

In order to assess the proposed interactive strategies, the scheme shown in
Fig. 5.6 has been implemented. First of all, the input data is processed by an
Initial Onset Detection algorithm (an ODF method that computes an O(t)
function and a OSF algorithm that processes it) retrieving a list of estimated
onsets (ô

i

)L
i=1; both the O(t) signal and the estimations (ô

i

)L
i=1 are the input

to the User Interaction process. In that last stage, the user validates and
interactively corrects those estimations. Note that in our experiments, to
avoid the need for a person to manually carry out the corrections, ground
truth annotations were used to automate the process as in other works
addressing interactive methodologies (Toselli et al., 2011).

Onset Detection and Selection Functions considered

We considered a representative set of ODF methods to cover the di↵erent
paradigms introduced in Chapter 2 with the aim of exhaustively assessing
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Figure 5.6: Scheme proposed for the evaluation of the signal processing
interactive onset detection methods: an initial onset detection is performed on
the input signal (Data) in the Initial Onset Detection block; Static Evaluation
assesses the performance of the stand-alone algorithm; the User Interaction
block introduces human verification, interaction and correction; Interactive
Evaluation assesses the performance of the interactive scheme.

and validating the behaviour of the proposed interactive methodologies with
di↵erent analysis principles. The precise algorithms studied are:

1. Sum of Magnitudes (SM): This approach bases its performance
on measuring changes directly in the energy of the signal. Using the
magnitude part of the spectrogram of the signal, this process estimates
the energy for each analysis window as the sum of the magnitude
component of each frequency bin (Stowell & Plumbey, 2007).

2. Power Spectrum (PS): This approach also bases its performance on
measuring changes in energy. The approach is identical to the previous
one but performing the sum of the squared value of the magnitude
components of the spectrogram (Stowell & Plumbey, 2007).

3. Semitone Filter Bank (SFB): This energy-based algorithm analyses
the evolution of the magnitude spectrogram assuming a harmonic sound
is being processed. The algorithm applies a harmonic semitone filter
bank to each analysis window of the magnitude spectrogram and
retrieves the energy of each band (root mean square value); then,
consecutive semitone bands in time are subtracted to find energy
di↵erences; negative results are filtered out as only energy increases
may point out onset information; finally, all bands are summed to
finally obtain the detection function (Pertusa et al., 2005).

4. Phase Deviation (PD): This method relies exclusively on phase
information. The idea is that discontinuities in the phase component of
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the spectrogram may depict onsets. With that premise, this approach
basically predicts what the value of the phase component of the current
frame should be using the information from previous frames; the
deviation between that prediction and the actual value of the phase
spectrum models this function (Bello et al., 2004).

5. Weighted Phase Deviation (WPD): A major flaw in the previous
phase method is that it considers all frequency bins to have the same
relevance in the prediction. This severely distorts the result as low
energy components that should have no relevance in the process are
considered equal to more relevant elements. In order to avoid that,
each phase component is weighted by the correspondent magnitude
spectrum value (Dixon, 2006).

6. Complex Domain Deviation (CDD): Extends the principle intro-
duced in the Phase Deviation algorithm by estimating both magnitude
and phase components for the analysis window at issue using the two
preceding frames and assuming steady-state behaviour with a complex
domain representation. The di↵erence between the prediction and the
actual value of the frame defines the function (Duxbury et al., 2003).

7. Rectified Complex Domain Deviation (RCDD): In the Complex
Domain Deviation method no distinction in the type of deviation be-
tween the predicted spectrum and the one at issue is made. In such
case, the algorithm does not distinguish between energy rises, which
depict onsets, and energy decreases, which point out o↵sets. Hence, a
slight modification based on half-wave rectification is performed on the
method to avoid tracking o↵sets. The di↵erence between predicted and
real values is now carried out when the spectral bins increase their en-
ergy along time; in case the energy decreases, a zero is retrieved (Dixon,
2006).

8. Modified Kullback-Leibler Divergence (MKLD): This approach
also measures energy changes between consecutive analysis frames in the
magnitude spectrum of the signal. The particularity of this approach
lies in the use of the Kullback-Leibler divergence for measuring such
changes, which allows tracking large energy variations while inhibiting
small ones (Brossier, 2006).

9. Spectral Flux (SF): This function depicts the presence of onsets by
measuring the temporal evolution of the magnitude spectrogram of
the signal. The idea is obtaining the bin-wise di↵erence between the
magnitude of two consecutive analysis windows and summing only the
positive deviations for retrieving the detection function (Masri, 1996).
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10. SuperFlux (SuF): Modifies the Spectral Flux method by substituting
the di↵erence between consecutive analysis windows by a process of
tracking spectral trajectories in the spectrum together with a maximum
filtering process. This allows the suppression of vibrato articulations
in the signal which generally tend to increase false detections in classic
algorithms (Böck & Widmer, 2013a, 2013b).

Given the di↵erent principles in which the presented processes are based
on, the resulting O(t) functions may not span for the same range. Thus,
normalization is applied as a post-process so that all of them lie in the range
O(t) 2 [0, 1]. The analysis parameters of all these algorithms have been
configured to a window size of 92.9 ms with a 50 % of overlapping factor.

Regarding OSF processes, based on Eq. 5.1 we selected two methods for
obtaining threshold ✓. These two methods are:

1. Global threshold: Manually setting a constant threshold ✓ = ✓
o

for
analyzing the entire O(t) function.

2. Sliding window with percentile index: Using W -length sliding
window to analyze O(t) with a time-dependent threshold ✓ ⌘ ✓(t). More
precisely, we use ✓(t

i

) = P(n){O(t
w

i

)}, where t
w

i

2
⇥

t
i

� W

2 , t
i

+ W

2

⇤

.
Window size W has been set to 1.5 seconds considering the results
in West and Cox (2005).

In order to assess the influence of the parameterization of the considered
OSF methods, 25 values equally distributed in the range [0, 1] have been
used as either threshold or normalized percentile index.

Finally, it must be pointed out that these OSF methods are equivalent
to the interactive policies in Section 5.3.1. This has been intentionally done
as we want to assess two di↵erent configurations in this experimentation:
on one hand using the same selection functions for both the static onset
detection and the interactive scheme; on the other hand, using di↵erent
selection functions for both stages.

Dataset and assessment figures

The data collection considered for the evaluation is the one introduced in Böck
et al. (2012) and already used in Section 5.1. However, as pointed out and
discussed in the same paper, these precise onset annotations (raw onsets)
do not necessarily represent the human perception of onsets despite being
musically correct. Thus, as this work addresses the human e↵ort in the
annotation/correction of onsets, the dataset was processed following the
process described in the previous reference: all onsets within 30 ms were
combined into one located at the arithmetic mean of their single positions.
This process reduced the total number of elements from an initial figure
of 27, 774 events to 25, 996 onsets (approximately, 81 onsets per file). For
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Figure 5.7: Graphical representation of the F1 results obtained for the static
evaluation of the di↵erent Onset Detection Functions and Onset Selection
Functions considered.

our experiments no partitioning in terms of instrumentation, duration, or
polyphony degree was done to the data, as the idea is to check the usefulness
of the interactive approach disregarding the nature of the data.

Regarding the evaluation figures, on the one hand we have have consi-
dered the classic onset detection evaluation criteria based on the Precision,
Recall, and F-measure figures of merit introduced in Chapter 2. The only par-
ticularity is that we have reduced the tolerance window to a more restrictive
value of 30 ms to match the conditions of the processed dataset.

On the other hand, as the aim of the work is to assess the usefulness of
the interactive schemes introduced, thus we have considered the e↵ort-based
measures introduced in Section 5.2. As in the previous set of measures, we
fixed the tolerance window to 30 ms.

5.3.3 Results

We now present the results obtained when assessing the interactive proposals
with the evaluation procedures considered. For each particular pair of ODF
and OSF plus either the manual correction or the interactive scheme at issue,
the figure of merit shows the average and standard deviation of the 25 OSF
initial settings.

Results obtained in the static assessment of the considered ODF algo-
rithms are shown in Table 5.8. Additionally, Fig. 5.7 graphically shows the
results obtained but restricted to the F1 metric.

Figures achieved by the di↵erent configurations considered show the
intrinsic di�culty of the dataset: focusing on the F1 score, results are
far from being perfect as all the scores are lower than 0.6. In that sense,
the PD method showed the lowest accuracy, possibly due to exclusively
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Table 5.8: Results obtained in terms of Precision, Recall, and F-measure for
the static evaluation of the Onset Detection Functions and Onset Selection
Functions considered for the signal processing interactive schemes.

ODF OSF Precision Recall F-measure

SFB
Threshold 0.82± 0.12 0.4 ± 0.2 0.5 ± 0.2
Percentile 0.63± 0.10 0.64± 0.13 0.59± 0.07

PS
Threshold 0.69± 0.07 0.4 ± 0.2 0.4 ± 0.2
Percentile 0.65± 0.06 0.57± 0.12 0.55± 0.08

SM
Threshold 0.66± 0.07 0.4 ± 0.2 0.4 ± 0.2
Percentile 0.64± 0.06 0.56± 0.12 0.55± 0.08

CDD
Threshold 0.36± 0.03 0.18± 0.11 0.19± 0.10
Percentile 0.33± 0.02 0.26± 0.06 0.26± 0.05

RCDD
Threshold 0.70± 0.08 0.4 ± 0.3 0.4 ± 0.2
Percentile 0.63± 0.07 0.61± 0.13 0.57± 0.08

PD
Threshold 0.29± 0.02 0.17± 0.15 0.14± 0.11
Percentile 0.35± 0.02 0.37± 0.10 0.32± 0.06

WPD
Threshold 0.66± 0.06 0.4 ± 0.2 0.4 ± 0.2
Percentile 0.64± 0.06 0.56± 0.12 0.54± 0.08

MKLD
Threshold 0.45± 0.16 0.3 ± 0.3 0.2 ± 0.2
Percentile 0.61± 0.07 0.63± 0.14 0.56± 0.08

SF
Threshold 0.53± 0.10 0.3 ± 0.2 0.30± 0.19
Percentile 0.51± 0.08 0.55± 0.12 0.48± 0.06

SuF
Threshold 0.93± 0.08 0.3 ± 0.3 0.4 ± 0.2
Percentile 0.67± 0.11 0.74± 0.15 0.64± 0.08

relying on phase information and its reported disadvantage of considering all
frequency bins equally relevant. Methods such as SFB or SuF showed good
responses as, although mostly relying on an energy description of the signal,
the information is processed in very sophisticated ways to avoid estimation
errors.

In general terms, the relatively high precision scores achieved suggest
that FP may not be the most common type of error in the considered
systems. However, recall scores were low, especially when considering the
global threshold selection process, thus pointing out a considerable amount
of FN errors.

These results also show the clear advantage of adaptive threshold methods
in the OSF when compared to a global initial value. In general, the former
paradigm achieved better detection figures with lower deviation values than
the latter, thus stating its robustness.

Once we have gained a general insight of the performance of the considered
ODF and OSF schemes, we shall study them from the interactive point of
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Table 5.9: Comparison of the user e↵ort invested in correcting the initial
estimation of static onset detectors in terms of the RGT for the signal
processing interactive schemes. The F1 column shows the performance of
the static detection method, whereas Rman

GT refers to the e↵ort invested
when considering a complete manual correction of the results. Rthres

GT and

Rpctl

GT stand for the user e↵ort in the threshold-based and percentile-based
correction approaches, respectively. Symbol † denotes the cases in which the
deviation is lower than the second significant decimal figure.

ODF OSF F1 Rman

GT Rthres

GT Rpctl

GT

SFB
Threshold 0.5 ± 0.2 0.41± 0.05 0.34± 0.01† 0.43± 0.02
Percentile 0.59± 0.07 0.45± 0.03 0.34± 0.01† 0.44± 0.01

PS
Threshold 0.4 ± 0.2 0.44± 0.03 0.37± 0.01† 0.43± 0.01
Percentile 0.55± 0.08 0.44± 0.02 0.37± 0.01† 0.43± 0.01†

SM
Threshold 0.4 ± 0.2 0.45± 0.03 0.38± 0.01† 0.43± 0.01†

Percentile 0.55± 0.08 0.45± 0.01 0.38± 0.01† 0.44± 0.01†

CDD
Threshold 0.19± 0.10 0.54± 0.04 0.51± 0.01† 0.57± 0.01†

Percentile 0.26± 0.05 0.57± 0.02 0.52± 0.01† 0.57± 0.01†

RCDD
Threshold 0.4 ± 0.2 0.44± 0.04 0.35± 0.01† 0.44± 0.02
Percentile 0.57± 0.08 0.45± 0.02 0.36± 0.01† 0.44± 0.01

PD
Threshold 0.14± 0.11 0.54± 0.04 0.52± 0.01† 0.59± 0.01†

Percentile 0.32± 0.06 0.59± 0.03 0.52± 0.01† 0.59± 0.01†

WPD
Threshold 0.4 ± 0.2 0.45± 0.03 0.38± 0.01† 0.43± 0.01†

Percentile 0.54± 0.08 0.45± 0.01 0.38± 0.01† 0.44± 0.01†

MKLD
Threshold 0.2 ± 0.2 0.48± 0.02 0.36± 0.01† 0.46± 0.01†

Percentile 0.56± 0.08 0.46± 0.02 0.36± 0.01† 0.46± 0.01†

SF
Threshold 0.30± 0.19 0.48± 0.02 0.44± 0.01† 0.46± 0.01†

Percentile 0.48± 0.06 0.52± 0.03 0.44± 0.01† 0.47± 0.01†

SuF
Threshold 0.4 ± 0.2 0.42± 0.07 0.26± 0.01† 0.40± 0.03
Percentile 0.64± 0.08 0.42± 0.07 0.26± 0.01† 0.40± 0.02

view. Table 5.9 and Fig. 5.8 introduce the e↵ort results in terms of the
Corrections to Ground Truth ratio (RGT) measure when considering the
manual and interactive corrections of the errors.

As an initial remark, it can be seen that the workload figures for manual
correction (Rman

GT ) are close to a value of 0.5 for all the ODF and OSF
considered. These results suggest that an initial onset estimation process
is indeed beneficial for lowering the manual annotation since such figures
depict that half of the total number of onsets are properly handled by the
autonomous detection system. The reported low deviation values also suggest
that only for some particular cases in which the OSF parameters are not
properly selected, the required e↵ort may be higher.

In terms of the threshold-based interaction scheme, there is a consistent
workload reduction when compared to the manual procedure. Figures ob-
tained are almost always under the 0.5 value, getting to the point of 0.26
for the SuF algorithm (which broadly means annotating just a fourth of the
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Figure 5.8: Graphical representation of the user e↵ort results obtained
in terms of the RGT measure for the manual correction and the threshold-
based and percentile-based interactive schemes. Top and bottom figures
represent the results obtained when considering either threshold-based or
percentile-based Onset Selection Functions, respectively.

total number of onsets), showing the workload reduction capabilities of the
scheme. Additionally, the very low standard deviation values obtained point
out the robustness of the method: independently of the initial performance
of the ODF and OSF at issue, the threshold-based interaction scheme consis-
tently solves the task within a fixed figure of e↵ort. This fact could suggest
that, when considering this scheme, the performance of the initial onset
estimation by the autonomous algorithm may not be completely relevant
as the interactive scheme is able to solve the task within the same figure of
e↵ort.

Regarding the percentile-based scheme, the e↵ort figures obtained are
clearly worse than in the case of the threshold-based scheme, with up to
0.14 points of di↵erence between the two schemes for this measure, and are
qualitatively similar to the figures by the manual correction. This premise
can be also seen in the deviation values obtained: in spite of being quite low,
in some cases these figures show less consistency than in the threshold-based
approach (e.g., SuF or RCDD); nevertheless, it should be noted that when
compared to the manual correction, percentile-based interaction shows a
superior robustness since for this scheme the deviation figures are consistently

– Page 104 –



Towards Interactive Multimodal Music Transcription

Table 5.10: Results in terms of the RTC measure for the signal processing
interactive methodologies for the di↵erent onset detectors considered. R

xy

represents each RTC score, where x refers to the Onset Selection Function
used and y to the interactive approach.

ODF RTT RPT RTP RPP

SFB 0.75± 0.11 0.69± 0.07 1.3 ± 0.2 1.00± 0.14
PS 0.77± 0.06 0.80± 0.03 1.10± 0.11 0.98± 0.05
SM 0.78± 0.06 0.80± 0.03 1.11± 0.12 0.99± 0.06
CDD 0.92± 0.11 0.83± 0.06 1.2 ± 0.2 1.00± 0.09
RCDD 0.73± 0.07 0.73± 0.04 1.3 ± 0.3 1.01± 0.11
PD 0.96± 0.14 0.79± 0.09 1.4 ± 0.3 1.0 ± 0.2
WPD 0.77± 0.05 0.80± 0.03 1.10± 0.11 0.97± 0.06
MKLD 0.69± 0.04 0.72± 0.05 1.2 ± 0.2 1.01± 0.13
SF 0.87± 0.06 0.78± 0.08 0.99± 0.07 0.86± 0.10
SuF 0.54± 0.12 0.56± 0.07 1.61± 0.2 1.0 ± 0.2

lower than those obtained when considering the manual approach.
Finally, the results obtained in terms of the Total Corrections ratio are

shown in Table 5.10 and Fig. 5.9. This figure of merit helps us to compare
the di↵erent interactive configurations among them to gain some insights
about their di↵erences in behavior.

Checking the figures obtained, and disregarding the initial selection
function, the threshold-based interaction scheme (RxT) clearly outperforms
the percentile-based one (RxP) as the RTC results are always lower in the
former one. In the same sense, threshold-based figures always achieved
values under the unit whereas the other scheme was clearly not capable of
doing so. Deviation figures also proved threshold-based interaction as more
robust, given that in general they were lower than the ones obtained in the
percentile-based scheme.

Focusing on the threshold-based schemes, it can be seen that scores
(both in terms of average and deviation) were quite similar independently of
the initial selection methods (OSF). This fact suggests that this straight-
forward modification of the threshold value could be considered a rather
robust method capable of achieving good e↵ort figures independently of the
estimation given by the initial selection process (OSF).

On the contrary, attending to the di↵erence in the results among the
percentile-based interaction schemes, the initial estimation has a clear in-
fluence for this type of interaction. As observed, using an initial selection
process (OSF) based on either threshold or percentile, results in terms of
the RTC get to diverge in 0.3 points (case of SFB) or even 0.6 points (as in
SuF). Thus, given the dependency of this interaction scheme with the initial
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Figure 5.9: Graphical representation of the user e↵ort measure RTC for all
the combinations of Onset Selection Function and signal processing interactive
schemes. RTC = 1 is highlighted.

selection process (OSF), results suggest that the best particular configuration
for this percentile-based interaction approach is the case in which the initial
static selection is based on percentile as well, i.e. RPP.

Statistical significance analysis

To statistically assess the reduction of the user e↵ort, a Wilcoxon rank-sum
test (Demšar, 2006) has been performed comparing each interactive method
proposed against manual correction. This comparison has been performed
considering the Corrections to Ground Truth ratio (RGT) values. Table 5.11
shows the results when considering a significance p < 0.05.

Figures obtained show that threshold-based interaction significantly re-
duced the correction workload when compared to the manual correction. It
is especially remarkable the fact that this approach consistently reduced the
user e↵ort for all the combinations of ODF and OSF methods considered.

Results for the percentile-based interaction also show that for most of
the cases there was a significant reduction in terms of workload. However,
this statistical evaluation also proves that, for some particular configurations
as for instance CDD with the percentile-based OSF or the SuF with the
global threshold OSF, this interactive scheme may not be useful if percentiles
are used for adapting the system from the user corrections, as the resulting
workload does not significantly di↵er from the manual correction. In addition,
a particular mention must be done to the SFB, CDD, and PD algorithms
with the global threshold OSF as they constitute the particular cases in
which the interactive algorithm implies more user e↵ort than the manual
correction.

Finally, figures obtained with this statistical analysis state the robustness
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Table 5.11: Statistical significance results of the user e↵ort invested in
the correction of the detected onsets using the signal processing interactive
schemes. Manual correction (Rman

GT ) is compared against the threshold-based

(Rthres

GT ) and percentile-based (Rpctl

GT ) interactive correction methods. Symbols
3, 7, and = state that e↵ort invested with the interactive methodologies
is significantly lower, higher or not di↵erent to the results by the manual
correction. Significance has been set to p < 0.05.

