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ABSTRACT

Onset detection methods generally work on a two-stage
basis: a first step which processes an audio stream and
computes a time series depicting the estimated onset po-
sitions as local maxima in the function; and a second one
which evaluates this time series to select some of the local
maxima as onsets, typically with the use of peak picking
and thresholding methodologies. Nevertheless, while the
former stage has received considerable attention from the
community, the second one typically ends up being one of
a reduced catalogue of procedures. In this work we focus
on this second stage and explore previously unconsidered
methods based on descriptive statistics to obtain the thresh-
old function. More precisely, we consider the use of the
percentile descriptor as a design parameter and compare it
to classic strategies, as for instance the median value. Ad-
ditionally, a thorough comparison of methodologies con-
sidering the temporal evolution of the time series (adap-
tive techniques) against the use of static threshold values
(non-adaptive) is carried out. The results obtained report
several interesting conclusions, being the most remarkable
two the fact that the percentile descriptor can be consid-
ered a competitive possible alternative for this task and that
adaptive approaches do not always imply an improvement
over static methodologies.

1. INTRODUCTION

Onset detection stands for the process of automatically re-
trieving the starting points of note events present in audio
music signals [1]. This task has been commonly addressed
in the Music Information Retrieval (MIR) discipline due
to its remarkable relevance in related research fields such
as beat detection [2], tempo estimation [3], or automatic
music transcription [4].

However, in spite of its conceptual simplicity, this task
remains unsolved. While the performance for cases of sim-
ple instrumentation and low polyphony degree may be con-
sidered sufficient for a number of MIR tasks, in more com-
plex cases onset estimation still constitutes a challenge.
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Figure 1: Graphical description of a two-stage onset detec-
tion process.

Except for some approaches based on end-to-end systems
(e.g, [5]), classic onset estimation schemes base its perfor-
mance on a process comprising two consecutive steps [6],
as shown in Fig. 1. The first stage, usually known as On-
set Detection Function (ODF), processes the target signal
computing a time series whose peaks represent the posi-
tions of the estimated onsets, by measuring the change in
one or more audio features. Features typically conside-
red are signal energy [7], phase [8], or combinations of
them [9].

The second stage, known as Onset Selection Function
(OSF), evaluates the result from the ODF process and se-
lects the most promising peaks as onsets. Ideally, if the
ODF method would perfectly track the onset events in the
signal, this stage would not be required. However, as no
ODF process is neat, the OSF is required to discriminate
between actual onsets and artifacts, thus constituting a key
point in the system’s performance [10, 11].

Due to its relevance, a number of OSF techniques have
been proposed. In general, OSF methods seek for peaks
above a certain threshold in the ODF. In this regard, while
the maximum condition is typically unaltered, the different
techniques differ in the way this threshold is obtained.

The most basic approach consists in manually establish-
ing a static threshold value [12]. This technique does not
consider any particularities of the signal for selecting the
value, i.e., no prior knowledge of the signal is taken into
account. Its value is heuristically set according to previ-
ous experimentation. Other more sophisticated approaches
consider calculating the mean or the median value of the
ODF and setting it as the static threshold value [13, 14].

Extending the premises of the aforementioned methods,
adaptive techniques which consider the temporal evolution
of the ODF are also used. Instead of obtaining a global
static threshold value, these methods include a sliding win-
dow for performing the analysis at each point [15]. In this
context, the median value of the elements in the sliding
window is commonly considered a remarkably robust ap-
proach for onset detection [16].

Nevertheless, except for some particular works assessing
the influence of the OSF process in the overall performance
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of the system (e.g., [10]), there is still a need to further
study such processes. Thus, in this work we perform an
experimental study assessing different ideas which, to the
best of our knowledge, no previous work has considered.
Particularly, we study the possibility of considering other
percentile values (i.e., other statistical tendency measures)
different to the median, somehow extending the work by
Kauppinen [13] but particularised to onset detection. We
also examine the influence of the window size in adaptive
methodologies. Eventually, we compare static and adap-
tive threshold procedures to check their respective capabi-
lities.