ODF OSF Rthres

GT vs Rman

GT Rpctl

GT vs Rman

GT

SFB
Threshold 3 7

Percentile 3 3

PS
Threshold 3 3

Percentile 3 3

SM
Threshold 3 3

Percentile 3 3

CDD
Threshold 3 7

Percentile 3 =

RCDD
Threshold 3 =
Percentile 3 3

PD
Threshold 3 7

Percentile 3 =

WPD
Threshold 3 3

Percentile 3 3

MKLD
Threshold 3 3

Percentile 3 3

SF
Threshold 3 3

Percentile 3 3

SuF
Threshold 3 =
Percentile 3 3

of the threshold-based interaction when compared to the percentile-based
scheme: while results for the former method consistently presented a reduc-
tion in workload, the latter one did not show such steady behavior.

5.3.4 Discussion

This section introduced a set of strategies based on signal processing for the
interactive correction of automatically detected onset events in audio streams.
As a general conclusion it can be pointed out that the use of interactive and
adaptive systems for the annotation and correction of detected onset events
clearly entails a reduction in the e↵ort and workload invested by the user in
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the task. This is even more remarkable given that the strategies presented
are simply based on modifying the threshold that the OSF stage applies to
the result of an ODF process.

In particular, we proposed and assessed two strategies for interactively
modifying this threshold value: a first one in which a user interaction directly
changes this level by setting it to the energy level of the point at which the
interaction is performed; and a second one in which the new threshold value
is set according to the percentile that the energy of the interaction point
represents in a temporal window around that specific point.

Experiments show that, in general, both strategies imply a remarkable
decrease in terms of workload to the user to correct the results of an initial
onset detection process. Moreover, this assertion is consistently certain for
the first of the interactive schemes whereas for the second one this does not
happen as some of the configurations equal, or even outrange, the amount of
interactions to perform if compared to manually annotating the entire set.

5.4 Interactive Pattern Recognition for Onset De-
tection

A clear limitation of the previous interactive model is that the OSF progres-
sively adapts its performance to fit the signal at issue, but the underlying
onset estimation model is neither modified nor improved. Hence, each time a
new piece has to be annotated or corrected, the model obviates the cases and
particularities learned from pieces processed previously (i.e., errors pointed
out by the user in other music pieces) and always starts the task considering
the same initial onset estimation model.

In such context, it seems interesting to further extend this interactive
scheme to methods capable of modifying the base onset estimation model to
some extent. In this new approach, the annotation/correction process of a
piece is not only a↵ected by local interactions done to analysis parameters
of the signal at issue but also by the historical of corrections done in pieces
previously evaluated. For that, we shall consider Pattern Recognition (PR)
models, and more precisely the Interactive Sequential Pattern Recognition
(ISPR) framework as described in Chapter 3 due to the time-wise nature
of the data, since they are capable of modifying its performance by simply
changing the elements in the training set.

Onset detection may be modeled as a binary classification task: the
signal is evaluated in a frame-wise fashion in which each frame represents an
instance to be classified as either containing an onset event or not. Each of
those frames is described in terms of a set of low-level features derived, in
principle, from both its temporal and spectral representations. Figure 5.10
graphically shows this idea.

Having introduced the general context, the rest of this section further
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Figure 5.10: Conceptual description of onset detection as a classification
task. Onset events are represented as grey vertical lines whereas two analysis
windows are depicted by dashed lines. The text below shows the description
of the aforementioned analysis windows in terms of their features and class.

explores the idea of onset detection with PR models with a focus on the
interactive onset estimation/correction paradigm. More precisely, the rest
of the section comprises two di↵erent parts: (i) an initial one devoted to
compare di↵erent PR models for addressing the task of onset detection as
a stand-alone system (no human-computer interaction); and (ii) a second
part that extends the model derived from the previous point to the task of
interactive onset estimation by proposing and assessing a set of methodologies
for properly updating the PR model.

5.4.1 Static approach

The aim of this first part is to derive a PR-based model for stand-alone onset
detection by performing a comparative study of di↵erent features and classi-
fiers. Nevertheless, note that the main overall point of the section is to obtain
a PR-based model that suits the interactive onset estimation/correction
paradigm. Thus, this study shall also consider other evaluation parameters
beyond classification performance (or, in this case, goodness of the onset
estimation) such as the cost of (re)training the model and the time e�ciency
of the task.

As an initial point to comment, we shall introduce the data considered
for the forthcoming experiments. We have considered five data corpora
chosen for their availability and to provide a high degree of timbral diversity.
Table 5.12 provides a summary of their most relevant points while a thorough
description is now provided:

1. Saarland Music Data: Collection of 50 piano pieces (audio and
MIDI aligned) recorded with a Disklavier and gathered by Müller,
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Konz, Bogler, and Arifi-Müller (2011).

2. RWC-jazz: Set of 15 monotimbral performances extracted from the
RWC jazz database (Goto, Hashiguchi, Nishimura, & Oka, 2002) with
the manual annotation of their onset events (Box, 2013). Out of the
15 pieces, 5 of them correspond to piano recordings from the Jazz
Music collection (RWC-MDB-J-2001-M01) and the remaining 10 to
synthesized MIDI sequences (piano and guitar timbres) from the same
collection.

3. Prosemus: Data collection consisting of 19 files that result from a
mixture of some elements from the RWC database and other real-life
recordings, covering a wide range of instruments and genres. It can
be freely downloaded from http://grfia.dlsi.ua.es/cm/projects/

prosemus/index.php.

4. Trios: Dataset created by Fritsch (2012) which contains five multi-
track recordings of short musical extracts from trio pieces. The mixed
version of each trio as well as the isolated instruments are supplied. A
MIDI version of the manually aligned audio file and its synthesized
version are also provided. In our experiments we have only considered
the single instruments.

5. Leveau: This corpus gathered by Leveau, Daudet, and Richard (2004)
consists of mixture between certain elements of the RWC set and
some recordings made in an anechoic chamber by the authors of the
dataset. It comprises solo performances of monophonic and polyphonic
instruments, and was part of the MIREX 2005 onset detection task.

Note that not all experiments to perform shall consider all the datasets
presented as in some cases we aim at obtaining general and qualitative
conclusions rather than quantitative figures.

Table 5.12: Description of the onset description datasets for studying the
features considered for the classification-based onset estimator.

Collection Files Duration Onsets

Saarland 50 4 h 43 m 16 s 151,207
RWC-jazz 15 56 m 34 s 11,553
Prosemus 19 8 m 43 s 2,155
Trios 17 11 m 4 s 1,813
Leveau 11 2 m 39 s 428

Total 112 6 h 2 m 16 s 167,156
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Focusing now on the characterization of the signal (i.e., the obtention
of the individual instances), we perform a frame-based analysis using Hann
windows with a size of 92.8 ms and a 50 % of overlapping, which results
in a temporal resolution of 46.4 ms. We characterize each of the instances
with the set of 10 low-level signal descriptors listed in Table 5.13. These
features are obtained with the MID.EDU Vamp plugin by Salamon and
Gómez (2014) and, while a basic description of the features is provided,
the reader is referred to the work by Peeters, Giordano, Susini, Misdariis,
and McAdams (2011) for their comprehensive description. In addition, we
consider the first-order derivatives of those descriptors as their temporal
evolution may provide supplementary information for the onset estimation.

Table 5.13: Low-level signal descriptors considered for the classification-
based onset estimation model grouped in either temporal or spectral analysis.
Note that their first-order derivatives are included as additional descriptors.

Feature Description

T
im

e Zero Crossing Rate (ZCR) Number of zero-axis crosses

Root Mean Square (RMS) Energy of the signal

F
re

q
u
en

cy

Spectral Centroid Center of gravity

Spectral Spread Spread around mean

Spectral Skewness Asymmetry around mean

Spectral Kurtosis Flatness around mean

Spectral Flux Magnitude variation in time

Spectral Flatness
Geometric mean over
arithmetic mean

Spectral Crest
Maximum value over
arithmetical mean

Spectral Rollo↵
Frequency below which 95 %
of the energy is contained

Once we have introduced the descriptors considered, we shall assess their
performance when using a set of di↵erent classification models in the context
of onset detection. For that we consider four di↵erent strategies commonly
used in PR tasks:

1. Decision Tree: Non-parametric classifier that performs the separation
of the classes by iteratively partitioning the search space with simple
decisions over the features in an individual fashion. The resulting
model may be represented as a tree in which the nodes represent the
individual decisions to be evaluated and the nodes contain the classes
to assign. In our case we consider the J48 algorithm based on the C4.5
implementation by Quinlan (2014).
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2. Multilayer Perceptron (MLP): Particular topology of an artificial
neural network parametric classifier. This topology implements a feed-
forward network in which each neuron in a given layer is fully-connected
to all neurons of the following layer. The configuration in this case is a
single-layer network comprising 100 neurons and a softmax layer for
the eventual decision (Duda et al., 2001).

3. k-Nearest Neighbor (kNN): Standard k-Nearest Neighbor algorithm
with the particularity of being implemented as a k-dimensional tree
structure (Bentley, 1975). For this classifier we consider values of
k = 1, 3, and 5 neighbors with Euclidean distance.

4. Approximate kNN: Implementation of an approximate kNN al-
gorithm with the Fast Library for Approximate Nearest Neighbors
(FLANN) by Muja and Lowe (2014). This algorithm constructs a
series of random k-dimensional trees and performs the classification
process by searching through them. In this case we consider values of
k = 1, 3, and 5 neighbors, 8 randomized trees, and set 64 leafs to be
checked for each search.

Having introduced the classification strategies to compare and the set
of features considered, we shall now assess them. For that we consider the
RWC-jazz set and compare the di↵erent classifiers in three situations: using
the set of 10 features in Table 5.13, considering the same set of 10 features
but normalized to their respective global maximum respectively, and the
case considering the normalized features plus their temporal derivatives (20
features). The results obtained in terms of the F-measure considering a
10-fold cross validation scheme are shown in Fig. 5.11.

As it may be checked, the performance achieved by the di↵erent classifiers
does not remarkably di↵er among them. Given this equality in the results,
and as the main aim is to obtain a model easy to be updated and retrained
for the forthcoming interactive methodologies, we shall restrict ourselves to
the use of lazy learning techniques and more precisely to the approximate
kNN search algorithm studied FLANN.

Regarding the di↵erent sets of features assessed, it can be checked that the
set depicting the highest performance is the one with the 20 descriptors (the
initial ones after the normalization process plus their temporal derivatives);
the use of the initial 10 features shows a clear performance decrease when
compared to the former set of features, possibly due to the lack of the
temporal information provided by the derivatives; finally, when considering
the normalized version of the initial 10 features, this performance decrease is
further accused.

While the performance obtained by the best feature set may be considered
su�cient, we shall further study and select the most relevant ones out
of it. Thus, to study the discrimination capabilities of each feature, we
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Figure 5.11: Comparison of di↵erent classification models for onset esti-
mation. For each classifier, the results show the case of using the initial
descriptors, their normalized version, and their normalized version plus their
first-order derivatives.

consider a method based on the statistical significance Z-score test (Sprinthall,
1990). This method scores the discrimination capabilities of each feature
according to their means and variances assuming a binary classification
scenario. Mathematically, z

n

represents the separation score of feature f
n

obtained using the following equation:

z
n

=
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(5.10)

where f̄
(x)
n

represents the mean value of feature f
n

for the elements with

class x, �2
n

f
(x)
n

o

depicts the variance of feature f
n

for the elements with

class x, and N
x

represents the total number of instances with class x.
Table 5.14 shows the results obtained by the 20 descriptors considered

ranked according to their Z score obtained for each of the five datasets
previously introduced. Each Z value represents the average of the individual
Z scores obtained by each file in the set. In addition, the Mean Reciprocal
Rank (MRR)2 is included for summarizing the information of all datasets.

The results of this Z-score test may report some insights which may be
helpful in the context of onset detection: for instance, it may be checked

2For each feature f
n

, the Mean Reciprocal Rank (MRR) is obtained as
MRR(f

n

) = 1
N

P

N

i=1
1

r

i

(f
n

) , where N stands for the number of di↵erent ranks to average

and r
i

(x) for the position of element x in rank i.
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Table 5.14: Onset estimation results obtained by the 20 descriptors considered ordered according to their Z score obtained
for each of the 5 datasets. The (Der) tag stands for the first-order derivative of the descriptor. Each Z value represents the
average of the individual Z scores obtained by each file in the set. The Mean Reciprocal Rank (MRR) is used for summarizing
the information of all datasets.

Leveau Saarland Prosemus RWC-jazz Trios MRR
Descriptor Z-score Descriptor Z-score Descriptor Z-score Descriptor Z-score Descriptor Z-score Descriptor
Crest 6.18 Spread 17.88 Flux 8.91 Crest (Der) 25.29 Flatness 17.14 Flux
Crest (Der) 5.59 Flux 16.91 Flux (Der) 8.14 Flux (Der) 23.93 Centroid 14.09 Crest (Der)
Flux (Der) 5.12 RMS 16.47 Skewness 5.82 RMS (Der) 21.69 Spread 13.59 Spread
Flux 4.78 Flatness 15.55 Spread 5.81 Flux 21.66 Rollo↵ 12.48 Crest
Kurtosis 4.58 Crest (Der) 15.39 Centroid 5.70 Crest 21.51 ZCR 11.76 Flux (Der)
Spread 4.28 RMS (Der) 15.01 Kurtosis 5.70 Skewness (Der) 21.37 RMS 10.12 Flatness
Kurtosis (Der) 4.22 Flux (Der) 14.62 Crest 5.69 Kurtosis (Der) 19.91 Crest (Der) 9.82 Centroid
Skewness (Der) 4.06 Crest 14.10 Flatness (Der) 5.38 Centroid (Der) 17.59 Crest 8.96 RMS
Skewness 4.03 ZCR 10.63 Spread (Der) 5.15 RMS 16.55 Skewness 8.91 RMS (Der)
Flatness 4.00 Rollo↵ 9.88 Flatness 5.03 Spread (Der) 16.39 Flux (Der) 7.65 Skewness
RMS 3.98 Skewness (Der) 8.14 Skewness (Der) 4.94 Kurtosis 15.65 Flux 6.86 Kurtosis
RMS (Der) 3.80 Spread (Der) 8.07 Crest (Der) 4.84 Skewness 15.32 Kurtosis 6.59 Skewness (Der)
Centroid 3.74 Kurtosis (Der) 6.69 RMS 4.78 Spread 14.64 RMS (Der) 5.86 Rollo↵
Flatness (Der) 3.35 Centroid 6.30 Centroid (Der) 4.36 Centroid 14.34 Spread (Der) 5.41 Kurtosis (Der)
Spread (Der) 3.33 Skewness 6.02 Kurtosis (Der) 4.13 ZCR 12.23 Kurtosis (Der) 4.85 ZCR
Centroid (Der) 2.65 Flatness (Der) 5.99 Rollo↵ 3.59 Rollo↵ 10.53 Flatness (Der) 4.71 Spread (Der)
ZCR 2.21 Centroid (Der) 4.98 Rollo↵ (Der) 3.22 Rollo↵ (Der) 10.01 Skewness (Der) 4.53 Flatness (Der)
Rollo↵ 1.92 ZCR (Der) 4.68 RMS (Der) 3.11 ZCR (Der) 9.78 ZCR (Der) 3.84 Centroid (Der)
Rollo↵ (Der) 1.51 Kurtosis 4.40 ZCR 2.95 Flatness (Der) 9.41 Centroid (Der) 3.31 Rollo↵ (Der)
ZCR (Der) 1.46 Rollo↵ (Der) 4.26 ZCR (Der) 1.78 Flatness 7.47 Rollo↵ (Der) 2.69 ZCR (Der)
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that some descriptors like the Spectral Flux or the Spectral Crest (which
are ranked in the first positions of the MRR) may be more useful than the
Spectral Rollo↵ or the Zero Crossing Rate. Nevertheless, this Z-score test
does not report the actual influence of selecting a particular subset out of
the general on the performance of the system. In this sense, Fig. 5.12 shows
the results of considering the kNN classifier for the task of onset detection
using di↵erent groups of features from the MRR rank: taking the top-ranked
four features and then increasing the set size in groups of four features
following the rank order. A 10-fold cross validation scheme over the five
aforementioned datasets has been considered.
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Figure 5.12: Di↵erence in performance when considering di↵erent feature
sets for onset estimation based on k-Nearest Neighbor. The label in the
abscissa axis represent the di↵erent number of neighbors considered.

According to the results obtained, the performance of the onset estimation
system is maximized when considering the first 12 descriptors of the rank.
Thus, we shall consider this particular subset for the rest of the section
instead of the space of 20 features initially considered.

Instance optimization

As commented in Chapter 3, the kNN classifier shows very low e�ciency
figures as no model is derived out of the initial data. Thus, when the training
set is excessively large, the classification process generally becomes quite
time consuming and not suitable for interactive tasks. In this regard we shall
explore the use of di↵erent strategies for reducing the number of instances in
the training set and thus speed up the process with, in principle, no loss in
the detection figure of merit.

In the context of kNN, the most typical framework consists in applying
Prototype Selection (PS) processes as the ones introduced in Chapters 3
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and 4. The point with such techniques is that they aim at optimizing a
particular figure of merit (generally, training set size) disregarding the nature
of the data (that is, prior information of the data domain is not considered).
Nevertheless, as in this section we are dealing with the precise case of onset
detection, we may take advantage of the particular characteristics of the
domain at issue, time series representing music pieces, and propose a set of
techniques explicitly designed for selecting the proper instances for training
the classifier in the context of onset detection.

Before proposing and discussing this domain-based instance selection
techniques, we shall introduce some notation. Let us assume that T =
⇥

T1, T2, ..., T|T |
⇤

represents the ordered vector of instances with length |T |
obtained from the time-frequency analysis of an audio file from which we
shall select the proper instances to be included in the training set of the
classifier. Let also P

on

be the ordered vector that represents the elements
in T labeled as onset, and P

non

the ordered vector of elements labeled as
non-onset.

The idea is to obtain an alternative training set T 0 that comprises all
elements from the entire P

on

vector, and a reduced version of the non-onset
vector P 0

non

⇢ P
non

that allows a faster computation without a remarkable
decrease in the detection performance of the system. With this premise we
propose following four di↵erent strategies for selecting the elements of P 0

non

:

1. Random: Randomly selecting a number of prototypes from set P
non

.

2. Furthest non-onset: Selecting, if exists, the most distant non-onset
element between pairs of onset elements. That is, for two consecutive
onset instances T

m

2 P
on

and T
n

2 P
on

, the element to include should
be Tbm+n

2 c 2 P
non

.

3. Window around onset: Selecting non-onsets prototypes whose dis-
tance to an onset instance is less than a distance threshold w.

4. Further non-onset plus window around onset: Gathering the
two previous criteria into one.

For a better comprehension of the techniques proposed, a graphical
representation of these policies is shown in Fig. 5.13.

Having presented the di↵erent policies proposed for the domain-based
instance selection stage, we shall now assess their performance experimen-
tally. For that, we consider the RWC-jazz, Leveau, Trios, and Prosemus
collections and implement a 10-fold cross validation scheme and values of
k = 1, 3, 5, 7, 9, 11, and 13 for the kNN classifier. The results in terms of the
onset detection accuracy and the obtained reduced set size are shown in
Table 5.15. Bold elements represent the non-dominated solutions. These
figures constitute the average of the individual figures obtained for each fold
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Figure 5.13: Graphical representation of the domain-based instance se-
lection policies. Symbols # and ⇥ represent onset and non-onset points,
respectively. For the di↵erent policies, the elements surrounded by bars
represent the selected instances.

and dataset. Note that the presented results for the window-based strategies
represent the configurations that maximize the onset detection accuracy for
each dataset. Also note that the Random method has been configured to
reduce the number of non-onset instances to match the amount of the onset
ones.

The results obtained prove that, if properly configured, some of the
proposed policies are able to remarkably reduce the set size with similar
estimation capabilities to the initial training set. For instance, the Random
policy for low k values (e.g., k = 1, 3) retrieves estimation figures considerably
lower than the baseline; however, when parameterized as k = 7, 9, the results
are totally equivalent to the baseline with roughly a third of the set size. The
Furthest non-onset policy is the one achieving the highest reduction, but also
shows the worst estimation performance as all the obtained results are always
below the baseline for all k configurations. Note that the window-based
approaches (Windows around onset and Windows and furthest non-onset)
achieve the best overall estimation performance as, except for the k = 1
configuration, they always improve the baseline with roughly 50 % of the total
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Table 5.15: Results of the domain-based instance selection policies for the k-Nearest Neighbor onset estimation method
proposed. For each classification scheme and reduction policy, the F-measure and standard deviation of a 10-fold cross
validation is provided. The baseline column represents the initial case without instance selection. The average resulting set
size (in percentage with respect to the baseline case) as well as its standard deviation is also shown in the last row. Bold
elements represent the non-dominated configurations.