The rest of the paper is structured as follows: Section 2
introduces the ODF methods considered for this work; Sec-
tion 3 explains the different OSF approaches assessed and
compared; Section 4 describes the evaluation methodology
considered; Section 5 introduces and analyses the results
obtained; eventually, Section 6 remarks the conclusions
and proposes future work.

2. ONSET DETECTION FUNCTIONS

Two different ODF algorithms were used for our experi-
mentation, which were selected according to their good re-
sults reported in the literature: the Semitone Filter Bank
(SFB) [7] and the SuperFlux (SuF) [17,18] algorithms. For
the rest of the paper we refer to the time series resulting
from the ODF process as O(t).

As an energy-based ODF method, SFB analyses the evo-
lution of the magnitude spectrogram with the particularity
of considering that harmonic sounds are being processed.
A semitone filter bank is applied to each frame window
of the magnitude spectrogram, being the different filters
centred at each of the semitones marked by the well tem-
perament, and the energy of each band (root mean square
value) is retrieved. After that, the first derivative across
time is obtained for each single band. As only energy rises
may point out onset information, negative outputs are ze-
roed. Finally, all bands are summed and normalised to ob-
tain the O(t) function.

The SuF method bases its performance on the idea of the
Spectral Flux [19] signal descriptor and extends it. Spec-
tral Flux obtains positive deviations of the bin-wise diffe-
rence between two consecutive frames of the magnitude
spectrogram for retrieving the O(t) function. SuF substi-
tutes the difference between consecutive analysis windows
by a process of tracking spectral trajectories in the spec-
trum together with a maximum filtering process that sup-
presses vibrato articulations as they tend to increase false
detections.

Given that the different ODF processes may not span in
the same range, we apply the following normalisation pro-
cess to O(t) so that the resulting function Ô(t) satisfies
Ô(t) ∈ [0, 1]:

Ô(t) =
O(t)−min {O(t)}

max {O(t)} −min {O(t)}
(1)

where min {·} and max {·} retrieve the minimum and ma-
ximum values of O(t), respectively.

Finally, it must be mentioned that the analysis parameters
of both algorithms have been configured to a window size
of 92.9ms with a 50 % of overlapping factor.

3. ONSET SELECTION FUNCTIONS

In this section we introduce the different OSF methods
considered. Given that the contemplated ODF processes
depict onset candidates as local maxima in Ô(t), the stu-
died OSF methods search for peaks above a certain thres-
hold value θ(t) for removing spurious detections.

As introduced, the idea in this work is to assess the fol-
lowing OSF criteria: a) considering percentile values diffe-
rent to the median one; b) assessing the influence of the
window size in adaptive methodologies; and c) compa-
ring the performance of static against adaptive methodolo-
gies. Mathematically, these criteria can be formalised as in
Eq. 2:

θ(ti) = µ
{
Ô(twi)

}
+ P(n)

{
Ô(twi)

}
(2)

where twi ∈
[
ti − W

2 , ti +
W
2

]
, W denotes the size of the

sliding window, and µ {·} and P(n) {·} denote the average
and nth percentile value of the sample distribution at issue,
respectively.

For assessing the influence of the percentile, 20 values
equally spaced in the range n ∈ [0, 100] were considered.
The particular case of P(50) is equivalent to the median
value of the distribution.

In terms of window sizes, 20 values equally space in the
range W ∈ [0.2, 5] s were also considered. Additionally,
the value proposed by West and Cox [20] of W = 1.5 s
was included as a reference.

In order to obviate the adaptive capabilities of the OSF,
W was set to the length of the O(t) to assess the static
methodologies.

In addition, the case of manually imposing the threshold
value θ(ti) = T was considered. For that we establish 20
values equally spaced in the range T ∈ [0, 1] as Ô(t) is
normalised to that range.

For the rest of the paper, the following notation will be
used: µ and P denote the use of the mean or the percentile,
respectively, whereas µ+P stands for the sum of both des-
criptors; adaptive approaches are distinguished from the
static ones by incorporating the t as a subindex, showing
their temporal dependency (i.e., µt, Pt, and µt + Pt in
opposition to µ, P , and µ + P); T evinces the manually
imposition of the threshold value; lastly, B is used to de-
note the case in which no threshold is applied and all local
maxima are retrieved as onsets: B ≡ θ(ti) = 0.

Finally, Fig. 2 shows some graphical examples of OSF
processes applied to a given Ô(t) function.

4. METHODOLOGY

4.1 Corpus

The dataset used for the evaluation is the one proposed by
Böck et al. [14]. It comprises 321 monaural recordings
sampled at 44.1 kHz covering a wide variety of polyphony
degrees and instrumentation.
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(a) Static threshold θ(ti) = 0.4 when manually imposing a static
threshold value (T ). Symbol (#) remarks the positions selected
as onsets.
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(b) Adaptive threshold θ(ti) using the percentile scheme (Pt):
solid and dashed styles represent the 75th and 50th percentiles,
respectively, while symbols (#) and (×) depict the positions se-
lected as onsets for each criterion. The sliding window has been
set to W = 1.5 s.

Figure 2: Examples of OSF applied to a given O(t).

The total duration of the set is 1 hour and 42 minutes and
contains 27,774 onsets. The average duration per file is
19 seconds (the shortest lasts 1 second and the longest one
extends up to 3 minutes) with an average figure of 87 on-
sets per file (minimum of 3 onsets and maximum of 1,132
onsets). For these experiments no partitioning in terms of
instrumentation, duration, or polyphony degree was con-
sidered as we aim at assessing broader tendencies.

4.2 Performance measurement

Given the impossibility of defining an exact point in time to
be the onset of a sound, correctness evaluation requires of a
certain tolerance [21]. In this regard, an estimated onset is
typically considered to be correct (True Positive, TP) if its
corresponding ground-truth annotation is within a±50ms
time lapse of it [1]. False Positive errors (FP) occur when
the system overestimates onsets and False Negative errors
(FN) when the system misses elements present in the re-
ference annotations.

Based on the above, we may define the F-measure (F1)
figure of merit as follows:

F1 =
2 · TP

2 · TP + FP + FN
(3)

where F1 ∈ [0, 1], denoting the extreme values 0 and 1 the
worst and best performance of the system, respectively.

Other standard metrics such as Precision (P) and Recall
(R) have been obviated for simplicity.

5. RESULTS

In this section we introduce and analyse the results ob-
tained for the different experiments proposed. All figures
presented in this section show the weighted average of the

results obtained for each of the audio files considering the
number of onsets each one contains.

Table 1 shows the results obtained for the proposed com-
parative of static and adaptive threshold methodologies for
both ODF processes considered. In this particular case,
window size for adaptive methodologies has been fixed to
W = 1.5 s as in West and Cox [20].

An initial remark to point out according to the results ob-
tained is that, in general, the figures obtained with the sli-
ding window methodology do not remarkably differ to the
ones obtained in the static one, independently of the ODF
process. This can be clearly seen when P and µ + P are
respectively compared to Pt and µt+Pt: all percentile va-
lues considered retrieve considerably similar results except
for the case when high percentile values are considered, in
which the Pt method shows its superior capabilities. Addi-
tionally, while P approaches show their best performance
for percentile values in the range [60, 75], the µ + P me-
thods obtain their optimal results in the lower ranges, more
precisely around [0, 30].

Regarding the use of the µ methodologies, results ob-
tained for the static and adaptive methodologies did not
differ for the SFB function. On the contrary, when conside-
ring the SuF function, the adaptive methodology performed
slightly worse than the static one. Finally, as these methods
do not depend on any external configuration, their perfor-
mance does not vary with the percentile parameter.

In terms of the T strategy, its performance matched the
static P and µ + P methods in the sense that the perfor-
mance degrades as the introduced threshold was increased.
Nevertheless, this method showed its performance when
the threshold value considered lies in the range [0.10, 0.30].

As a general comparison of the methods considered, the
µ methods showed a very steady performance paired with
high performance results. Also, while µ + P methods
generally outperform P strategies in terms of peak perfor-
mance, the particular case of Pt approaches showed less
dependency on the percentile configuration value.

Given that all previous experimentation has been done
considering a fixed window value of W = 1.5 s, we need
to study the influence of that parameter in the overall per-
formance of the system. In this regard, Tables 2 and 3 show
the results for the Pt and µt+Pt methods considering dif-
ferent window sizes for the SFB and SuF processes, res-
pectively. Additionally, Figures 3 and 4 graphically show
these results for the Pt and µt + Pt methods, respectively.