Classifier Baseline Random
Furthest Windows Windows and
non-onset around onset furthest non-onset

F
-m

ea
su

re

1NN 0.63± 0.09 0.56± 0.09 0.53± 0.07 0.62± 0.09 0.62± 0.09
3NN 0.65± 0.10 0.60± 0.09 0.57± 0.07 0.68± 0.08 0.68± 0.09
5NN 0.64± 0.11 0.62± 0.09 0.58± 0.07 0.70± 0.08 0.70± 0.08
7NN 0.64± 0.12 0.64± 0.09 0.59± 0.07 0.72± 0.08 0.71± 0.08
9NN 0.63± 0.12 0.65± 0.09 0.60± 0.07 0.72± 0.08 0.71± 0.08
11NN 0.63± 0.13 0.65± 0.09 0.61± 0.07 0.73± 0.07 0.72± 0.08
13NN 0.62± 0.13 0.65± 0.09 0.61± 0.08 0.73± 0.07 0.71± 0.08

Reduced size (%) 100.0± 0.0 28.6± 8.3 26.5± 7.4 54.2± 19.5 49.1± 32.3
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set size. Nevertheless, note that the figures shown for these window-based
approaches constitute the figures obtained for the most suitable configurations
per dataset, thus requiring a prior stage of configuration and exhaustive
search of parameters not required in the other policies.

The non-dominance analysis of the results reinforces the aforementioned
points: the Windows around onset and Windows and furthest non-onset
strategies stand out due to the remarkable performance obtained (F1 = 0.73
and F1 = 0.72, respectively); the Furthest non-onset policy is part of the
non-dominated front since, in spite of not reaching the performance baseline,
it achieves the highest reduction rate; finally, the Random strategy is clearly
a compromise solution between the high performance and large set size of
the window-based policies and the low performance and small set size of the
Furthest non-onset method.

Once we have studied the proposed domain-based instance selection
policies, it is necessary to also assess the performance of typical PS schemes
for kNN. For that, we shall now replicate the previous study considering PS
algorithms as the ones introduced and discussed in Chapters 3 and 4 instead
of the previous domain-based reduction policies.

For this study we shall consider the following PS strategies: the Condensed
Nearest Neighbor (CNN) and its fast and order-independent version Fast
Condensed Nearest Neighbor (FCNN); the Edited Nearest Neighbor (ENN)
and its combination with the condensing-based methods, Edited Condensed
Nearest Neighbor (ECNN) and Edited Fast Condensed Nearest Neighbor
(EFCNN); more recent techniques as the Iterative Case Filtering (ICF) and
the Cross-generational elitist selection, Heterogeneous recombination and
Cataclysmic mutation (CHC) methods; lastly, the rank-based algorithms
Nearest to Enemy (NE) and Farthest Neighbor (FaN), configured with
↵ = 0.10, 0.20, and 0.30 as possible values of probability mass. For all cases
we consider a kNN classifier with values of k = 1, 3, 5, and 7.

The results in terms of the onset detection accuracy and the obtained
reduced set size are shown in Table 5.15 for the di↵erent PS methods with
the same datasets as in the previous experiment. This figures constitute the
average of the individual figures obtained for each fold and dataset. Bold
elements represent the non-dominated solutions.

The obtained results show that, as expected, the set reduction of the PS
methods generally entails a decrease in the onset estimation performance.
While ENN generally maintains the performance as it aims at removing noisy
prototypes, condesing-based strategies as CNN or FCNN su↵er a considerable
decrease in the F1 figure of merit (around 0.1 points with respect to the
ALL case). This e↵ect is somehow palliated with the use of high k values
(for instance, performance improves from a figure of F1 = 0.56 witk k = 1 to
F1 = 0.62 with k = 7 for the CNN method) or with the use of ENN method
as preprocess also improves the performance as it removes noisy prototypes
(when considering the 1NN rule, performance improves from F1 = 0.56 of
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Table 5.16: Results of the Prototype Selection methods for the k-Nearest Neighbor onset estimation method proposed. The
ALL case represents the figures obtained with the non-reduced set. For each reduction scheme, the average and standard
deviation of the F-measure and obtained set size (in percentage with respect to the baseline case) resulting from of a 10-fold
cross validation are provided. Bold elements represent the non-dominated configurations.

PS method
k = 1 k = 3 k = 5 k = 7

F1 Size (%) F1 Size (%) F1 Size (%) F1 Size (%)

ALL 0.63± 0.09 100 0.65± 0.10 100 0.64± 0.11 100 0.64± 0.12 100

ENN 0.63± 0.11 91.7± 3.3 0.62± 0.14 92.0± 3.2 0.61± 0.13 92.0± 3.1 0.59± 0.15 92.0± 2.9

CNN 0.56± 0.08 20.8± 7.0 0.58± 0.08 20.4± 7.0 0.61± 0.07 20.0± 7.2 0.62± 0.08 19.8± 6.9

FCNN 0.56± 0.07 18.7± 6.5 0.60± 0.08 18.7± 6.5 0.62± 0.09 18.7± 6.5 0.62± 0.10 18.7± 6.5

ECNN 0.61± 0.07 6.9± 2.3 0.63± 0.08 6.2± 1.8 0.64± 0.08 5.6± 1.4 0.65± 0.09 5.3± 1.8

EFCNN 0.60± 0.07 6.0± 2.1 0.63± 0.09 4.7± 1.5 0.62± 0.10 4.2± 1.5 0.63± 0.12 4.1± 1.3

1-NE0.10 0.55± 0.14 1.1± 0.5 0.58± 0.14 1.1± 0.5 0.59± 0.14 1.1± 0.5 0.59± 0.13 1.1± 0.5

1-NE0.20 0.56± 0.12 2.6± 1.1 0.61± 0.11 2.6± 1.1 0.61± 0.12 2.6± 1.1 0.62± 0.12 2.6± 1.1

1-NE0.30 0.58± 0.12 4.8± 2.0 0.61± 0.11 4.8± 2.0 0.62± 0.11 4.8± 2.0 0.65± 0.09 4.8± 2.0

1-FaN0.10 0.62± 0.12 3.3± 1.0 0.66± 0.12 3.3± 1.0 0.65± 0.14 3.3± 1.0 0.65± 0.15 3.3± 1.0

1-FaN0.20 0.64± 0.10 8.0± 1.7 0.67± 0.10 8.0± 1.7 0.67± 0.10 8.0± 1.7 0.67± 0.11 8.0± 1.7

1-FaN0.30 0.64± 0.10 14.0± 2.4 0.66± 0.12 14.0± 2.4 0.67± 0.11 14.0± 2.4 0.66± 0.13 14.0± 2.4

ICF 0.51± 0.06 14.0± 5.4 0.58± 0.04 13.4± 5.4 0.59± 0.05 13.3± 5.5 0.60± 0.09 13.2± 5.5

CHC 0.64± 0.07 1.1± 0.4 0.67± 0.08 1.1± 0.5 0.69± 0.07 1.2± 0.6 0.68± 0.09 1.2± 0.6
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the FCNN to F1 = 0.60 with the EFCNN).

Rank-based methods show a remarkable competitiveness with respect to
other strategies. For instance, the 1-FaN0.10 method obtains an F1 = 0.62
for the 1NN classifier with just a 3 % of the total set size and, if considering
a higher probability mass of ↵ = 0.30 and k = 5, the performance improves
up to F1 = 0.67 with just 14 % of the set size, which actually improves the
ALL case that reports an F1 = 0.64 for the same 5NN classifier.

As in the condensing-based methods, the ICF scheme remarkably reduces
the set size, but there is a considerable performance loss, also around 0.1 in
the F1 figure of merit. Nevertheless, the CHC method achieves one the best
overall performances with one of the sharpest set size reductions: F1 = 0.69
with a just 1.2 % of the set size when considering the 5NN classifier.

The non-dominance analysis of the results points out the CHC method
for k = 3 and k = 5 as the cases showing the best compromise between
detection performance and set size reduction (F1 figures of 0.67 and 0.69 with
slightly more than 1 % of the total set). Nevertheless, it must be mentioned
that the CHC method is a computationally-expensive solution if compared
to other lighter strategies such as rank-based methods which also report
remarkably good performance figures with very compact set sizes.

In this first part of the section we have studied the possibility of addressing
the onset detection task within a classification framework. For that we have
compared a group of classifiers with di↵erent sets of descriptors and instance
reduction techniques, both proposed by us and from the PR literature.
From the experiments carried out we may consider some of the conclusions
for the forthcoming experimentation in the context of interactive systems
the following system: i) using the kNN as classifier as it allows an easy
model updating by simply adding/removing prototypes from the training
set; ii) considering the set of 12 descriptors selected with the Z-score test
out of the initial set of 20 descriptors as it maximizes the performance for
our data collections; iii) from the di↵erent instance reduction techniques
studied, we shall consider the use of stand-alone PS methods as they require
less parameterization than the domain-based techniques; as representative
examples of such paradigm we shall consider the rank-based method FaN
and the genetic CHC approach as they report good compromise figures in
terms of onset estimation performance and set size reduction.

5.4.2 Interactive approach

In this second part of the section we take as starting point the classification-
based model for onset detection previously obtained to propose and assess
a set of methods for the interactive onset detection/correction task. As
discussed, the advantage of considering a lazy learning classifier as kNN is
that the model may be easily updated by simply adding and/or removing
elements from its training set without the further need for a re-training
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process. The research question hence resides in studying which information
is needed by the classifier to improve the model.

To perform such study we propose the scheme and workflow shown in
Fig. 5.14: i) initially, the classification-based system previously proposed
retrieves a list of onsets (ô

i

)L
i=1; ii) as the user corrects the errors, information

is added to the Training Set of the onset detector, whose performance is
modified; iii) then the detection algorithm recalculates the output; iv) after
a number of iterations, the correct list of onsets (o

i

)N
i=1 is retrieved.

Data Feature Extraction kNN

Training Set

x

User

(ô
i

)L
i=1

(o
i

)N
i=1

Onset Detector

Figure 5.14: Interactive k-Nearest Neighbor (kNN) scheme for onset cor-
rection.

As aforementioned in this Chapter, the key point in the interactive
framework is the sequential sense of the output: given the time dependency
of the onset detection process, when the user points an error at position t

int

,
all information located at time frames t < t

int

is implicitly validated and
corrections are therefore only required in time frames t > t

int

. This fact is
remarkably important as the user is not only pointing out an error committed
by the algorithm (thus clearly stating the need for learning that particular
case), but is also stating that all previous frames were correctly classified.
In this sense, while it seems unarguable the need for including the error
point with the correct label as part of the Training Set, the question arises
with the rest of the information: should the rest of the instances update
the Training Set? Only some of them? If only some of them are relevant,
which ones? The rest of the section addresses these research questions by
proposing and assessing a set of policies for updating the kNN-based onset
estimation model.

Updating policies

Let us introduce some notation for the proper description of the updating
policies. Assume that T =

⇥

T1, T2, ..., T|T |
⇤

represents the vector of instances
with length |T | of the audio file being analyzed. Be t

i

a user interaction
at frame T [t = t

i

] and let us assume there was a previous interaction t
i�1

at frame T [t = t
i�1]. M = [T [t

i�1 + 1] , ..., T [t
i

� 1]] represents the set of
instances between the two interactions with length |M|.

As aforementioned, the instance T [t
i

] representing the interaction point
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t
i

is always added to the Training Set as it is constitutes an error committed
by the system and corrected by the user, and thus it should learn from that.
Taking that into consideration, we propose four di↵erent policies for the
elements in M:

1. Include (INC): All elements in M are included in the training set.

2. Discard (DIS): None of the elements in M is included in the training
set.

3. Random selection (RAN): |M|
2 elements are randomly selected from

M and included in the training set.

4. Validation (VAL): Point T [t = t
i

] is temporary included in the set
and M is used as a validation set, V. If the prediction over V when
including instance T [t = t

i

] in the Training Set is di↵erent to the one
previously obtained, point T [t = t

i

] is eventually discarded; if the
prediction remains the same, the point is maintained in the training
set.

For a better comprehension of the techniques proposed, a graphical
representation of these policies is shown in Fig. 5.15.

Once we have introduced the di↵erent proposals for updating the onset
estimation model, we shall assess them. For that, the methodology we
shall consider is the following one: i) for a given dataset we keep a certain
percentage of the files for training and the rest for test; ii) only for the training
files, if the precise experiment considers it, we apply a PS process and the
resulting instances define the initial training set of the system; iii) each file
of the test set is processed with one of the interactive methodologies; iv) the
process ends when all files in the test set have been processed.

As it can be checked, this assessment scheme implies the definition of a
percentage for splitting between train and test files. This parameter shall
allow us to model di↵erent situations as, for instance, the case in which the
training set is smaller than the test set or, just the opposite, the case in
which the training data is larger than the test set. While this fact is not
typically relevant in PR schemes, in the case of interactive approaches it
seems important to analyze the di↵erence in the performance when comparing
a model initially trained with a significant amount of data against a model
trained with less data which is progressively updated as the user performs
the corrections.

Taking this into consideration, we perform an initial experiment in which
we exclusively analyze the performance of the interactive policies disregarding
the influence of this di↵erence in the sizes of the sets. For that we set the
aforementioned percentage to 60 % for training and 40 % for test (files
are randomly selected for each set). We consider the RWC-jazz, Prosemus,
Trios, and Leveau collections for the experimentation and implement a 5-fold
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t

t
i�1

t
i

(a) Initial situation.

t

t
i�1

t
i

(b) Include policy (INC).

t

t
i�1

t
i

(c) Discard policy (DIS).

t

t
i�1

t
i

(d) Random selection of elements (RAN).

t

t
i�1

t
i

Validation

(e) Validation set policy (VAL).

Figure 5.15: Graphical representation of the model updating policies
proposed for the classification-based onset estimation/correction paradigm.
Points labeled as t

i

and t
i�1 represent the current and previous user in-

teractions, respectively. For the di↵erent policies, the elements in red and
surrounded by bars represent the selected instances.

cross-validation scheme. Table 5.17 shows the average of the results obtained
for each of the considered collections in terms of the e↵ort-based assessment
figures of merit proposed in Section 5.2 with a tolerance window of 30 ms.
The number of neighbors considered has been fixed to k = 1, 3, 5, and 7,
using the same k value for both the initial PS techniques and the kNN
classifier. Note that interaction is again simulated by considering the ground-
truth onset events as in the previous cases to avoid the need for a user in
the experimentation.

An initial remark to point out is that, on average, the use of the initial
static onset estimation stage reduces the annotation workload if compared
to the complete manual annotation from scratch. This fact can be observed
in the MAN schemes (i.e., manual correction after the initial correction) as
for all cases the RGT measure is lower than the unit. Nevertheless, for some
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Table 5.17: Results in terms of user e↵ort for the di↵erent interactive model-updating policies for the k-Nearest Neighbor
onset estimation scheme. The Initial model column shows the instance selection process applied to the initial model and the
Updating policy one shows the interactive methodology considered.

Initial model Updating policy
k = 1 k = 3 k = 5 k = 7

RGT RTC RGT RTC RGT RTC RGT RTC

ALL

MAN 0.87 1.00 0.62 1.00 0.59 1.00 0.58 1.00
INC 0.57 0.67 0.47 0.77 0.50 0.85 0.50 0.85
DIS 0.65 0.79 0.59 0.97 0.58 0.99 0.55 0.94
RAN 0.65 0.77 0.51 0.83 0.51 0.87 0.48 0.83
VAL 0.78 0.90 0.63 1.02 0.57 0.96 0.53 0.91

CHC

MAN 0.67 1.00 0.73 1.00 0.70 1.00 0.67 1.00
INC 0.53 0.79 0.50 0.73 0.45 0.66 0.48 0.77
DIS 0.74 1.10 0.70 1.02 0.73 1.05 0.69 1.10
RAN 0.57 0.85 0.54 0.78 0.50 0.73 0.49 0.78
VAL 0.71 1.05 0.73 1.06 0.66 0.96 0.68 1.07

1-FaN0.30

MAN 0.82 1.00 0.70 1.00 0.68 1.00 0.58 1.00
INC 0.55 0.67 0.46 0.71 0.47 0.73 0.46 0.82
DIS 0.73 0.88 0.65 0.99 0.57 0.88 0.61 1.08
RAN 0.66 0.79 0.51 0.77 0.49 0.76 0.49 0.86
VAL 0.76 0.92 0.62 0.97 0.56 0.86 0.61 1.07
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particular cases the average e↵ort invested in the correction is relatively
high (e.g., the ALL and 1-FaN0.30 cases for k = 1 with RGT = 0.87 and
RGT = 0.82, respectively), and thus needs to be reduced.

In general, the di↵erent policies for updating the training set report a
workload reduction in this RGT. The first of the policies considered, the one
of including all the validated points as new elements of the training set (the
INC one) reports a remarkable workload reduction with respect to the MAN
one. For instance, for the case of CHC and k = 5 there is a reduction of
almost 0.2 points in this e↵ort measure with respect to the ALL case with
the CHC strategy. While this reduction is less prominent in other cases (e.g.,
the 1-FaN0.30 scheme with k = 7 in which there is roughly a reduction of
0.10 points), note that this workload decrease always takes place.

When discarding all the implicitly validated information (the DIS policy),
the results are not that conclusive. In general, it can be checked that the use
of this particular policy does not always imply a reduction in the workload
with respect to the MAN case: for instance, when considering the 1-FaN0.30

scheme with k = 7, the e↵ort figure is RGT = 0.58 for the MAN case and
RGT = 0.61 for the DIS case. This fact suggests that some of the information
not being included in the training set due to being considered redundant (i.e.,
the implicitly validated information) is actually necessary for the system to
improve its performance.

The RAN policy, which stands as a compromise solution between the two
previous policies, retrieves results that somehow reflect this fact of being an
intermediate approach. In general, the e↵ort is generally lower than the one
achieved with the DIS policy but also higher than with the INC method. For
instance, this may be checked in the ALL case for k = 5: the INC and DIS
policies report e↵ort figures of RGT = 0.50 and RGT = 0.58, respectively,
while the RAN one achieves a figure of RGT = 0.51, which constitutes and
intermediate e↵ort figure.

In terms of the VAL policy, the e↵ort figures obtained resemble the ones
achieved by the DIS strategy. This constitutes a somehow expected behavior
as the only di↵erence between both policies is that the instance representing
the interaction point may be discarded instead of being always included
as a new element of the training set. While it may be checked that this
policy does not generally imply a decrease in the user e↵ort as (e.g., the
INC strategy), there are some particular points to highlight. For instance,
for the ALL case with k = 7, the VAL policy reports a sharper workload
reduction when compared to the DIS one of 0.05 points. This somehow
suggests that in some particular situations it may not be beneficial to include
the error pointed out by the user as part of the training set. However, a
totally opposite situation may be observed for the ALL case with k = 3 since
the VAL method increases the e↵ort in 0.04 points with respect to the DIS
policy.

Finally, take the RTC measure as a reference. As it can be checked most
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of the methods report a value in this figure of merit lower than the unit, thus
reporting that most of these interactive strategies are capable of reducing
the workload compared to the case of manually post-processing an initial
stand-alone detection. In general, the only strategies which depict RTC value
higher than the unit are the DIS and VAL policies. This somehow confirms
the previous comments on the need for including as part of the training set
part of the implicitly validated information when performing the corrections.

As a last point to experiment and assess in the context of interactive onset
detection task, we shall examine the influence of the train/test partitioning
in the performance of the system. For that, we repeat exactly the same
assessment scheme as before but using three additional splitting configurations
to the one already considered: i) 20 % for training and 80 % for test; ii) 40 %
for training and 60 % for test; and iii) 80 % for training and 20 % for test.
The results obtained for this experiment in terms of the RGT and RTC

e↵ort figures are respectively shown in Figs. 5.16 and 5.17. For a better
comprehension, for each particular scheme we only report the value achieved
by the particular kNN configuration that minimizes each e↵ort measure.
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Figure 5.16: Results of the influence of the train/test partitioning in terms
of the RGT e↵ort assessment measure. The di↵erent graphs represent each of
the possible instance selection methods initially applied to the stand-alone
onset detection algorithm. The legend provided depicts the interactive model
updating policy followed.

Attending to Fig. 5.16, the one showing the results for the RGT measure,
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Figure 5.17: Results of the influence of the train/test partitioning in terms
of the RTC e↵ort assessment measure. The di↵erent graphs represent each of
the possible instance selection methods initially applied to the stand-alone
onset detection algorithm. The legend provided depicts the interactive model
updating policy followed. The MAN policy is omitted since, by definition, it
always retrieves RTC = 1.

several points may be highlighted. A first one is that, in general, the results
suggest that the use of larger training sets implies a reduction in the workload.
This point is remarkably observable in the MAN, DIS, and VAL policies as
they are the policies which modify the least the initial training set, and thus
remarkably depend on the initial model. Just in opposition to this tendency,
the INC and RAN policies are less influenced by this initial model condition
since, for each user correction, the training set is significantly modified.