As the figures obtained for both ODF processes qualita-
tively show the same trends, we shall analyse them jointly.
Checking Tables 2 and 3, results for the Pt method show
that larger windows tend to increase the overall perfor-
mance of the detection, at least when not considering an
extreme percentile value. For instance, let us focus on the
P(74)
t method for the SuF process (Table 3): when consid-

ering a window of W = 0.20 s, the performance is set on
F1 = 0.67, which progressively improves as the window
size is increased, getting to a score of F1 = 0.73 when
W = 5.00 s.

As commented, this premise is not accomplished when
percentile values are set to its possible extremes. For low



Th/Pc SFB SuF
T µ P µ+ P µt Pt µt + Pt T µ P µ+ P µt Pt µt + Pt

0.00 0.65 0.73 0.65 0.73 0.72 0.65 0.72 0.64 0.77 0.64 0.77 0.74 0.64 0.76
0.11 0.71 0.73 0.65 0.72 0.72 0.65 0.71 0.76 0.77 0.64 0.77 0.74 0.64 0.76
0.21 0.75 0.73 0.66 0.71 0.72 0.66 0.70 0.65 0.77 0.65 0.77 0.74 0.64 0.76
0.32 0.73 0.73 0.66 0.70 0.72 0.66 0.69 0.51 0.77 0.66 0.77 0.74 0.65 0.76
0.42 0.66 0.73 0.68 0.68 0.72 0.67 0.67 0.39 0.77 0.68 0.76 0.74 0.67 0.75
0.53 0.56 0.73 0.69 0.66 0.72 0.69 0.63 0.29 0.77 0.70 0.75 0.74 0.69 0.74
0.63 0.44 0.73 0.70 0.62 0.72 0.70 0.58 0.21 0.77 0.73 0.73 0.74 0.71 0.71
0.74 0.31 0.73 0.70 0.53 0.72 0.70 0.50 0.15 0.77 0.74 0.68 0.74 0.72 0.65
0.84 0.19 0.73 0.65 0.39 0.72 0.63 0.36 0.10 0.77 0.68 0.56 0.74 0.65 0.54
0.95 0.10 0.73 0.40 0.13 0.72 0.42 0.12 0.06 0.77 0.42 0.29 0.74 0.44 0.27
1.00 0.05 0.73 0.05 0.00 0.72 0.27 0.00 0.05 0.77 0.05 0.00 0.74 0.29 0.00

Table 1: Results in terms of the F1 score for the dataset considered for the ODF methods introduced. A 1.5-second window
has been used for the methods based on sliding window (µt, Pt, µt + Pt) based on the work by West and Cox [20].
Bold elements represent the best figures for each ODF method considered. Due to space requirements we have selected
the threshold and percentile parameters (Th/Pc) showing the general tendency. In this same regard, both threshold and
percentile parameters are expressed in the range [0, 1].

Pc W = 0.20 W = 0.71 W = 1.50 W = 2.22 W = 2.98 W = 3.99 W = 5.00
Pt µt + Pt Pt µt + Pt Pt µt + Pt Pt µt + Pt Pt µt + Pt Pt µt + Pt Pt µt + Pt

0 0.65 0.66 0.65 0.71 0.65 0.72 0.65 0.72 0.65 0.72 0.65 0.72 0.65 0.73
11 0.65 0.65 0.65 0.70 0.65 0.71 0.65 0.71 0.65 0.72 0.65 0.72 0.65 0.72
21 0.65 0.63 0.65 0.69 0.66 0.70 0.66 0.70 0.66 0.71 0.66 0.71 0.66 0.71
32 0.65 0.60 0.66 0.68 0.66 0.69 0.66 0.69 0.66 0.69 0.66 0.70 0.66 0.70
42 0.65 0.56 0.67 0.65 0.67 0.67 0.67 0.67 0.67 0.68 0.67 0.68 0.68 0.68
53 0.65 0.49 0.68 0.62 0.69 0.64 0.69 0.64 0.69 0.65 0.69 0.65 0.69 0.65
63 0.65 0.42 0.69 0.56 0.70 0.59 0.70 0.59 0.70 0.60 0.70 0.60 0.70 0.60
74 0.67 0.32 0.69 0.48 0.69 0.51 0.70 0.51 0.70 0.51 0.70 0.52 0.70 0.52
84 0.67 0.12 0.66 0.35 0.64 0.36 0.64 0.36 0.64 0.37 0.64 0.37 0.64 0.37
95 0.67 0.00 0.47 0.15 0.45 0.12 0.42 0.12 0.42 0.12 0.41 0.12 0.40 0.12
100 0.67 0.00 0.47 0.00 0.23 0.00 0.21 0.00 0.17 0.00 0.13 0.00 0.11 0.00