As of the influence of the initial PS process, conclusions are similar to
the ones already mentioned. The PS process reduces the size of the initial
training set, which in some cases implies a loss in the performance and an
increase in the user e↵ort. Thus, as it can be observed, when considering any
of the PS methods, the workload is increased with respect to the ALL case.
This e↵ect is especially noticeable with the CHC algorithm if compared to
the 1-FaN0.30 as the workload in the former case, which generally reports
sharper reduction figure, is superior to the latter one. Nevertheless, as
already commented, the INC and RAN policies stand as the most robust of
all since, independently of the PS method considered, they obtained very
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similar RGT e↵ort figures for a fixed train/test percentage split.
Finally, results when considering the RTC measure confirm the previ-

ously commented points. The initial training set remarkably influences the
performance of the system since, in general, the use of a PS method for
reducing the set implies an increase in the user workload. While some par-
ticular policies are able to cope with that (more precisely, the INC and RAN
strategies), even obtaining similar e↵ort values independently of the initial
training set, the rest of the proposed policies are remarkably dependent on
this. As aforementioned, this may be due to the fact that the INC and RAN
methods remarkably modify the initial training set while the rest of the
policies perform slighter modifications. In any case, note that, if properly
configured, these interactive schemes imply a decrease in the user workload,
which makes them interesting for real-world tasks as, for instance, corpora
annotation among others.

5.4.3 Discussion

This section studied the possibility of addressing the interactive onset de-
tection problem as an Interactive Sequential Pattern Recognition (ISPR)
task, being a set of conclusions and insights important to be highlighted. A
first point to comment is that the experiments carried out proved that onset
detection may be addressed as a classification task in which each analysis
frame is tagged as either containing or not an onset event using a set of
time-based and frequency-based low-level signal descriptors. In addition,
a comparative study among di↵erent classifiers showed that lazy learning
schemes are competitive against more sophisticated techniques such as neural
networks with the additional advantage of not requiring a re-training stage
for updating the model, which is of particular interest in the context of
interactive systems.

Another point to highlight is the proposal of a set of techniques for
instance selection particularly designed for this classification-based onset
detection task. The idea of the proposed techniques is based on the concept
of generic Prototype Selection (PS) for the kNN classifier but particularly
designed for time-series data and onset detection. The experiments carried
out proved the e↵ectiveness of this signal-based selection techniques and their
competitive performance when compared to classic Prototype Selection (PS)
schemes.

Finally, a set of techinques for updating the classification model have
been proposed and assessed. All the proposed techniques start from the
idea of always adding as a new instance of the training set the error (once
corrected) pointed out by the user and consider di↵erent policies for adding
or discarding the information implicitly validated by the user. Results show
that the inclusion in the training set of the instances implicitly validated
during the user correction stage reports a superior robustness of the scheme
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(i.e., not that dependent on the initial training set) and remarkably reduces
the user e↵ort when compared to the complete manual annotation.

5.5 General discussion

Onset information describes music signals in terms of the starting points
of the notes events present in the audio stream. Such description of the
signal constitutes a considerably relevant piece of information for a number
of tasks in the Music Information Retrieval field as music transcription,
rhythm description or audio signal transformations, among many others.
In this context the present chapter addressed the issue of onset detection
and correction from the perspective of interactive schemes: instead of the
typical workflow in which the user corrects the estimation given by an onset
detection algorithm, this paradigm considers the inclusion of the user as an
active part of the detection with the aim of reducing the workload that the
manual correction of the initial detection implies.

In terms of precise experimentation, the first section of the chapter studied
the influence of the Onset Selection Function in the performance of two-stage
onset detection schemes. The idea was to assess the relation between the
parameterization of the selection function and the general performance of
the onset detector. Such study is of particular interest as the conclusions
gathered are of interest for interactive onset estimation schemes in which
adaption is achieved by mapping the user corrections to the parameters of
the selection function.

As a second contribution of the chapter we may highlight the proposal
of a set of measures for assessing the e↵ort invested by the users in the
annotation and correction of onset events in audio streams. More precisely,
two di↵erent measures have been proposed: i) a first one that compares the
amount of corrections a user needs to perform when using an interactive
system to the manual correction of the output; and ii) a second one that
compares the amount of corrections performed by the user in relation to
the total amount of ground-truth onsets. This set of measures allows the
quantitave assessment of the e↵ort invested in the process of annotating
onset events in audio pieces and thus the formal comparison among future
proposal that may be developed in the future.

Finally, the third contribution included in the chapter is related to the
proposal and assessment of actual interactive onset annotation schemes. The
set of strategies proposed may be divided in two di↵erent families: i) a
first set based on signal processing techniques in which the methods take
as starting point a two-stage onset estimation algorithm and progressively
modify the onset selection stage according to the user corrections; and
ii) a second collection of techniques based on classification schemes which
incorporate the user corrections by means of modifying the training set of
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the method. Experiments show that both approaches are able to achieve a
remarkable reduction in the user e↵ort compared to the case of manually
correcting the events estimated by a stand-alone onset detection algorithm.
Nevertheless, when comparing both schemes, the strategies based on signal
processing techniques generally achieve sharper workload reductions than
the classification-based ones, possibly due to the representation limitations
of the low-levels descriptors considered for the latter strategies.
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On the use of Onset
Information for Note

Tracking

“Science is what we understand well
enough to explain to a computer.
Art is everything else we do.”

Donald Knuth

So far in this dissertation, we have addressed the issue of interactivity for
the particular case of onset estimation and correction. While this may be
seen as a very particular case to consider, one of the motivations is its direct
application as an additional source of information for Automatic Music
Transcription systems (multimodal transcription systems).

Onset information focuses on the temporal description of the signal, and
there are many examples in the literature that consider it for post-processing
an initial frame-level transcription for correcting timing issues found in
Multi-pitch Estimation methods. Nevertheless, we find that there is a lack
in formally studying several aspects, as for instance the importance of the
quality of the onset information or the influence of the post-processing policy.

This chapter presents two studies in the context of onset information
for improving note-level transcription. The first work addresses the issue of
quantitatively assessing the improvement that is achieved when considering
onset information for performing note tracking on an initial frame-level
transcription as well as analyzing the relation between the goodness of the
stand-alone onset detection and the quality of the note-level transcription.
Then the second study proposes a novel approach for note tracking based on
supervised classification and assesses it and compares the results to other
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benchmark proposals in the context of piano music. Finally, a last section is
included to discuss the main ideas gathered from the studies.

6.1 Assessing the relevance of Onset Information
for Polyphonic Note Tracking

In this first section of the chapter, we study the potential of onset information
for improving note tracking performance for the particular case of polyphonic
piano music transcription. While onset information has previously been
incorporated to Automatic Music Transcription (AMT) systems, the aim
of this study is to thoroughly assess how the goodness in the estimation of
onset information influences the quality of the note tracking process when
used for post-processing an initial frame-based estimation obtained with an
Multi-pitch Estimation (MPE) algorithm.

To develop this study, we compare two di↵erent situations: on the one
hand, we consider the use of ground truth onset information (oracle approach)
to study a possible upper bound in the performance of the transcription
system; on the other hand, we consider onset events obtained with state-of-
the-art onset detection algorithms (practical approach) and compare those
results with the oracle ones to point out the limitations found.

For that, we model the note tracking task as a sequence-to-sequence
transduction problem (raw estimation to onset-based corrected estimation)
and thus consider the use of Finite State Transducers (FSTs) for performing
it. To our best knowledge the use of FSTs for note tracking constitutes a
paradigm not previously considered by any author.

To carry out the proposed study, we have implemented the scheme shown
in Fig. 6.1. Audio signals undergo an MPE process which outputs frame-level
transcription T

F

(p, t), that is a binary representation depicting whether pitch
p at time frame t is active. Simultaneously, onset events (o

i

)L
i=1 are estimated

with an onset detection algorithm. Eventually both analyses are merged in a
note tracking stage obtaining the note-level abstraction T

N

(p, t).

MPE

Onset
Detection

Note
Tracking

T

F

(p, t)
Audio

(o
i

)L
i=1

T

N

(p, t)

Figure 6.1: Proposed set-up for the assessment of the relevance of onset
detection in note tracking.

The details concerning each of the processes shall be explained in the
following subsections.
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6.1.1 Multipitch estimation

We consider two MPE approaches for comparative purposes: the system
by Vincent et al. (2010) based on adaptive Non-negative Matrix Factorisa-
tion (NMF) and the one by Benetos, Cherla, and Weyde (2013) based on
dictionary-based Probabilistic Latent Component Analysis (PLCA). Both
models output a pitch activation probability P (p, t), where p stands for
pitch in the MIDI scale and t for time instant. We set a temporal resolu-
tion of 10 ms for the input time-frequency representation and output pitch
activation.

Vincent et al. (2010) decompose a spectrogram with an NMF-like method
by modeling each template spectrum as a weighted sum of narrowband
spectra that represents a group of adjacent harmonic partials. This enforces
harmonicity and spectral smoothness while it allows adapting the spectral
envelope to the instruments in the piece.

Benetos, Cherla, and Weyde (2013) take as input a constant-Q transform
(CQT) spectrogram with a resolution of 60 bins per octave and decompose
it into a series of pre-extracted log-spectral templates per pitch, instrument
source, and tuning deviation from ideal tuning. Model parameters are
estimated using the Expectation-Maximization (EM) method by Dempster,
Laird, and Rubin (1977).

In both cases, P (p, t) is further processed to obtain the T
F

(p, t) binary
representation: P (p, t) is normalized to its global maximum so that P (p, t) 2
[0, 1] and a 7-element median filter is applied over time to smooth it. Then,
the function is binarised using a threshold value ✓ = 0.1, which is obtained
taking the work in Vincent et al. (2010) as a reference and refining it for
the data used in this work. Finally, a pruning stage with a minimum-length
filter of 50 ms is applied to remove spurious note detections. These values
were obtained by performing initial exploratory experiments to optimize the
parameters for the data considered.

6.1.2 Onset detection algorithms

As mentioned, our aim is to study the influence of the onset information
accuracy when considered for note tracking. Thus, we distinguish two
situations: a first one considering ground-truth onset events and a second
one with estimated onset information.

For the latter case we have selected three di↵erent algorithms, which have
already been considered in this dissertation, given their good results reported
in literature: Semitone Filter-Bank (SFB) by Pertusa et al. (2005), SuperFlux
(SF), and ComplexFlux (CF) by Böck and Widmer (2013b, 2013a). For the
sake of clarity, we remind that (o

i

)L
i=1 denotes the output list of the onset

estimation methods, whose elements represent the time positions of the L
onsets detected. Reader is referred to Section 5.3 in this manuscript for the
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explanation of these methods.
The time-frequency analysis parameters of the algorithms have been

set to their default values.1 As all of them comprise a final thresholding
stage (i.e., an Onset Selection Function stage), 25 di↵erent values equally
spaced in the range (0, 1) have been tested to check the influence of that
parameter. Onset lists (o

i

)L
i=1 have been filtered with an averaging 30 ms to

avoid overestimation issues by the algorithms following Böck et al. (2012).

6.1.3 Note tracking

T
F

(p, t) can be considered a set of |P| binary sequences of |t| symbols. Hence,
elements (o

i

)L
i=1 may be used as delimiters for segmenting each sequence

p
i

2 P in L+1 subsequences, resulting in a frame-level abstraction quantised
by the onset information:

T
F

(p
i

, t) = T
F

(p
i

, 0 : o1) ||...|| TF

(p
i

, o
L

: |t|� 1) (6.1)

where || represents the concatenation operator, p
i

the pitch band at issue
and L the total number of onsets.

Once onset information has been included in T
F

(p, t) we can process
each subsequence for each pitch value p

i

2 P separately for correcting the
errors committed. For that, we have considered the use of Finite State
Transducers (FSTs), a type of automaton which transforms a sequence of
symbols x0, x1, ..., xN into another sequence y0, y1, ..., yN (Mohri, Pereira, &
Riley, 2002). The input to the FST is each single onset-based subsequence
whereas the output is another sequence in which some of the elements have
been changed following a particular policy.

Given that each subsequence is a series of ones and zeros representing
pitch activations and silences respectively, the two possible actions to model
are either activating or deactivating sections. We focus on the former case,
i.e. assuming that the MPE process misses active areas. Thus, this note
tracking approach tackles the MPE issues of missing onset events in attack
phases and the breaking of notes. The main reason for only tackling one of
the two types of errors is to assess how beneficial can be the use of onset
information for post-processing an MPE estimation when considering a very
simplistic note tracking approach. This may somehow depict a lower limit
in the note tracking figures that may be surpassed if more sophisticated
approaches are considered.

Let the 6-tuple ⇧ = (Q,⌃,⇤, �,�, q1) define our transducer. As we are
dealing with binary sequences, the input alphabet is ⌃ = {0, 1}. Its possible
states are Q = {q1, q2} connected with transitions �(q1, 0) = q1, �(q1, 1) = q2
and �(q2, a) = q2 where a 2 ⌃. The output alphabet ⇤ = {1, v1, v2} is a

1SFB considers windows of 92.8 ms with a temporal resolution of 46.4 ms; SF and CF
consider smaller windows of 46.4 ms every 5.8 ms
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non-binary representation which is parsed once the subsequence has been
processed to model di↵erent FST behaviors. The outputs are given by
�(q1, 0) = v1, �(q2, 0) = v2 and �(b, 1) = 1 where b 2 Q. Finally, q1
represents the initial state of the process. This transducer ⇧ is graphically
shown in Fig. 6.2.

q1start q2

0/v1

1/1

1/1

0/v2

Figure 6.2: Graphical representation of the Finite State Transducer pro-
posed for note tracking.

To model di↵erent performances of the FST we parse symbols v1 and v2
to values of the input alphabet ⌃ following three di↵erent policies. For clarity,
let ⇣(v

x

) 2 ⌃ be the first element after v
x

which is di↵erent to it and let #
represent the end-of-string character. All policies fill the gaps in-between
active areas and two of them additionally fill other gaps which may be present.
Policy (i) fixes v1 = 1 and v2 = 1 if ⇣(v2) = 1 or, alternatively, v2 = 0 if
⇣(v2) = #, which fills the possible gap between the onset and the first active
area. Policy (ii) fixes v1 = 0 and v2 = 1, thus filling the possible gap between
the last active area and the end of the sequence. Policy (iii) is equivalent
to (i) but setting v1 = 0, thus not filling any other type of gap. Figure 6.3
graphically shows their behavior.

Finally, before the FST processes the subsequences, they undergo a
pruning stage of 50 ms for removing spurious detections.

6.1.4 Evaluation methodology

For assessing the proposed experience we consider the use of the MAPS
database (Emiya et al., 2010) containing audio piano performances (both from
real and synthesized pianos) synchronized with MIDI annotations. From that
we have taken the pieces of the MUS set recorded with the Disklavier piano
in both “ambient” and “close” configurations (i.e., recording microphones
near and far from the source, respectively). We have also used the Saarland
Music Data (SMD) collection (Müller et al., 2011) that comprises 50 piano
pieces (audio and MIDI aligned) also recorded with a Disklavier. As in other
AMT works (e.g., the work by Sigtia et al. (2016)), we only considered the
first 30 seconds of each piece. Table 6.1 provides a summary of these sets.

Regarding the evaluation, as we aim at assessing the relevance of using
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Pitch p

Onset i Onset i+1

(a) Result of the Multi-pitch Estimation
process.

Pitch p

Onset i Onset i+1

(b) Note-level transcription considering
Policy (i).

Pitch p

Onset i Onset i+1

(c) Note-level transcription considering
Policy (ii).

Pitch p

Onset i Onset i+1

(d) Note-level transcription considering
Policy (iii).

Figure 6.3: Comparison of the behavior of the di↵erent Finite State Trans-
ducer configurations proposed for the note tracking process. Solid blocks
represent time frames estimated as active by the Multi-pitch Estimation
method whereas striped regions represent the areas filled by the Finite State
Transducer.

Table 6.1: Description of the datasets for the study of the relevance of
onset detection for note tracking in terms of the number of pieces and notes.

Collection Pieces Notes

MAPS-Close 30 7,353
MAPS-Ambient 30 8,764
Saarland 50 12,231

proper onset information for note tracking, we shall evaluate both tasks. For
that, we consider the evaluation methodologies introduced in Chapter 2: on
the one hand, we consider the standard onset assessment evaluation with
a tolerance window of 50 ms; on the other hand, in terms of note tracking
we shall restrict ourselves to the onset-based figure of merit as we are not
considering note o↵sets, also with a tolerance window of 50 ms.

6.1.5 Results

Table 6.2 shows the results obtained for the onset detection process, which
constitute the average and deviation of the figures obtained when evaluating
each dataset using the 25 threshold values considered, in terms of Precision
(P), Recall (R), and F-measure (F1).

The high precision figures obtained state the robustness of these algo-
rithms against false alarm detections in these data. Recall figures, though,
are not that consistent: SFB commits a number of false positive errors while
SF and CF seem to properly deal with them. The F1 figures obtained show
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Table 6.2: Onset detection results in terms of average and standard de-
viation for the datasets considered for the study of the relevance of onset
detection in note tracking.

Onset
Ambient Close Saarland

detector

P
SF 0.78± 0.14 0.82± 0.13 0.86± 0.13
CF 0.80± 0.14 0.84± 0.13 0.87± 0.13
SFB 0.8 ± 0.2 0.9 ± 0.2 0.8 ± 0.2

R
SF 0.79± 0.07 0.87± 0.04 0.78± 0.05
CF 0.76± 0.10 0.85± 0.05 0.77± 0.06
SFB 0.3 ± 0.3 0.4 ± 0.3 0.3 ± 0.3

F1

SF 0.76± 0.07 0.82± 0.08 0.80± 0.06
CF 0.75± 0.06 0.82± 0.07 0.79± 0.06
SFB 0.4 ± 0.3 0.4 ± 0.3 0.4 ± 0.3

the performance limitations of these methods. For instance, the best-case
scenarios are the SF and CF algorithms when tackling the MAPS-Close set
(average F1 = 0.82, possibly due to being the dataset recorded in the most
favorable conditions, i.e. close to the source) which are far from a score of 1.
We shall check how this limitation a↵ects the note tracking stage.

Figures 6.4, 6.5 and 6.6 show the note tracking results obtained for the
proposed FST with Policies (i), (ii), and (iii) respectively for the two MPE
schemes considered. For simplicity in the analysis, figures have been limited
to the F1 score.

Results for Policy (i) of the FST (Fig. 6.4) show that, for both MPE
processes, the use of onset information for note tracking benefits the process:
onsets estimated with SF and CF improve results compared to the case in
which no additional information is considered. In contrast, onset information
from SFB implies a decrease in performance, possibly due to the reported
tendency of this algorithm to miss onset events, which may be providing
inaccurate subsequences to the FST.

The performance boost observed when ground-truth onset information
is provided suggests the usefulness of onset information for note tracking.
Nevertheless, the actual point here is the need for accurate onset information.
As shown, SF and CF improve results when compared to a simple pruning
stage (e.g., an improvement around 5 % to 10 % in F1 may be achieved in
the MAPS-Ambient set depending on the MPE method with respect to the
single pruning stage), but these figures are far from results achieved with
ground-truth onset information (e.g., ground-truth onset information implies
a further improvement of up to 5 % in F1 on top of the improvement achieved
by SF and CF in the Saarland set). Furthermore, there seems to be more
room for improvement in the MAPS-Ambient set than in the rest, possibly
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(a) Note tracking results using the Multi-pitch Estimation method by Benetos, Cherla,
and Weyde (2013)
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(b) Note tracking results using the Multi-pitch Estimation method by Vincent et al. (2010)

Figure 6.4: Note tracking results (F1 score) obtained when applying Policy
(i) in the Finite State Transducer for note tracking for the di↵erent Multi-pitch
Estimation systems considered.

due to being the set with the most unfavorable recording conditions (far from
the source) and thus the one with the lowest figures in both onset estimation
(cf. Table 6.2) and the MPE process (qualitatively reflected on the note
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(a) Note tracking results using the Multi-pitch Estimation method by Benetos, Cherla,
and Weyde (2013)
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(b) Note tracking results using the Multi-pitch Estimation method by Vincent et al. (2010)

Figure 6.5: Note tracking results (F1 score) obtained when applying Policy
(ii) in the Finite State Transducer for note tracking for the di↵erent Multi-
pitch Estimation systems considered.

tracking scores when not considering onset information, i.e. F1 ⇡ 0.45).
Additionally, threshold values maximizing onset estimation in the entire
collections (for all sets, these threshold values are around 0.5 for SF and
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(a) Note tracking results using the Multi-pitch Estimation method by Benetos, Cherla,
and Weyde (2013)

 0.2

 0.3

 0.4

 0.5

 0.6

Am
bi
en

t

SFB SF CF GT info No onset

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Cl
os
e

 0.4

 0.5

 0.6

 0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sa
ar
la
nd

Threshold value for the onset detection process

(b) Note tracking results using the Multi-pitch Estimation method by Vincent et al. (2010)

Figure 6.6: Note tracking results (F1 score) obtained when applying Policy
(iii) in the Finite State Transducer for note tracking for the di↵erent Multi-
pitch Estimation systems considered.

CF, reporting F1 ⇡ 0.8, and 0.15 for SFB, achieving F1 ⇡ 0.7) also exhibit
the maximum for note tracking results. This reveals a relation between the
accuracy of onset information and the success of the note tracking process
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(i.e., the better onset detection, the better note tracking), with the ideal case
being the one considering ground-truth onset information.

Figures obtained when considering Policy (ii) (Fig. 6.5) and Policy (iii)
(Fig. 6.6) of the FST do not show such improvement for the results in note
tracking. For policies (ii) and (iii), results obtained when onset information
is not considered outperform all other cases. Clearly, the fact that Policy
(i) is able to correct missed attack events by the MPE stage makes it stand
as a better alternative for note tracking than the other policies considered.
Moreover, this fact states the relevance of the note tracking stage: when
providing onset information to the system, a proper strategy has to be
followed to correctly incorporate that knowledge and take advantage of
it. Thus, the use of more elaborated tracking processes which may take
advantage of the particularities of piano notes should report an improvement.

Additionally, it can be checked that the MPE method by Vincent et al.
(2010) consistently improves results with respect to Benetos, Cherla, and
Weyde (2013): the figures obtained by the former method outperform the
latter in around 5 % to 10 % in F1, which suggests that the former method is
more precise in terms of timing than the latter one. Finally, the improvement
in the note tracking results of both MPE methods when onset information is
considered states the robustness of onset-based tracking when compared to
a basic pruning stage.

6.1.6 Discussion

This work studied the potential improvement that can be achieved when
using onset information for post-processing an initial frame-level transcription
obtained with a Multi-pitch Estimation system in the context of piano
music. For performing such study, we compare the cases in which this
onset description is either in the form of estimated onset events using state-
of-the-art algorithms or in the form of ground-truth onset events as they
represent the most accurate onset information. For all cases, the frame-
level transcription is combined with the onset information using Finite
State Transducers which, to our best knowledge, no author has previously
considered.

The comparison of the results obtained when considering the estimated
and ground-truth onset events points out an intrinsic relation between the
accuracy of the onset information and the overall quality of the note tracking
process. In general, this may be observed since improvements in the results
of the onset estimation match the improvements in the note tracking figures.

Also it is shown that the performance of current existing state-of-the-art
onset estimators limits the performance of onset-based note tracking systems.
This may be checked as note tracking results obtained when considering
ground-truth onset information generally outperform the ones achieved with
estimated onset events for each particular note tracking policy.
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These experiments also state the importance of the combination policy
for onset and pitch information on the success of the task. The method in
which the onset information is used for correcting the attack phase of the
note is the one reporting the best overall results, possibly due to the fact that
Multi-pitch Estimation methods tend to miss such attack stages. Finally,
these experiments also point out the influence of the recording conditions of
the piece as well as the relevance of the Multi-pitch Estimation algorithm on
the performance of the note tracking stage.

6.2 Supervised Classification for Note Tracking

The second section of the chapter is devoted to the proposal and assessment
of a novel method for note tracking in AMT based on supervised classification.
As commented in Chapter 2, a great deal of note tracking approaches typically
are based in hand-crafted policies, and thus the idea of this method is to
somehow let the computer automatically infer those policies.

Figure 6.7 shows the general workflow for the AMT system, being the
area labeled as Note tracking the one devoted to the proposed note tracking
method. In this system, the audio signal to transcribe undergoes a series of
concurrent processes: an MPE stage to retrieve the pitch-time posteriorgram
P (p, t) which is binarized and post-processed to obtain frame-level transcrip-
tion T

F

(p, t) (binary representation depicting whether pitch p at time frame
t is active), and an onset estimation stage that estimates a list of onset events
(o

i

)L
i=1. These three pieces of information are provided to the note tracking

method which post-processes the initial frame-level transcription T
F

(p, t)
using the onset events to retrieve the note-level transcription T

N

(p, t). Note
that this process is carried out in two di↵erent stages: an first one that
considers the onset events (o

i

)L
i=1 for segmenting frame-level representation

T
F

(p, t) into a set of instances and a second stage which classifies these
instances as being active or inactive elements in the eventual note-level
transcription T

N

(p, t).

MPE

Onset
Detection

Binarization

Instance
segmentation Classifier

P (p, t)
Audio

(o
i

)L
i=1

T

N

(p, t)

T

F

(p, t)

Note tracking

Figure 6.7: Set-up considered for the assessment of the classification-based
note tracking method proposed.

We shall now introduce the gist of the classification-based note tracking

– Page 144 –



Towards Interactive Multimodal Music Transcription

method proposed. Also, the rest of the section describes the experimental
methodology considered for assessing the performance of the method.

6.2.1 Classification-based note tracking

This part of the work details the core idea of the note tracking approach
proposed. It must be mentioned that the main contribution of this approach
resides in how an initial frame-level transcription T

F

(p, t) is mapped into a
set of instances to be classified, and not on the definition or proposal of a
new (or, at least, specialized) supervised classification algorithm. Thus, this
part is entirely devoted to the explanation of this segmentation process while
the particular behaviour when considering di↵erent classification algorithms
shall be later studied in the experimental assessment.

As introduced, the proposed note tracking strategy requires three sources
of information: the pitch-time posteriorgram P (p, t), where p and t corre-
spond to the pitch and time indexes respectively, retrieved from a MPE
analysis of an audio piece; a base frame-level transcription T

F

(p, t) obtained
from the binarisation and basic post-processing of P (p, t); and an L-length
list (o

i

)L
i=1 of the onset events in the piece. Additionally, let T

R

(p, t) be the
ground-truth piano-roll representation of the pitch-time activations of the
piece, which is required for obtaining the labelled examples of the training
set.

The initial binary frame-level transcription T
F

(p, t) can be considered a
set of |P| binary sequences of |t| symbols, where |P| and |t| stand for the total
number of pitches and frames in the sequence respectively. In that sense, we
may use the elements (o

i

)L
i=1 as delimiters for segmenting each sequence or

pitch band p
j

2 P in L+1 subsequences. This process results in a frame-level
abstraction quantised by the onset events that may be expressed as follows:

T
F

(p
j

, t) = T
F

(p
j

, 0 : o1) || TF

(p
j

, o1 : o2) || ... || TF

(p
j

, o
L

: |t|� 1) (6.2)

where || represents the concatenation operator.
Each of these onset-based L + 1 subsequences per pitch are further

segmented to create the instances for the classifier. The delimiters for these
segments are the points in which there is a change in the state of the binary
sequence, i.e. when there is a change from 0 to 1 (inactive to active) or from
1 to 0 (active to inactive). Mathematically, for the onset-based subsequence
T
F

(p
j

, o
i

: o
i+1) the |C| state changes are obtained as:

C = {t
m

: T
F

(p
j

, t
m

) 6= T
F

(p
j

, t
m+1)}oi+1

t

m

=o

i

. (6.3)

Thus, the resulting |C|+ 1 segments, which constitute the instances for the
classifier, may be formally enunciated as:

T
F

(p
j

, o
i

: o
i+1) = T

F

(p
j

, o
i

: C1) || ... || TF

(p
j

, C|C| : oi+1) . (6.4)
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Figure 6.8 illustrates graphically this procedure. In this example, for frame-
level transcription T

F

(p, t), in the interval given by [o
i

, o
i+1] and band p

j

,
there are |C| = 4 state changes (i.e., changes from active to inactive of
viceversa) and thus we obtain |C|+ 1 = 5 subsequences.

C
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C

3

C

2

C

4

o
i

o
i+1

Pitch p

j

Figure 6.8: Segmentation of the onset-based subsequence T
F

(p
j

, o
i

: o
i+1)

into instances for the classifier. Grey (sequences of 1) and white areas
(sequences of 0) depict active and inactive segments in the subsequence,
respectively.

So far we have performed the segmentation process based only on the
information given by T

F

(p, t). Thus, at this point we are able to derive a set
of instances that may serve as test set since they are not tagged according to
the ground-truth piano roll T

R

(p, t). However, in order to produce a training
set using the labels in T

R

(p, t), an additional step must be performed. For
that we should merge the pieces of information from both T

F

(p, t) and T
R

(p, t)
representations, which we perform by obtaining the C set of delimiters as:

C = C
T

F

[ {t
m

: T
R

(p
j

, t
m

) 6= T
R

(p
j

, t
m+1)}oi+1

t

m

=o

i

(6.5)

where C
T

F

represents the segmentation points obtained from T
F

(p, t). This
need for merging these pieces of information in shown in Fig. 6.9: if we only
took into consideration the breakpoints in T

F

(p
j

, t) (i.e., the band labeled as
Detected), subsequence T

F

(p
j

, t
a

: t
b

) would have two labels if checking the
figure labeled as Annotation – subsequence T

F

(p
j

, t
a

: t
c

) should be labeled
as non-active and T

F

(p
j

, t
c

: t
b

) as active. Thus, we require this additional
breakpoints to further segment the subsequences and align them with the
ground-truth labels to produce the training set. Again, note that this process
is not required for the test set since evaluation is eventually done in terms of
note tracking and not as classification accuracy.

Once the process for segmenting into instances has been performed, a set
of features is extracted for each of the instances: i) descriptors related to
the temporal description of the instance, as its duration, its distance to the
previous and posterior onsets, and its duration with respect to the inter-onset
interval; and ii) features related to the posteriorgram P (p, t) as the average
energy in the current and adjacent octave-related bands.

To avoid that the considered features may span for di↵erent ranges, we
opted to normalize them: energy descriptors (E, E

l

, and E
h

) are already
constrained to the range [0, 1] as the input posteriorgram is normalised to its
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Figure 6.9: Segmentation and labelling process for the training corpus.
Breakpoints t

a

and t
b

from frame-level transcription T
F

(p
j

, t) – labelled as
Detected – together with breakpoints t

c

and t
d

from ground-truth piano roll
T
R

(p
j

, t) – labelled as Annotation – are considered for segmenting sequence
p
j

2 P. Labels are retrieved directly from T
R

(p, t). For each case, grey and
white areas depict sequences of 1 and 0, respectively.

Table 6.3: Summary of the features considered for the classification-based
note tracking approach proposed. Operator h·i retrieves the average value of
the elements considered.

Feature Definition Description

�t C
m+1 � C

m

Duration of the block

�o
i

C
m

� o
i

Distance between previous onset
and the starting point of the block

�o
i+1 o

i+1 � C
m+1

Distance between end of the
block and the posterior onset

D �t

o

i+1�o

i

Occupation ratio of the block
in the inter-onset interval

E hP (p
j

, C
m

: C
m+1)i

Mean energy of the multipitch
estimation in current band

E
l

hP (p
j

� 12, C
m

: C
m+1)i

Mean energy of the multipitch
estimation in previous octave

E
h

hP (p
j

+ 12, C
m

: C
m+1)i

Mean energy of the multipitch
estimation in next octave
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Figure 6.10: Graphical representation of the set of features considered. In
this case, the instance being characterized is T

F

(p
j

, C2 : C3).

global maximum (cf. Section 6.2.2 in which the experimentation is described);
occupation ratio D is also inherently normalized as it already represents a
ratio between two magnitudes; absolute duration �t and distance features
�o

i

and �o
i+1 are manually normalised using the total duration of the

sequence |t| as a reference.
Finally, in an attempt to incorporate temporal knowledge in the classifier,

we include as additional features the descriptors of the instances surrounding
the one at issue (previous and/or posterior ones). To exemplify this, let
us take the case in Fig. 6.10. Also consider a temporal context to include
a temporal context that of one previous and one posterior windows to
the instance to be defined. To do so, and for the precise case of instance
T
F

(p
j

, C2 : C3), we should take into account the features of both instances
T
F

(p
j

, C1 : C2) and T
F

(p
i

, C3 : C4).

6.2.2 Experimentation

This part of the work introduces the experimentation carried out to assess
the performance of our note tracking proposal and its comparison with other
existing methods. For that, we initially introduce the corpora and the figures
of merit considered; then we present the MPE strategy used for obtaining
the posteriorgram P (p, t) and its post-processing to obtain the frame-level
transcription T

F

(p, t); after that we introduce the di↵erent onset estimation
strategies assessed in the work; and finally we list and explained the di↵erent
supervised classification strategies considered as well as other alternative
note tracking strategies for the comparison of the results obtained.

Evaluation methodology

In terms of data, we employ the MAPS database (Emiya et al., 2010) for
assessing the proposed approach. This collection comprises several sets of
audio piano performances of isolated sound, chords, and complete music
pieces from both real and synthesised instruments and synchronised with
MIDI annotations.
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For comparative purposes we reproduced the evaluation configuration of
the MAPS dataset used in Sigtia et al. (2016). In that work the evaluation
was restricted to the use of the subset of complete music pieces. Such subset
comprises 270 music pieces, out of which 60 are directly recorded with two
di↵erent Yamaha Disklavier units and the rest are synthesized via software
emulating di↵erent types of piano sounds. Within their evaluation, the data
was organized considering a 4-fold cross validation, being 216 out of the 270
music pieces for used for training and 54 music pieces for test. The precise
description of the sets may be found in http://www.eecs.qmul.ac.uk/

~

sss31/TASLP/info.html. Additionally, only the first 30 seconds of each of
the pieces were considered for the experimentation as done in other AMT
works, which gives up to a corpus with a total number of 72,585 note events.
Table 6.4 summarizes the number of note events per train/test fold.

Table 6.4: Summary in terms of note events for each train/test fold con-
sidered for the evaluation of the classification-based note tracking approach
reproduced from Sigtia et al. (2016).

Fold 1 Fold 2 Fold 3 Fold 4
Train 59,563 59,956 54,589 60,527
Test 13,022 12,629 17,996 12,058

Regarding the evaluation, as in Section 6.1, we shall evaluate the perfor-
mances of both the onset estimation and the note tracking tasks. For that,
we again rely on the evaluation methodologies introduced in Chapter 2: on
the one hand, we consider the standard onset assessment evaluation with
a tolerance window of 50 ms; on the other hand, in terms of note tracking
we shall restrict ourselves to the onset-based figure of merit as we are not
considering note o↵sets, also with a tolerance window of 50 ms.

Multipitch estimation

For the initial multipitch analysis of the audio music pieces we considered the
system by Benetos and Weyde (2015) that belongs to the Probabilistic Latent
Component Analysis (PLCA) family of methods, which ranked first in the
2015 evaluations of the MIREX Multiple-F0 Estimation and Note Tracking
Task.2 This particular system takes as input representation a variable-Q
transform (VQT) and decomposes into a series of pre-extracted log-spectral
templates per pitch, instrument source, and tuning deviation from ideal
tuning. Outputs of the model include a pitch activation probability P (p, t)
(p stands for pitch in MIDI scale), as well as distributions for instrument
contributions per pitch and a tuning distribution per pitch over time. The

2http://www.music-ir.org/mirex/wiki/MIREX HOME
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unknown model parameters are iteratively estimated using the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977), using 30 iterations in
this implementation, same value as the one considered in the aforementioned
paper by the authors of the method. For this particular study we consider
a temporal resolution of 10 ms for the input time-frequency representation
and output pitch activation and |P| = 88 pitch values.

The retrieved pitch-time posteriorgram P (p, t) is then processed to obtain
a frame-level transcription T

F

(p, t) with the same postprocessing stage as
in the experiments done in Section 6.1: first of all, P (p, t) is normalized to
its global maximum so that P (p, t) 2 [0, 1]; then, for each pitch value p

i

2 p,
a median filter of 70 ms of duration is applied over time to smooth the
detection; after that, the resulting posteriorgram is binarised using a global
threshold value of ✓ = 0.1 which is obtained taking the work in Vincent et
al. (2010) as a reference and refining it for the data used in this work; finally,
a minimum-length pruning filter of 50 ms is applied to remove spurious
detected notes.

Onset information

Regarding the onset description of the signal, and as done in Section 6.1, we
distinguish two di↵erent situations: a first one in which we considered ground-
truth onset events and a second one in which we automatically estimate onset
information. By studying these two situations we can additionally assess the
potential improvement that may be achieved with the proposed note tracking
approach when considering the most accurate onset information that may be
provided (the ground-truth one) and compare it to the improvement achieved
with the estimated events.

As of onset estimation algorithms we selected four representative methods
found in the literature which have already been considered in this dissertation:
a simple Spectral Di↵erence (SD), the Semitone Filter-Bank (SFB) method
by Pertusa et al. (2005), the SuperFlux (SF) algorithm by Böck and Widmer
(2013a, 2013b), and Complex Domain Deviation (CDD) by Duxbury et al.
(2003). Again, for the sake of clarity, we remind that (o

i

)L
i=1 denotes the

output list of the onset estimation methods, whose elements represent the
time positions of the L onsets detected. Reader is referred to Section 5.3 for
the explanation of these methods.

The analysis parameters of the alternatives considered are set to their
default values.3 Additionally, as all of them comprise a final thresholding
stage, we test 25 di↵erent values equally spaced in the range (0, 1) to check
the influence of that parameter. From this analysis selected the value that
optimizes the estimation for then using it in the note tracking stage. Finally,

3SFB considers windows of 92.8 ms with a temporal resolution of 46.4 ms; SF considers
smaller windows of 46.4 ms with a higher temporal granularity of 5.8 ms; SD and CDD
both consider windows of 11.6 ms with also a temporal resolution of 5 ms.
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the onset lists (o
i

)L
i=1 are processed with an averaging 30 ms filter to avoid

overestimation issues by the algorithms as commented in Böck et al. (2012).

Comparative approaches

Given that the proposed method models the note tracking problem as a
classification task, we aim to study the behaviour and performance of several
supervised classification algorithms in this particular context. While the
considered classification strategies are now introduced, the reader is referred
to works by Bishop (2006) and Duda et al. (2001) for a thorough description
of the methods:

1. Nearest Neighbour (NN): Non-parametric classifier based on dis-
similarity. Given a labelled set of samples T = {(x

i

, y
i

) : x
i

2 X , y
i

2
Y}|T |

i=1, the NN rule assigns to a query x0 the class of sample x 2 T that
minimizes a dissimilarity measure d(x, x0). Generalising, if considering
k neighbours for the classification (kNN rule), x0 is assigned the mode of
the individual labels of the k nearest neighbours. For our experiments
we restrict to the use of one single nearest neighbour (i.e., 1NN) with
Euclidean distance as dissimilarity measure.

2. Decision Tree (DT): Non-parametric classifier that performs the
separation of the classes by iteratively partitioning the search space
with simple decisions over the features in an individual fashion. The
resulting model may be represented as a tree in which the nodes
represent the individual decisions to be evaluated and the nodes contain
the classes to assign. In this case we consider the Gini impurity as the
measure to perform the splits in the tree and that a leaf must become
a node when it contains more than one sample.

3. AdaBoost (AB): Ensemble-based classifier that is based on the linear
combination of weak classification schemes. Each weak classifier is
trained on di↵erent versions of the training set T that basically di↵er
on the weights (classification relevance or importance) given to the
individual instances. In this case, the weak classifiers are based on
decision trees as the ones from the previous point.

4. Random Forest (RaF): Ensemble-based scheme that categorizes
query x0 considering the decisions of one-level decision trees (decision
stumps) trained over the same training set T . The class predicted by
the ensemble is the mode of the individual decisions by the stumps.
For our experiments, the number of decision stumps has been fixed to
10.

5. Support Vector Machine (SVM): Non-parametric binary classifier
that seeks for a hyperplane that maximizes the margin between the
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hyperplane itself and the nearest samples of each class (support vectors)
of training set T . For non-linearly separable problems, this classifier
relies on the use of Kernel functions (i.e., mapping the data to higher-
dimensional spaces) to improve the separability of the classes. In this
work the radial basis function (rbf) Kernel has been considered for
performing such mapping.

6. Multilayer Perceptron (MLP): Particular topology of an artificial
neural network parametric classifier. This topology implements a feed-
forward network in which each neuron in a given layer is fully-connected
to all neurons of the following layer. The configuration in this case is a
single-layer network comprising 100 neurons with rectified linear unit
(ReLU) activations and a softmax layer for the eventual prediction.

Note that the interest of the work lies in the exploration of the classification-
based proposal rather than in its optimization. In that sense, the algorithms
considered are directly taken from the Scikit-learn Machine Learning li-
brary (Pedregosa et al., 2011).

For comparative purposes, we also considered the use of pitch-wise two-
state Hidden Markov Models (HMMs) in a similar way to the work by Poliner
and Ellis (2007). HMMs constitute a particular example of statistical model
in which it is assumed that the system at issue can be described as a Markov
process (i.e., a model for which the value of a given state is directly influenced
by the previous one) with a set of unobservable states. In this work we
replicate the scheme proposed in the aforementioned reference: we define
a set of 88 HMMs (one per pitch band considered) with two hidden states,
active or inactive step; each HMM is trained by simply counting the type
of transition between consecutive analysis frames (i.e., all combinations of
transitioning from an active/inactive frame to an active/inactive one) of the
elements of the training set; decoding is then performed on the test set using
the Viterbi algorithm (Viterbi, 1967).

Finally, we also compare the proposed method with the results obtained
by Sigtia et al. (2016) as we have both replicated their experimental configu-
ration and considered the same PLCA-based MPE method that this work.
This consideration is mainly motivated by the fact that the aforementioned
work constitutes a very recent method that tackles note-level transcription
by implementing a polyphonic Music Language Model (MLM) based on
a hybrid architecture of Recurrent Neural Networks (a particular case of
neural networks that model time dependencies) and a Neural Autogressive
Distribution Estimation (a distribution estimator for high dimensional binary
data).
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6.2.3 Results

This section presents the results obtained with the proposed experimental
scheme for both the onset detection and note tracking methods. The figures
shown in the section depict the average value of the considered figure of
merit obtained in each of the cross-validation folds.

First of all, we study the performance of the di↵erent onset detection
methods considered. The aim is to assess the behaviour of these algorithms
on the data considered to later compare the performance of the note tracking
method proposed when considering di↵erent onset descriptions of the signal.
The di↵erence in performance of the onset detectors will, in principle, imply
a di↵erence in the performance of the note tracking method, which shall give
insights about the robustness of the strategy proposed. For the assessment
of the onset detectors we only consider the elements of the training set (test
partition is not accessible) and we assume that the conclusions derived from
this study shall be applicable to the test set as they represent the same data
distribution. In these terms, Fig. 6.11 graphically shows the average F1 of
the folds considered by the di↵erent onset estimation algorithms used as the
selection threshold varies.
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Figure 6.11: Onset detection results in terms of F1 when varying the
selection threshold. Acronyms in the legend stand for each onset estimation
method: SFB for Semitone Filter-Bank, SF for SuperFlux, CDD for Complex
Domain Deviation, and SD for Spectral Di↵erence.

An initial remark to point out is the clear influence of the threshold
parameter of the selection stage in the performance of the onset estimation
methods. In these terms, SFB arises as the one whose performance is more
a↵ected by this selection stage, retrieving performance values that span from
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a completely erroneous estimation of F1 ⇡ 0 to fairly accurate results of
F1 ⇡ 0.75. Attending to its performance, we select a threshold of ✓ = 0.13
that accomplishes an approximate value of F1 = 0.75 in the detection task.

SD and CDD depict a totally opposite behaviour to the SFB method:
these algorithms show a relatively steady performance for the threshold values
studied with goodness figures of F1 ⇡ 0.8 that only decrease to a performance
of F1 ⇡ 0.5 when the selected threshold approaches the unit. It can be seen
that the CDD method shows a slightly better performance than the SD
one, possibly due to the use of phase information for the estimation. For
these two methods we find the local maxima when selecting threshold values
of ✓ = 0.34 of the SD methods and ✓ = 0.30 for the CDD one, retrieving
performances of F1 ⇡ 0.80 and F1 ⇡ 0.82 for the SD and CDD algorithms,
respectively.

Finally, the SF method also presents a very steady performance for all
threshold values studied with the particular di↵erence that the performance
of the onset estimation degrades as the threshold value considered for the
selection is reduced. Also, it must be pointed out that this algorithm shows
the best performance among all studied methods when the selection stage is
properly configured. In this case we select ✓ = 0.38 as the threshold value
that maximizes the performance of the algorithm.

Having analysed the performance of the considered onset selection meth-
ods, we now assess the performance of the proposed note tracking approach.
Table 6.5 shows the results obtained with the proposed note tracking method
for the di↵erent classification strategies and numbers of adjacent instances
for both the frame-based and note-based assessments. Note that the di↵erent
onset detection methods use thresholds that optimize their respective perfor-
mance. These onset estimators are denoted with the same acronyms as above
while the particular case when considering ground-truth onset information is
denoted as GT.

On a broad analysis of the results obtained, a first point to highlight is
that the proposed note tracking strategy achieves its best performance when
considering ground-truth onset information (i.e., the one labelled as GT).
While this may be seen as the expected behaviour, such results prove the
validity of the note tracking method proposed: with the proper configuration
(in this case, the most precise onset information that could be achieved for the
data) this strategy is capable of retrieving performance values of F1 = 0.70
in the frame-based analysis and F1 = 0.73 in the note-based one. Note that
such figures somehow constitute the maximum achievable performance of the
proposed note tracking method given that actual onset estimators are not
capable of retrieving such accurate onset description of a piece. Nevertheless,
these values might be improved by considering the use of other descriptors
di↵erent to the ones studied, obtained as either hand-crafted descriptors or
with the use of feature learning approaches to automatically infer the most
suitable features for the task.
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Table 6.5: Note tracking results for the proposed classification-based note tracking method across several classifiers, using
frame-based and note-based metrics. Each figure depicts the average F1 obtained of the 4-fold cross validation scheme
considered. Notation (x, y) stands for the number of previous and posterior additional instances considered. Bold figures
remark the best performing configuration per onset estimator and number of surrounding windows considered.

GT SD SFB SF CDD
Frame Note Frame Note Frame Note Frame Note Frame Note

(0, 0)

NN 0.64 0.63 0.61 0.56 0.60 0.57 0.64 0.62 0.62 0.56
DT 0.60 0.56 0.58 0.50 0.57 0.51 0.60 0.55 0.59 0.51
RaF 0.66 0.65 0.63 0.57 0.62 0.58 0.66 0.64 0.63 0.58
AB 0.56 0.60 0.53 0.52 0.51 0.54 0.56 0.59 0.54 0.53
SVM 0.60 0.67 0.58 0.61 0.57 0.62 0.60 0.66 0.57 0.62
MLP 0.67 0.69 0.65 0.60 0.63 0.61 0.67 0.68 0.66 0.61

(1, 1)

NN 0.65 0.69 0.61 0.56 0.60 0.59 0.63 0.62 0.61 0.57
DT 0.62 0.59 0.60 0.50 0.59 0.52 0.62 0.54 0.60 0.50
RaF 0.68 0.70 0.64 0.58 0.63 0.60 0.66 0.64 0.64 0.59
AB 0.57 0.61 0.55 0.56 0.52 0.56 0.56 0.59 0.55 0.56
SVM 0.58 0.69 0.56 0.58 0.54 0.64 0.57 0.64 0.56 0.58
MLP 0.70 0.72 0.66 0.60 0.65 0.62 0.68 0.66 0.66 0.61

(2, 2)

NN 0.65 0.70 0.60 0.57 0.59 0.58 0.63 0.63 0.61 0.57
DT 0.62 0.59 0.59 0.49 0.59 0.51 0.61 0.53 0.60 0.50
RaF 0.68 0.70 0.63 0.58 0.63 0.59 0.66 0.64 0.64 0.58
AB 0.59 0.63 0.55 0.55 0.53 0.57 0.57 0.59 0.66 0.56
SVM 0.57 0.70 0.60 0.62 0.54 0.64 0.55 0.63 0.56 0.59
MLP 0.69 0.73 0.66 0.61 0.64 0.61 0.69 0.66 0.66 0.60
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When considering estimated onset events instead of ground-truth infor-
mation there is a decrease in the performance of the note tracking system. In
general, and as somehow expected, this drop is correlated with the goodness
of the onset estimation. As a first example, SF achieves the best results
among all the onset estimators: its performance is, in general, quite similar to
the case when ground-truth onset information is considered and only exhibits
particular drops that, in the worst-case scenario, get to a value of 3 % and
10 % for the frame-based and note-based metrics, respectively, lower than
the maximum achievable performance. The SD and CDD estimators exhibit
a very similar performance between them, being the latter one the algorithm
that occasionally overpasses the former one; both estimators show a decrease
between 3 % and 6 % for the frame-based metric and between 10 % and
20 % for the note-based figure of merit when compared to the ground-truth
case. As of the SFB algorithm, while reported as the one achieving the
lowest performance in terms of onset accuracy, it reports very accurate note
tracking figures that practically do not di↵er to the ones achieved by the SD
and CDD algorithms.

Regarding the classification schemes, it may be noted that the eventual
performance of the system is remarkably dependent on the classifier con-
sidered. Attending to figures obtained, the best results are obtained when
considering an MLP as classifier, and occasionally an SVM scheme. For
instance, in the ground-truth onset information case, MLP reports perfor-
mance figures of F1 = 0.70 for the frame-based evaluation and a F1 = 0.73
in the note-based one, thus outperforming all other classification strategies
considered that also employ the same onset information. As accuracy in the
onset information degrades, the absolute performance values su↵er a drop
(for instance, F1 = 0.66 in the note-based evaluation for the SF estimator
or F1 = 0.60 for the same metric and the CDD estimator), but MLP still
obtains the best results. As commented, the only strategy outperforming
MLP is SVM for the particular cases when onset information is estimated
with the SD and SFB methods and assessing with the onset-based metric.
Nevertheless, experiments reported that convergence in the training stage
for the SVM classifier turned out to be much slower than for the MLP one,
thus exhibiting the latter one this additional characteristic.

On the other extreme, AB and DT generally report the lowest performance
figures for the frame-based and note-based assessment strategies, respectively.
For instance, in the ground-truth onset information case, AB reports a
decrease in the frame-based metric close to 16 % with respect to the maximum
reported by the MLP. Similarly, when compared to the maximum, DT reports
a decrease close to a 20 % in the note-based assessment.

The NN classifier exhibits a particular behaviour to analyse. As it can
be checked, this scheme retrieves fairly accurate results for both the frame-
based and note-based metrics for the ground-truth onset information (on a
broad picture, close to F1 = 0.65). Nevertheless, when other source of onset

– Page 156 –



Towards Interactive Multimodal Music Transcription

description is considered, the note-based metric remarkably degrades while
the frame-based metric keeps relatively steady. As the NN rule does not
perform any explicit generalisation over the training data, it may be possible
that instances with similar feature values may be labelled with di↵erent
classes and thus confuse the performance of the system.

The RaF ensemble-based scheme, while not reporting the best overall
results, achieves scores that span up to values of F1 = 0.68 and F1 = 0.70 for
the frame-based and note-based metric, respectively, with ground-truth onset
information. While it might be argued that these figures may be improved
by considering more complex base classifiers, ensemble methods have been
reported to achieve their best performance using simple decision schemes,
such as the one-level decision trees used in this work. Besides, given the
simplicity of the base classifiers, the convergence of the training model in
RaF is remarkably fast, thus exhibiting an additional advantage to other
classification schemes with slower training phases.

According to the obtained results, the use of additional features which
consider the surrounding instances leads to di↵erent conclusions depending
on the evaluation scheme considered. Except for the case when considering
ground-truth onset information in which such information shows a general
improvement in the performance of the system, no clear conclusions can be
gathered when considering these additional features for the rest of the cases.
For instance, consider the case of the SVM classifier with the SD estimator;
in this case, note-based performance decreases from F1 = 0.61 when no
additional features are considered to F1 = 0.58 when only the instances
directly surrounding the one at issue are considered; however, when the
information of two instances per side is included, the performance increases
to F1 = 0.62.

With respect to the comparison with existing note tracking methods
from the literature, Table 6.6 shows results in terms of F1 comparing the
following approaches: Base, which stands for the initial binarisation of the
posteriorgram, Poliner and Ellis (2007), using a two-stage HMM for note
tracking, and Sigtia et al. (2016) which considers a Music Language Model
(MLM) based post-processing scheme. Finally Classification shows the best
figures obtained with the proposed method for the di↵erent onset estimators.
These methods are denoted by the same acronyms used previously in the
analysis while ground-truth onset information is referred to as GT.

As can be seen from Table 6.6, the proposed classification-based method
stands as a competitive alternative to other considered techniques. For both
frame-based and onset-based metrics, the proposed method is able to surpass
the baseline approach by more than +10 % in terms of F1 for both metrics
considered.

When compared to the HMM-based method by Poliner and Ellis (2007),
the proposed approach also demonstrates an improvement of +10 % when
considering frame-based metrics and +3 % in terms of note-based metrics,
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Table 6.6: Note tracking results on the MAPS dataset in terms of F1,
comparing the proposed classification-based method with the considered
benchmark approaches. Base stands for the initial binary frame-level tran-
scription obtained; Poliner and Ellis (2007) refers to the HMM-based note
tracking method proposed on that paper; Sigtia et al. (2016) represents the
MLM-based post-processing technique; Classification stands for the proposed
method with the di↵erent onset detection methods considered.

Base
Poliner and Sigtia et al. Classification
Ellis (2007) (2016) GT SD SFB SF CDD

Frame 0.57 0.59 0.65 0.70 0.66 0.65 0.69 0.66
Note 0.62 0.65 0.66 0.73 0.62 0.64 0.68 0.62

when using the SF onset detector. As expected, the improvement increases
further when using ground truth onset information with the proposed method.

The method by Sigtia et al. (2016) achieves similar figures to the HMM-
based approach with a particular improvement on the frame-based metric.
In this sense, conclusions gathered from the comparison are quite similar:
the proposed approach shows an improvement using frame-based metrics
while for the note-based ones it is necessary to consider very precise onset
information (e.g. the SF method or the ground-truth onset annotations).

Finally, the existing gap between the figures obtained when considering
ground-truth onset information and the SF onset detector suggests that
there is still room for improvement simply by focusing on improving the
performance of onset detection methods.

6.2.4 Discussion

In this work, we explored the use of a data-driven approach for note tracking
by modelling the task as a supervised classification problem. The proposed
method acts as a post-processing stage for an initial frame-level multi-pitch
detection: each pitch band of the initial frame-level transcription is segmented
into instances using onset events estimated from the piece and a set of features
based on the multi-pitch analysis; each instance is classified as being an active
or inactive element of the transcription (binary classification) by comparing
to a set of labelled instances.

The results obtained when assessing the note tracking method proposed on
a collection of piano music provide several insights. A first one is that, check-
ing the results obtained, we can confirm that this alternative proposal is, at
least, as competitive as other existing approaches: the proposed classification-
based method generally outperforms other note tracking strategies typically
considered as hand-crafted rules or the de-facto standard approach of a
pitch-wise two-state Hidden Markov Model.
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When the proposed method is compared to more recent strategies as
the Music Language Model by Sigtia et al. (2016), this improvement is
not observed, at least in general terms. Nevertheless, the performance of
these two methods may be considered totally equivalent as di↵erences in
performance are not remarkable. This fact constitutes a point to highligh
as our proposal exhibits lower computational requirements than the other
proposal.

Finally, somehow confirming the conclusions presented in Section 6.1,
there is a clear relation between the goodness of the onset estimation and
overall performace of the tracking system. Note that, as in the aforementioned
work, the best results are obtained when ground-truth onset information
(the most accurate onset information that would be expectable) is considered
for the system, being the state-of-the-art SuperFlux method the one that
achieves the closest to this scheme.

6.3 General discussion

Note onset information is undoubtly useful in the context of Automatic
Music Transcription as it provides an accurate temporal description of
the piece to transcribe in terms of the starting points of the note events.
Such information is generally merged with other descriptions of the signal
(e.g., pitch analysis) to define and shape discrete note events out of its
raw frequential analysis. In this context, we presented two works which
dealt with the use of onset information for post-processing an initial frame-
level transcription for correcting the errors committed in the Multi-pitch
Estimation stage.

The first of these works focused on the study of the relevance of onset
information in such note tracking systems. More precisely, the idea was to
assess the actual relation between the quality in the estimation of onset events
and the accuracy of the resulting note-level transcription. The comprehensive
experimentation proved the intrinsic relation between these two pieces of
information, showing that more accurate onset detectors obtained better
results in terms of the eventual note-level description. Also these experiments
pointed out the relevance of the note tracking policy in the overall success of
the task, showing that policies addressing the correction of note attack phases
improve the results as they constitute typical errors committed by Multi-
pitch Estimation methods. Finally, this work showed as well the limitations
of current state-of-the-art onset estimation methods and its implications on
the potential improvement for note-level transcription. These limitations
somehow support the pieces of research presented previously in terms of
interactive schemes for onset detection.

The second work presented a novel method for note tracking based on
supervised classification. A great deal of existing note tracking methods
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consist in collections of hand-crafted rules adapted to the precise type of data
at issue. In this case though, we proposed an alternative system that somehow
infers these note tracking rules modeling the note-level transcription stage as
a binary classification task. Results obtained show that the proposed method
is competitive against other existing strategies such as the aforementioned
set of hand-crafted rules of the de-facto standard post-processing strategy
by Poliner and Ellis (2007) based on Hidden Markov Models
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Conclusions and future
perspectives

“We can only see a short distance ahead, but
we can see plenty there that needs to be done.”

Alan M. Turing

This dissertation addressed the topic of music transcription from audio con-
sidering two di↵erent, yet complementary, perspectives: i) the interactive
aspect, which considers the inclusion of the user as an active element of
the transcription rather than a simple verification agent; and ii) the multi-
modal perspective, which postulates the need for using di↵erent descriptions
of the music signal to achieve a precise and accurate high-level symbolic
transcription.

The consideration of interactive schemes may be seen as a deviation from
the ideal stand-alone Automatic Music Transcription paradigm. Nevertheless,
this dissertation takes as starting point the claims by a number of researchers
in the Music Information Retrieval community of having reached a glass-
ceiling in music transcription methodologies, thus being necessary a change of
paradigm. Note that, as no transcription system is error-free, a human agent
is generally required to revise and correct the estimation by the system. Thus,
assuming this need for human supervision in the transcription process, there
is a clear need for developing interactive strategies for e�ciently exploiting
this human e↵ort.

As of the multimodal perspective, in this dissertation we studied the use
of onset events as an additional source of information for the transcription
process. While onset information has already been explored for transcription
tasks, in this work we have further studied its potential in the particular
context of note tracking systems. Moreover, given the relevance of this source
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of information for the proper consecution of the transcription task, all the
studies related to the aforementioned interactive paradigm have considered
the issue of interactive annotation and correction of onset events in audio
streams.

In addition, this dissertation made extensive use of Pattern Recognition
techniques for addressing the two aforementioned perspectives. Thus, as
additional contributions of this work not related to the Music Information
Retrieval field but to the general Pattern Recognition one, we have stud-
ied di↵erent strategies for coping with class-imbalance and large-size data
collections in the context of the instance-based k-Nearest Neighbor classifier.

7.1 Conclusions and contributions

The main contributions and conclusions gathered from the development of
this dissertation are summarized in the following points:

1. A thorough revision of the state of the art in the Automatic Music
Transcription field as well as for more general applications of Pattern
Recognition in Music Information Retrieval.

2. The assessment of a set of novel Prototype Selection methods for
the k-Nearest Neighbor classifier based on ranking principles, namely
Nearest to Enemy and Farthest Neighbor strategies. The experiments
performed prove the competitiveness of these rank-based methods in
terms of both set size reduction and noise elimination capabilities as well
as their low computational complexity compared to more sophisticated
methods.

3. A comparative study on the use of Prototype Selection methods for
the k-Nearest Neighbor classifier in the particular case of imbalanced
classification problems which require of an instance selection process
(e.g., large size datasets). The experiments carried out show that, in
general, it is beneficial in terms of the classification performance to
apply data-level balancing techniques, and more precisely combinations
of Oversampling and Undersampling methods, before the classification
stage given that the latter methods are generally prepared for class-
balanced data collections.

4. The proposal of a set of figures of merit for quantitatively assessing the
human e↵ort invested in interactive onset annotation and correction
processes in audio music pieces.

5. A collection of interactive onset annotation schemes based on signal
processing techniques. This set of schemes is based on the general two-
stage onset estimation approach, that is, an initial detection function
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process followed by an onset selection stage; the corrections performed
by the user modify the parameters of the latter stage in order to ade-
quate this selection curve to the particular audio piece being annotated.
Experimental results prove that these interactive methods constitute
e↵ective yet simple approaches for remarkably reducing the user work-
load invested in the correction and annotation of onset events in audio
streams.

6. The proposal and study of the interactive onset annotation and cor-
rection issue from an Interactive Pattern Recognition point of view.
Initially, the onset estimation problem is modeled as a Pattern Recog-
nition task in which each analysis frame of the signal is classified as
either containing or not an onset event. In such context, the interactive
model updating is achieved by dynamically modifying the training set
of the classifier according to the user corrections. The main research
question in this framework is the issue of which information is relevant
for the model to improve its performance. The conclusions gathered
from a thorough experimentation point out that as a larger amount of
information is provided to the feedback loop, the model improves its
robustness as well as noticeably decreases the user workload required
to perform the annotation process.

7. A formal study of the potential improvement that the use of onset
information in music transcription systems supposes. Note that the
use of onset information in transcription systems does not constitute
a novelty by itself as a number of authors have already considered
such schemes. In this dissertation the novel contribution resides in the
formal evaluation of the potential improvement that may be achieved
with the use of onset-based transcription systems when compared to
systems which ignore it. Also, an additional contribution in this context
is the evaluation and study of the relation between the quality of the
onset estimation stage (i.e., performance of the onset estimator) with
the overall performance of the transcription system.

8. The introduction of a novel note tracking approach for Automatic
Music Transcription designed from a Pattern Recognition perspective.
In general, note-level transcriptions are obtained using a set of hand-
crafted rules that post-process the initial frame-level transcription. In
this work a classification model was considered to, at some extent,
let the system automatically infer these note-tracking rules rather
than manually defining them. Results obtained showed that, while
the proposed approach equals the performance of other existing note
tracking strategies without outperforming them, this scheme constitutes
a change of paradigm in this task. In this sense, the novelty resides
in the proposal and exploration of this alternative classification-based
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strategy rather than in its actual competitive performance.

7.1.1 Publications

Part of the contents of this dissertation have been published in several
journals and conference events. These publications are now listed showing,
in brackets, the chapter to which they are related:

• Valero-Mas, J. J., Iñesta, J. M., & Pérez-Sancho, C. (2014, November).
Onset detection with the user in the learning loop. In Proceedings
of the 7th International Workshop on Machine Learning and Music
(MML). Barcelona, Spain. [Chapter 5]

• Valero-Mas, J. J., & Iñesta, J. M. (2015, October). Interactive onset
detection in audio recordings. In Late Breaking/Demo extended abstract,
16th International Society for Music Information Retrieval Conference
(ISMIR). Málaga, Spain. [Chapter 5]

• Valero-Mas, J. J., Calvo-Zaragoza, J., Rico-Juan, J. R., & Iñesta, J. M.
(2016). An experimental study on rank methods for prototype selection.
Soft Computing, 1–13. [Chapter 4]

• Valero-Mas, J. J., Benetos, E., & Iñesta, J. M. (2016, September).
Classification-based Note Tracking for Automatic Music Transcription.
In Proceedings of the 9th International Workshop on Machine Learning
and Music (MML) (pp. 61–65). Riva del Garda, Italy. [Chapter 6]

• Valero-Mas, J. J., Calvo-Zaragoza, J., Rico-Juan, J. R., & Iñesta,
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nearest neighbour in class-imbalanced problems. In Proceedings of the
8th Iberian Conference on Pattern Recognition and Image Analysis
(IbPRIA). Faro, Portugal. [Chapter 4]

• Valero-Mas, J. J., Benetos, E., & Iñesta, J. M. (2017, June). Assessing
the Relevance of Onset Information for Note Tracking in Piano Music
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[Chapter 6]

• Valero-Mas, J. J., & Iñesta, J. M. (2017, July). Experimental assess-
ment of descriptive statistics and adaptive methodologies for thresh-
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Two additional contributions are currently under review process:
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• Valero-Mas, J. J., Salamon, J., & Gómez, E. (2015, July). Analyzing
the influence of pitch quantization and note segmentation on singing
voice alignment in the context of audio-based Query-by-Humming. In
Proceedings of the 12th Sound and Music Computing Conference (SMC)
(pp. 371–378). Maynooth, Ireland.

• Calvo-Zaragoza, J., Valero-Mas, J. J., & Rico-Juan, J. R. (2015, June).
Prototype Generation on Structural Data using Dissimilarity Space
Representation: A Case of Study. In R. Paredes, J. S. Cardoso, & X.
M. Pardo (Eds.), Proceedings of the 7th Iberian Conference on Pattern
Recognition and Image Analysis (IbPRIA) (pp. 72–82). Santiago de
Compostela, Spain: Springer.

• Calvo-Zaragoza, J., Valero-Mas, J. J., & Rico-Juan, J. R. (2015). Im-
proving kNN multi-label classification in Prototype Selection scenarios
using class proposals. Pattern Recognition, 48(5), 1608–1622.

• Valero-Mas, J. J., Calvo-Zaragoza, J., & Rico-Juan, J. R. (2016). On
the suitability of Prototype Selection methods for kNN classification
with distributed data. Neurocomputing, 203, 150–160.
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Prototype generation on structural data using dissimilarity space rep-
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class nearest neighbor classification. Soft Computing, 1–7.

– Page 165 –



Chapter 7: Conclusions and future perspectives

7.2 Future research perspectives

“Science never solves a problem without creating ten more.”
George Bernard Shaw

The work in this dissertation constitutes a small contribution to the fields
of Automatic Music Transcription and Pattern Recognition which, at least
partially, solve the research questions and hypotheses initially proposed.
Nevertheless, this work opens di↵erent paths and perspectives to be addressed
in the future.

A first point is the extension of the proposed interactive paradigms to
other tasks within the Music Information Retrieval field. As it has been
shown, the interactive schemes proved to remarkably reduce the user e↵ort
in the onset annotation process. Thus, it seems promising to extend these
interactive methodologies for other tasks such as chord estimation or beat
induction in which the label of a particular analysis window (e.g., the chord
name of an audio excerpt or whether certain time instant contains a beat of
the piece) influences the labels of the posterior windows.

The second extension that could be addressed is the further exploration of
multimodality for improving the performance of the transcription scheme. In
this context the use of harmony information, such as chord or key descriptions
should, in principle, report improvements in transcription systems as it
would narrow the space of possible solutions. While some works have
already explored this idea (e.g., the work by Benetos et al. (2014) with key
information or the work by Laaksonen (2014) for melody transcription with
chord information), the examples in the literature are still relatively scarce,
possibly due to the di�culty of properly merging the di↵erent sources of
information.

Closely related to this multimodal proposal is the recent appearance
of Music Language Models for Automatic Music Transcription. Somehow
replicating the general workflow in speech recognition systems in which an
acoustic model is post-processed with a language model to correct errors in
the estimation by applying prior knowledge of the language at issue, some
researchers in the MIR field have started exploring this path. While results
reported by some researchers are not yet conclusive about the usefulness of
Music Language Models in the context of Automatic Music Transcription (cf.
to the work by Sigtia et al. (2016)), the general intuition suggests that this
piece of information is of complete relevance for the success of the task but
that the main issue resides in how to properly combine the acoustic model
with the language-based one.

Other recent techniques more related to the low-level processing of the
signal are the ones related to the recent development of Deep Learning. The
main advantage of these techniques resides in their capability of obtaining
proper feature representations for the task at issue (onset detection, chord
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recognition, pitch estimation...). In this sense, and given the extraordinary
results being achieved by this relatively novel paradigm, it is of remarkable
interest to further explore in that research direction.

A more practical point to address is the further development of new data
collections. Generally, research in Automatic Music Transcription is biased
towards piano-related music as a large number of data collections consider
those types of instruments. While there exist some datasets considering other
timbral spaces, they generally constitute very scarce examples compared to
the piano-based ones. Thus, in order to obtain more general conclusions,
it is of remarkably interest the development of new datasets which allow
gathering more general insights.

Finally, a last point we consider to explore is the possibility of studying
and adapting generic Prototype Selection methods for the particular case
of class-imbalance situation with no need of an initial data-based balancing
process. From our point of view, this is a research point of remarkable
relevance since, while Prototype Selection schemes generally consider that
the representation of the classes in the data is balanced, in real-world data
this assumption is hardly ever correct, and thus alternative methods should
be proposed.
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Resumen

A.1 Introducción

Desde que originalmente fuera propuesto y acuñado por Kassler (1966), el
campo de la Extracción y recuperación de información musical (del inglés
Music Information Retrieval, MIR) ha sido ampliamente estudiado y anali-
zado por la comunidad cient́ıfica con el objetivo de definir sus ĺıneas y ramas
de investigación.

Entre las diversas referencias de este campo, destacan dos definiciones
representativas del mismo. La primera es la propuesta por Orio (2006) que
define el área como “el campo de investigación dedicado a satisfacer las
necesidades musicales de los usuarios”. La segunda definición representativa
de este campo es la facilitada en Serra et al. (2013) en la que se señala como
“un campo que cubre todos los temas de investigación relacionados con el
modelado y la comprensión de la música y su relación con las tecnoloǵıas de
la información”.

Dentro de este contexto, esta disertación se desarrolla dentro de la llamada
transcripcin automática de música por computador (del inglés Automatic
Music Transcription, AMT). Desde un punto de vista de la musicoloǵıa, la
trancripción se entiende como la “la representación de la ejecución de una
pieza musical en algún tipo de notación o cifrado” (Gallagher, 2009). Por
tanto, el campo AMT se puede entender como el equivalente computacional
de esta tarea, es decir, la creación y desarrollo de algoritmos capaces de
codificar una ejecución musical en una notación simbólica de alto nivel.

Dada la extensiva investigación desarrollada en este campo, podemos en-
contrar diferentes definiciones representativas del mismo. Por ejemplo, Klapuri
(2004b) lo define como:

“la transformacíıon de una señal acústica en notación simbólica”
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Por otro lado, Pertusa (2010) enfatiza el hecho de que la abstracción sea
comprensible por un posible usuario final:

“la extracción de una representación legible e interpretable por
un humano, como por ejemplo una partitura musical, a partir de
una señal de audio”

Como último ejemplo, Benetos (2012) también remarca, al menos de
manera impĺıcita, la necesidad de obtener una representación legible por un
humano:

“el proceso de conversión de una grabación sonora en una repre-
sentación simbólica con algún tipo de notación musical”

Por lo expuesto, AMT puede ser considerado como el proceso por el cual
se obtiene una abstracción simbólica de alto nivel del contenido musical de
una señal de audio utilizado las tecnoloǵıas de la información. Sin embargo,
el punto clave es que la representación sea computable para permitir a otras
tareas del campo MIR utilizarla. Además, esta codificación ha de permitir su
traducción a cualquier tipo de notación musical. Un ejemplo de codificación
que cumple estos requisitos es la creada por el consorcio Music Encoding
Initiative (MEI).

Sin embargo, la representación más extendida en sistemas AMT prácticos
es la pianola (en inglés, piano roll). Esta codificación es básicamente un
gráfico bidimensional en la cual el eje de abscisas representa la evolución
temporal de la pieza musical mientras que el eje de ordenadas codifica el
contenido en altura, t́ıpicamente notas musicales. Por tanto, cada coordenada
del gráfico muestra qué la actividad o inactividad de cada nota para un
instante temporal dado. La Fig. A.1 muestra un ejemplo gráfico de la misma.
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Figure A.1: Ejemplo de una representación de pianola: la evolución tem-
poral y el contenido en notas musicales están se representan en los ejes de
abscisas y ordenadas, respectivamente.

La utilidad de AMT en el campo de la música es bastante significativa,
habiendo llegado a ser definida como “el Santo Grial en el campo del análisis
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musical” (Benetos et al., 2012). Por un lado, en algunos casos como es la
preservación de música por medio de partituras (digitales), el resultado de
AMT constituye una finalidad por śı misma, ya que el objetivo es la obtención
de esa codificación; por otro lado, para otras tareas en MIR (por ejemplo,
la búsqueda de música por similitud), sistemas musicales interactivos (por
ejemplo, el seguimiento automático de partituras) o análisis computacional de
música, AMT constituye un proceso de obtención de una notación intermedia
para afrontar el resto del problema. La Fig. A.2 muestra un resumen gráfico
de las posibles aplicaciones de AMT.
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Figure A.2: Ejemplos representativos de aplicación de la transcripción
automática de música (AMT).

La mayoŕıa de los sistemas AMT están basados en procesos de dos eta-
pas (Benetos et al., 2012): una primera denominada estimación de frecuencias
fundamentales (del inglés Multi-pitch Estimation, MPE), t́ıpicamente consi-
derada el núcleo de todo sistema AMT, en la cual se estiman las frecuencias
fundamentales de los sonidos presentes en la señal; y una segunda etapa,
denominada conformado de notas (del inglés Note Tracking, NT), que procesa
el resultado del método MPE para obtener un evento de nota musical repre-
sentado por un valor discreto de altura, un inicio de nota (en inglés, onset) y
un final de nota (del ingles, o↵set). Por tanto, mientras que el primero de
los procesos se encarga de obtener una descripción básica del contenido en
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frecuencias de las señal a transcribir, la segunda actúa como una etapa de cor-
rección y segmentación cuya finalidad es la obtención de una representación
musical de alto nivel.

La principal problemática de los sistemas MPE reside en el nivel de
polifońıa de la pieza a transcribir (Grosche et al., 2012). Por un lado,
mientras que la transcripción de piezas monofónicas ha sido ampliamente
estudiada, e incluso ha llegado a ser considerada una tarea resuelta por
muchos autores, para el caso polifónico todav́ıa constituye un problema de
investigación abierto y con grandes limitaciones a salvar (Klapuri, 2004b;
Argenti et al., 2011). Además, dentro de los sistemas AMT destaca el hecho
de que gran parte de la investigación se ha dedicado a la etapa de MPE
en detrimento de la de NT, lo cual puede deberse a la dependencia de los
resultados de la segunda con los de la primera (Duan & Temperley, 2014).

Recientemente, una parte notable de autores e investigadores en el campo
apuntan a que, a de algún modo, parece estar alcanzándose un ĺımite tec-
nológico en cuanto a las metodoloǵıas t́ıpicamente aplicadas (Benetos et al.,
2012): por una parte, los resultados cuantitativos obtenidos con conjuntos de
datos de referencia para la evaluación parecen estar estancados con pequeñas
mejoras marginales ; además, la mayor parte de los sistemas parece estar
demasiados adecuados a ciertos tipos de datos por tanto obviando la flexibil-
idad que se espera de este tipo de herramientas; por último también destaca
el hecho de que existan ejemplos muy escasos de sistemas AMT capaces
de obtener partituras musicales legibles y comprensibles por humanos. Por
tanto parece necesaria, y totalmente justificada, la búsqueda y consideración
de paradigmas alternativos a los t́ıpicamente considerados (Benetos, Dixon,
et al., 2013).

En este sentido, algunos autores han comenzado a incorporar procesos
adicionales al esquema mencionado anteriormente. En su mayoŕıa, estos pro-
cesos son directamente otras tareas de MIR las cuales facilitan descripciones
adicionales de la señal a transcribir como, por ejemplo, información sobre
armońıa, descripción ŕıtmica, fuentes de sonido, instrumentación, etc. De
alguna manera estas informaciones complementarias imponen ciertas restric-
ciones a los métodos de MPE y NT para reducir el espacio de búsqueda,
imitando de alguna manera la manera en que el ser humano utiliza información
contextual a la hora de afrontar una transcripción musical (transcripción
multimodal).

Sin embargo, incluso con el uso de estas descripciones adicionales en los
sistemas AMT, uno de los principales problemas yace en que ninguno de los
componentes puede ser considerado totalmente libre de error, requiriéndose
por tanto una inspección manual por parte de un usuario para encontrar y
corregir los errores cometidos por el sistema. Por tanto, dado el hecho de
que es necesario mantener un usuario externo para la correcta consecución
de la tarea, algunos sistemas están comenzando a considerar al usuario como
una parte activa del sistema AMT. Benetos, Dixon, et al. (2013) resumen
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estas ideas de interacción y multimodalidad para sistemas AMT por medio
del esquema que muestra la Fig. A.3.

Onset/o↵set detection Beat/tempo estimation

Multi-pitch Detection / Note tracking

Instrument identification Key/chord detection

Source
Separation

Acoustic and
musicological models

Prior Information
(genre, etc.) User Interaction Score Information

Audio Score

Training
Data

Figure A.3: Esquema genérico del sistema de transcripción de música
propuesto por Benetos, Dixon, et al. (2013). Las ĺıneas punteadas representan
tareas adicionales a las t́ıpicamente consideradas en estos esquemas.

Como se puede observar, en esta propuesta el núcleo del sistema todav́ıa
depende de los procesos MPE y NT. Sin embargo, se puede observar que estos
procesos reciben ahora información adicional como es la información de onsets
y/o o↵sets, descripciones ŕıtmicas e incluso análisis armónicos para mejorar
el rendimiento y precisión del sistema. Además, este esquema conceptual
también contempla el hecho de que informaciones totalmente externas a la
señal a transcribir en śı puedan ser empleadas para la transcripción, como
son los modelos computacionales de teoŕıa musical, principios de organoloǵıa
o las particularidades del género de la música a transcribir. Cabe destacar
que, como se ha comentado antes, toda esta información también puede
ser facilitada por un usuario en el contexto de sistemas de transcripción
interactiva.

Motivación y objetivos

El punto de partida de esta disertación son los conceptos introducidos sobre
interacción y multimodalidad aplicados a AMT. Concretamente, exploramos
el uso de la información de onsets aplicados a esta finalidad. Los eventos de
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inicio de nota (onsets) constituyen una importante fuente de informacinón
para la segmentación temporal y la descripción ŕıtmica de las señales musi-
cales, siendo además de gran utilidad en las etapas NT para la definición de
los eventos de nota musical como fuente de información multimodal (Grosche
et al., 2012).

Por otro lado, como se ha comentado, la estimación de esta descripción
de la señal no está exenta de errores. Es por ello que esta tarea constituye un
ejemplo idóneo para el estudio de metodoloǵıas aplicadas a la transcripción
de música.

Finalmente cabe destacar que, a pesar de que estos conceptos se pueden
estudiar desde mútiples perspectivas, en el caso de esta disertación la mayor
parte del trabajo se enfocará desde una perspectiva de la rama del Re-
conocimiento de Formas (en inglés Pattern Recognition, PR). Es por ello
que algunas de las aportaciones que se mostrarán se enfocan desde un punto
más generalista y no necesariamente centrados en datos de corte musical.

A.2 Contribuciones

Esta sección describe de una manera breve los aportes de esta disertación.
En concreto estas aportaciones se pueden en tres grandes grupos temáticos:
i) estudios sobre algoritmos de selección de prototipos en entornos de clasi-
ficación basados en la regla del vecino más cercano (del inglés k-Nearest
Neighbor, kNN) y desarrollados en el Caṕıtulo 4; ii) propuestas para modelos
interactivos de anotación y corrección de onsets en señales de audio, llevadas
a cabo en el Caṕıtulo 5; y iii) desarrollo de nuevas propuestas para esquemas
de conformado de notas, las cuales se estudian en el Caṕıtulo 6.

Los siguientes apartados resumen de manera breve las propuestas, desar-
rollos y resultados obtenidos para cada uno de estos grupos temáticos.

Aportes a la selección de prototipos para el clasificador kNN

El clasificador de vecino más cercano (kNN) constituye uno de los ejemplos
más representativos del paradigma lazy learning, es decir, los clasificadores
que no derivan un modelo a partir de los datos de entrenamiento sino que
clasifican nuevas muestras directamente comparando con las de referencia.

Una de las grandes ventajas de kNN es precisamente que para cambiar su
comportamiento basta con cambiar su conjunto de datos de entrenamiento,
convirtiéndolo por tanto en un clasificador ideal para entornos interactivos.
Sin embargo, el hecho de que no derive un modelo a partir del conjunto
de datos de entrenamiento hace que el proceso de clasificación se ralentice
considerablemente. Es por ello que aparecen alternativas que permiten
optimizar el tamaño del conjunto de datos para que, con la menor pérdida
posible en la tasa de acierto, el modelo sea lo más eficiente posible. De
las posibles técnicas existentes nos centramos en los llamados algoritmos
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de selección de prototipos (del inglés Prototype Selection, PS), los cuales
obtienen un subconjunto de entrenamiento a base de eliminar prototipos
del conjunto inicial que sólo aportan redundancias y/o ruido que ha de ser
inferior en tamaño al original.

El primer aporte en este grupo temático ha sido el estudio comparativo de
una serie de algoritmos de PS de reciente aparición propuestos por Rico-Juan
and Iñesta (2012). La particularidad de estos algoritmos es su simplicidad
conceptual y su gran eficiencia computacional: los prototipos del conjunto de
entrenamiento votan a los elementos que maximizan la tasa de clasificación
y después se establece un umbral por el que sólo los prototipos con cierta
cantidad de votos mı́nima son trasladados al conjunto reducido. El trabajo
por tanto ha consistido en la experimentación exhaustiva contra otra serie
de algoritmos PS t́ıpicamente utilizados. Los resultados permiten inferir una
serie de conclusiones de gran importancia: por un lado se puede ver que estos
métodos de PS presentan una gran robustez sin la necesidad de una etapa
previa de eliminación de ruido; por otro lado también se demuestra que estos
algoritmos permiten una gran reducción del conjunto de entrenamiento sin
una pérdida significativa de la bondad en la tasa clasificación; por último
cabe destacar la gran eficiencia computacional de estos métodos debido a su
simplicidad conceptual y al bajo coste de las operaciones requeridas.

La segunda contribución aportada en este caṕıtulo ha sido el estudio
de los algoritmos de PS en los llamados entornos no balanceados, es decir,
colecciones de datos en las que las clases no están igualmente representadas.
Los métodos de PS están diseñados para conjuntos de datos en los que la
cantidad de ejemplos por clase es, aproximadamente, la misma; sin embargo,
esta condición no se suele dar en datos reales. En este contexto hemos
comparado el comportamiento de estos algoritmos de PS en entornos no balan-
ceados contra los casos en los que se han aplicados técnicas de equilibrado de
datos. Los resultados obtenidos muestran que los métodos de PS obtienen
mejores resultados cuando las diferentes clases del problema están igualmente
representadas. Es por ello que los procesos de equilibrado de datos cobran
especial relevancia en este contexto como técnicas de preprocesado.

Modelos interactivos para la estimación de onsets en señales
de audio

La informacinón de onsets ha demostrado ser de gran utilidad para una gran
cantidad de tareas en el campo de MIR, siendo una de ellas la transcripción
de música. Dada la relevancia de esta información en este caṕıtulo se propone
el paradigma de la anotación y corrección interactiva de onsets.

La primera contribución en este sentido es la propuesta de una serie
de métricas para la evaluación cuantitativa del esfuerzo realizado por un
usuario en el proceso de anotación de onsets. A pesar de la gran cantidad de
literatura en el campo de la estimación de onsets, no es posible encontrar
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referencia alguna a trabajos que se encarguen de medir, al menos de manera
cuantitativa, el esfuerzo de un humano en el proceso de anotación de un
corpus de onsets. Es por ello que las métricas propuestas comparan el coste
de anotar una pieza en un sistema interactivo contra la anotación manual
de todos los eventos del fichero de audio y contra la corrección totalmente
manual de una estimación inicial dada por un algoritmo de estimación de
onsets autónomo.

Como segundo aporte se proponen una serie de esquemas interactivos
para la anotación de onsets en señales de audio desde un punto de vista de
técnicas de procesado de señal. La idea es que las anotaciones y correcciones
apuntadas por el usuario cambien los parámetros del algoritmo de estimación
de onsets para adecuarse paulatinamente a la señal a analizar. Los resultados
experimentales con las métricas de esfuerzo previamente citadas demuestran
que estos esquemas son capaces de reducir significativamente el esfuerzo
requerido por parte del usuario en el proceso de anotación. Sin embargo,
la principal limitación de estos esquemas radica en que las correcciones
realizadas sobre una pieza sólo afectan a esa pieza en śı y no a futuros casos
que puedan venir. Se hace por tanto interesante el explorar paradigmas
basados en modelos con una mayor plasticidad para su modificación como
son, por ejemplo, los sistemas basados en aprendizaje automático.

La tercera y última contribución en este campo es otra serie de esquemas
interactivos para la anotación de onsets pero enfocados como sistemas de
clasificación. En este contexto de sistemas interactivos de PR toma especial
relevancia el clasificador kNN debido a que el añadir nuevos ejemplos a su
conjunto de entrenamiento es suficiente para modificar su funcionamiento.
La idea en este caso es modelar la detección de onsets como una tarea de
clasificación en la que cada ventana de análisis de la señal se cataloga como
portadora o no de un evento de onset. Con estas premisas se han estudiado
diferentes poĺıticas de interacción en las que cada corrección del usuario
aporta más o menos datos al conjunto de entrenamiento. Los experimentos
realizados muestran que los mejores resultados (es decir, mayor reducción
de esfuerzo por parte del usuario) se obtienen cuanta más información es
facilitada por el bucle de realimentación del sistema interactivo.

Estudios sobre conformado de notas en transcripción de música

La información de onsets ha sido ampliamente utilizada para tareas de
transcripción de música por paliar significativamente la imprecisión temporal
de los algoritmos de estimación de frecuencias fundamentales. Sin embargo,
a pesar de su continua utilización en este contexto concreto, no existe ningún
estudio formal que analice y compare el impacto que supone la utilización o
no de información de onsets en sistemas de transcripción.

Es por ello que el primer aporte de este caṕıtulo consiste precisamente
en la realización de este estudio formal. En primer lugar se han seleccionado
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una serie de algoritmos de estimación de onsets representativos de la liter-
atura además de la utilización de la información de referencia de los onsets
de la señal para simular el caso un detector de onsets con funcionamiento
perfecto; por otro lado también se han considerado unos sistemas de es-
timación de frecuencias fundamentales (MPE) que obtienen resultados de
calidad respaldados por la literatura del campo de AMT; por último, para la
unificación de ambas fuentes de informacinón se ha considerado la utilización
de transductores de estados finitos (del inglés Finite State Transducer, FST).
Los resultados muestran que el uso de la información de onsets mejora la
estimación inicial siempre que la poĺıtica de fusión sea la adecuada; por otro
lado también se demuestra que los resultados obtenidos con los algoritmos
que actualmente definen el estado de la cuestión en detección de onsets
distan bastante de los conseguidos con la información de onsets manualmente
anotada y considerada de referencia, dando aśı a entender que estas técnicas
todav́ıa tienen recorrido para la mejora.

La segunda y última contribución se centra en la tarea de conformado de
notas. En general, estos sistemas NT suelen estar formados por una serie
de reglas heuŕısticas que procesan el resultado del proceso de estimación de
frecuencias fundamentales (MPE) para conformar un evento de nota musical.
En este trabajo se estudia la posibilidad de modelar este problema como
una tarea de clasificación y que el sistema, en lugar de recibir impuestas
una serie de reglas manualmente definidas, sea capaz de inferirlas de manera
automática. Los resultados obtenidos muestran que el esquema propuesto es
capaz de igualar a otras estrategias de conformado de notas aún sin llegar, por
lo general, a superarlas. Sin embargo, esta propuesta constituye un ejemplo
de paradigma alternativo para casos de NT no considerado previamente,
constituyendo aśı una contribución por śı misma con un largo recorrido para
ser explorada y mejorada.

A.3 Conclusiones y trabajo futuro

Esta disertación ha tratado el tema de la transcripción de música desde audio
considerando dos perspectivas diferentes pero complementarias: i) el aspecto
interactivo, el cual considera la inclusión del usuario como parte activa de la
transcripción en lugar de como un simple agente de verificación y corrección;
y ii) la perspectiva multimodal, la cual establece la necesidad de diferentes des-
cripciones de la señal musical para la obtención de transcripciones simbólicas
precisas y fiables.

La consideración de esquemas interactivos puede verse como un ale-
jamiento del concepto ideal de los sistemas de transcripcinón totalmente
autónomos. Sin embargo, esta disertación toma como punto de partida
las conclusiones apuntadas por diferentes investigadores relevantes en el
campo sobre un posible ĺımite tecnoógico que los sistemas de transcripción
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están alcanzando, siendo por tanto necesario un cambio en el paradigma de
funcionamiento. Dado que ningún sistema es totalmente fiable y libre de
error, normalmente se precisa de un agente humano para revisar y corregir
la estimación dada por el sistema. En ese sentido, dada esta limitación, es
necesario estudiar estrategias interactivas para la explotación eficiente de
este esfuerzo humano.

En lo relativo a la perspectiva multimodal, en esta disertación hemos
estudiado la utilización de la información de onsets como una fuente adicional
para el proceso de transcripción. Aunque este tipo de información ya ha sido
empleado anteriormente en sistemas AMT, en este trabajo hemos extendido
su estudio en el contexto de sistemas de conformado de notas o NT. Además,
dada la relevancia de la información de onsets para la correcta consecución
de la tarea de transcripción, todos los estudios relacionados con el citado
paradigma interactivo han considerado el caso concreto de sistemas para el
anotado y corrección de eventos de onset en señales musicales de audio.

Por último también cabe destacar la notable presencia y relevancia de
los sistemas de Reconocimiento de Formas (PR) en este trabajo. Es por
ello que, además de las contribuciones hechas en MIR, también se han
realizado aportes al desarrollo de técnicas propias de esta disciplina. Más
concretamente, los estudios han tenido como objetivo el análisis sobre cómo
tratar las situaciones en las que, siendo necesario un proceso de selección de
prototipos para reducir el tamaño del conjunto de datos, las distribuciones
de los mismo no están equilibradas sino que existe un sesgo hacia alguna de
ellas (conocido en inglés como class imbalance problem).

Aportes realizados

Los principales aportes y conclusiones obtenidos con el desarrollo de esta
disertación son los que se listan a continuación:

1. Una exhaustiva revisión del estado de la cuestión tanto en los temas
de AMT como de PR aplicados al campo de MIR.

2. La evaluación exhaustiva y la comparativa de un conjunto novedoso
de técnicas de PS para el clasificador kNN basadas en principios de
ordenación y llamadas Nearest to Enemy (NE) y Farthest Neighbor
(FaN). Los resultados obtenidos demuestran la competitividad de
estas novedosas técnicas tanto en reducción de tamaño del conjunto de
datos y eliminación de ruido como en su bajo coste computacional en
comparación a otros métodos más sofisticados.

3. Un estudio comparativo sobre el uso de técnicas de PS para el clasi-
ficador kNN en el contexto particular de clasificación en entornos de
clases no equilibradas pero con suficiente cantidad de prototipos como
para requerir un proceso de reducción del conjunto de entrenamiento.

– Page 178 –



Towards Interactive Multimodal Music Transcription

Los experimentos llevados a cabo muestran que, en general, es benefi-
cioso aplicar ténicas para el equilibrado artificial de las clases antes
del proceso de selección para mejorar la respuesta de los segundos.
Concretamente, las combinaciones de los principios de Oversampling y
Undersampling para el equilibrado de clases antes del proceso PS son los
que mejores resultados reportan, tomando como criterio el compromiso
entre la reducción de datos y la tasa de clasificación.

4. La propuesta de una serie de figuras de mérito para la evaluación
cuantitativa del esfuerzo invertido por el usuario en el proceso de
anotación y/o corrección de una estimación inicial de onsets.

5. Una colección de sistemas interactivos para la anotación de onsets
basados en técnias de procesado de señal. Este conjunto de esquemas
está basado en el esquema clásico de estimación de onsets en dos etapas,
es decir, una primera dedicada a obtener la función de detección de
onsets (del inglés Onset Detection Function, ODF)seguida de la función
de selección de onsets (del inglés Onset Selection Function, OSF); las
correcciones llevadas a cabo por el usuario modifican los parámetros
de la segunda etapa para adecuar la forma de la curva de selección
a la pieza en cuestión a ser anotada. Los resultados experimentales
muestran que las metodoloǵıas de interacción propuestas constituyen
un acercamiento simple a la par que efectivo para la reducción de la
carga de trabajo de anotación y corrección por parte del usuario.

6. La propuesta y estudio de una serie de metodoloǵıas de corrección y
anotación de onsets desde el punto de vista del Reconocimiento de For-
mas Interactivo (del inglés Interactive Pattern Recognition, IPR). En
primera instancia, el problema de la estimación de onsets es modelado
como una tarea de clasificación en la que cada ventana de análisis es
categorizada como conteniendo un onset o no. En este contexto, la
modificación y actualización del modelo de clasificación se consigue
modificando directamente el conjunto de entrenamiento de acuerdo a
las correcciones de usuario. Por tanto, la cuestión de investigación a
responder a estudiar es qué información es relevante para la mejora del
modelo. Las conclusiones extráıdas tras la exhaustiva experimentación
llevada a cabo apuntan que cuanto mayor es la cantidad de información
que se suministra al modelo por realimentación, mayor es la robustez
del modelo y la reducción de carga de trabajo sobre el usuario final.

7. Un estudio sobre la potencial mejora que supone el uso de información
de onsets en sistemas de transcripción de música. Cabe resaltar que la
utilización de la información de onsets para transcripción no constituye
una novedad por śı misma. Por ello, la novedad que se presenta en
esta disertación viene dada por la mencionada evaluación formal de la
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potencial mejora que se puede obtener con este tipo de información en
comparación con sistemas que directamente la ignoran. Además, una
contribución adicional en este contexto es la evaluación y estudio de
la relación entre la bondad del algoritmo de estimación de onsets y la
calidad de la transcripción final.

8. La introducción de una novedosa estrategia de conformado de notas
(NT) enfocada como un problema de clasificación. En general, los
sistemas NT suelen estar formados por una serie de reglas heuŕısticas
que procesan la estimación de frecuencias fundamentales (MPE) para
conformar un evento de nota musical. En este trabajo se ha considerado
un sistema basado en un clasificador para que, de alguna manera,
esas reglas fueran obtenidas de manera automática. Los resultados
obtenidos muestran que el esquema propuesto es capaz de igualar
a otras estrategias de NT aunque sin llegar a superarlas, al menos
significativamente. Sin embargo, esta propuesta constituye un ejemplo
de paradigma alternativo para casos de NT, lo cual ya constituye una
contribución por śı misma.

Perspectivas para futura investigación

El trabajo presentado en esta disertación constituye una pequeña aportación
a los campos de la transcripción automática de música (AMT) y el Re-
conocimiento de Formas (PR) las cuales, al menos de manera parcial, dan
respuesta a las hipótesis planteadas al inicio. Sin embargo, y como en
cualquier trabajo de investigación, el trabajo presentado abre una serie de
caminos y perspectivas a considerar en futuras investigaciones.

Un primer punto a considerar es la extensión de los paradigmas inter-
activos propuestos a otras tareas de MIR. Como se ha demostrado, estos
esquemas son capaces de reducir significativamente el esfuerzo del usuario
en la anotación de eventos de onset. Es por tanto que parece prometedor el
extender estas metodoloǵıas a otras tareas como la estimación de acordes o
la extracción del pulso musical ya que, en estas tareas, la etiqueta dada a una
ventana de análisis tiene gran influencia sobre las etiquetas de las ventanas
posteriores.

El segundo trabajo futuro que se considera es continuar la exploración
de la multimodalidad para la mejora de los sistemas AMT. En este contexto
la utilización de información relacionada con la armóıa de la música, como
información de acordes o de tonalidad, debeŕıa suponer una mejora en los
resultados ya que, de alguna manera, acotaŕıa el espacio posible de soluciones.
Mientras que algunos trabajos ya han explorado esta idea (por ejemplo, el
trabajo de Benetos et al. (2014) en el cual se utiliza información sobre la
tonalidad para restringir los valores de frecuencia fundamental posibles o el
trabajo de Laaksonen (2014) en el que se utiliza información sobre acordes
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para la transcripción de melod́ıas), los ejemplos en la literatura son todav́ıa
escasos, en gran medida por la dificultad intŕınseca que conlleva la mezcla
de ambas descripciones de la señal.

Estrechamente relacionado con la multimodalidad encontramos el con-
cepto de reciente aparición de Modelo de Lenguaje Musical (del inglés Music
Language Model, MLM). La idea de este paradigma es replicar el esquema de
los sistemas de reconocimiento de voz en los que, a partir de una estimación
inicial de la información presente en la señal por un modelo acústico, un
modelo de lenguaje entrenado con información simbólica corrige errores que
se hayan dado en la primera etapa. Aunque los resultados obtenidos hasta
ahora por diferentes investigadores no son totalmente concluyentes acerca
de la utilidad de los MLM en el contexto de la transcripción (un ejemplo de
esto puede ser encontrado en el trabajo de Sigtia et al. (2016)), la intuición
apunta a que este tipo de descripción debeŕıa ser de gran relevancia para
la correcta consecución de la tarea. Es por ello que la principal cuestión de
investigación parece residir en cómo aunar ambas fuentes de información.

Otra potencial fuente a explorar está relacionada con el procesado a bajo
nivel de la señal por medio de esquemas de Aprendizaje Profundo (del inglés
Deep Learning). La principal ventaja de este tipo de técnicas reside en que
son capaces de obtener por śı mismas una representación en formato vector
de caracteŕısticas que se adecúan a la tarea en concreto (feature learning).
En este sentido, dado el importante avance que este tipo de esquemas ha
supuesto en otros campos como el procesado de imagen o incluso en otras
disciplinas dentro del MIR, destaca como una v́ıa importante a explorar.

Desde un punto de vista práctico destaca la necesidad de crear nuevos
conjuntos de datos. En general, gran parte de la investigación en el campo
de AMT está claramente orientada a timbres estilo piano debido a la relativa
sencillez de crear conjuntos de datos de este tipo. Aunque existen colecciones
de datos con otros timbres, tienden a ser las menos y, por tanto, los resul-
tados que se obtienen no se pueden considerar del todo concluyentes. En
ese sentido es necesaria la creación de conjuntos de datos con un tamaño
relativamente grande que permitan evaluar los sistemas existentes de una
manera concluyente.

Finalmente, un último punto a explorar es la posibilidad de adaptar los
métodos de selección de prototipos (del inglés Prototype Selection, PS) para
el caso particular en que las distribuciones de las clases de los datos no están
balanceadas sin necesidad de un algoritmo previo que modifique los datos
en śı para equilibrarlos artificialmente. Desde nuestro punto de vista esto
constituye un punto de gran importancia a investigar ya que, mientras que
los algoritmos de PS asumen que las clases en el conjunto de datos están
balanceadas, en datos reales obtenidos fuera del laboratorio esto no suele ser
aśı. Es por ello que consideramos esta investigación necesaria.
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Böck, S., & Schedl, M. (2012). Polyphonic piano note transcription with
recurrent neural networks. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp.
121–124).
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de Cheveigné, A. (2006). Multiple F0 Estimation. In Computational auditory
scene analysis: Principles, algorithms, and applications. Wiley-IEEE
Press.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society. Series B (methodological), 39 (1), 1–38.
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Garćıa-Pedrajas, N., & de Haro-Garćıa, A. (2014). Boosting instance selection
algorithms. Knowledge-Based Systems, 67 , 342–360.

Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity search in high
dimensions via hashing. In Proceedings of the very large data bases
conference (vldb) (pp. 518–529).

Giraldo, S., Ramı́rez, R., & Rollin, W. (2016, September). Onset detection
using Machine Learning Ensemble methods. In Proceedings of the 9th
International Workshop on Machine Learning and Music (MML) (pp.
21–25). Riva del Garda, Italy.

Glover, J., Lazzarini, V., & Timoney, J. (2011). Real-time detection of musical
onsets with linear prediction and sinusoidal modeling. EURASIP
Journal on Advances in Signal Processing , 2011 (1), 1–13.

Goto, M. (2001). An audio-based real-time beat tracking system for music
with or without drum-sounds. Journal of New Music Research, 30 (2),
159–171.

Goto, M., Hashiguchi, H., Nishimura, T., & Oka, R. (2002). RWC Music
Database: Popular, Classical and Jazz Music Databases. In Proceedings
of the 3rd International Conference on Music Information Retrieval
(ISMIR) (pp. 287–288). Paris, France.

Grindlay, G., & Ellis, D. (2011). Transcribing Multi-Instrument Polyphonic
Music With Hierarchical Eigeninstruments. Journal of Selected Topics
in Signal Processing , 5 (6), 1159–1169.

Grosche, P., Schuller, B., Müller, M., & Rigoll, G. (2012). Automatic
transcription of recorded music. Acta Acustica united with Acustica,
98 (2), 199–215.

– Page 191 –



References

Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-SMOTE: a new over-
sampling method in imbalanced data sets learning. In International
conference on intelligent computing (pp. 878–887).

Hart, P. (1968). The condensed nearest neighbor rule. IEEE Transactions
on Information Theory , 14 (3), 515–516.

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE
Transactions on Knowledge and Data Engineering , 21 (9), 1263–1284.

Herbert, T. (2009). Music in Words: A Guide to Researching and Writing
about Music: A Guide to Researching and Writing about Music. Oxford
University Press, USA.

Holzapfel, A., Stylianou, Y., Gedik, A. C., & Bozkurt, B. (2010). Three
dimensions of pitched instrument onset detection. IEEE Transactions
on Audio, Speech, and Language Processing , 18 (6), 1517–1527.

Hull, J. (1994). A database for handwritten text recognition research. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 16 (5),
550–554.
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Onset detection with the user in the learning loop. In Proceedings
of the 7th International Workshop on Machine Learning and Music
(MML). Barcelona, Spain.

Valero-Mas, J. J., Salamon, J., & Gómez, E. (2015, July). Analyzing
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