Table 2: Results in terms of the F1 score for the SFB process. Bold elements represent the best figures obtained for each
percentile value considered. Due to space requirements, the most representative percentile parameters (Pc) and window
sizes (W ) have been selected to show the general tendency.

Pc W = 0.20 W = 0.71 W = 1.50 W = 2.22 W = 2.98 W = 3.99 W = 5.00
Pt µt + Pt Pt µt + Pt Pt µt + Pt Pt µt + Pt Pt µt + Pt Pt µt + Pt Pt µt + Pt

0 0.64 0.72 0.64 0.74 0.64 0.76 0.64 0.76 0.64 0.77 0.64 0.77 0.64 0.77
11 0.64 0.72 0.64 0.75 0.64 0.76 0.64 0.77 0.64 0.77 0.64 0.77 0.64 0.77
21 0.64 0.72 0.64 0.75 0.65 0.76 0.65 0.76 0.65 0.77 0.65 0.77 0.65 0.77
32 0.64 0.71 0.65 0.75 0.65 0.76 0.65 0.76 0.65 0.76 0.66 0.76 0.66 0.76
42 0.64 0.70 0.66 0.74 0.67 0.75 0.67 0.75 0.67 0.76 0.67 0.76 0.68 0.76
53 0.64 0.65 0.68 0.73 0.69 0.74 0.69 0.74 0.70 0.74 0.70 0.74 0.70 0.75
63 0.64 0.61 0.70 0.69 0.71 0.71 0.71 0.71 0.72 0.72 0.72 0.72 0.72 0.72
74 0.67 0.55 0.70 0.63 0.72 0.66 0.72 0.66 0.73 0.66 0.73 0.67 0.73 0.67
84 0.67 0.38 0.68 0.52 0.67 0.54 0.67 0.54 0.67 0.55 0.67 0.55 0.67 0.55
95 0.67 0.00 0.48 0.32 0.47 0.27 0.44 0.27 0.44 0.27 0.43 0.28 0.42 0.28
100 0.67 0.00 0.48 0.00 0.24 0.00 0.21 0.00 0.18 0.00 0.15 0.00 0.12 0.00

Table 3: Results in terms of the F1 score for the SuF process. Bold elements represent the best figures obtained for each
percentile value considered. Due to space requirements, the most representative percentile parameters (Pc) and window
sizes (W ) have been selected to show the general tendency.

percentile values, window size seems to be irrelevant to the
system. For instance, when considering the SFB method,

P(11)
t , the performance measure was always F1 = 0.65

independently of the W value considered.



On the other extreme, very high percentile values suffer a
performance decrease as larger window sizes are used. As
an example, for the SuF configuration, P(100)

t with W =
5.00 s achieved an F1 = 0.12, while when W = 0.20 s
this figure raised up to F1 = 0.67.

Results for the µt + Pt method showed similar tenden-
cies since, when not considering extreme percentile values,
the overall performance increased as larger windows were
used. Nevertheless, in opposition to the Pt case, this par-
ticular configuration showed an improvement tendency as
W is progressively increased for low percentile values.

In general it was observed that, for all W window sizes,
the best percentile configurations seemed to be in the range
[60, 70] for the Pt approach and in the range [0, 20] for the
µt + Pt case. This fact somehow confirms the hypothesis
suggesting that the median value may not always be the
best percentile to consider.

Checking now the results considering Figs. 3 and 4, some
additional remarks, which are more difficult to check in the
aforementioned tables, may be pointed out.

The first one of them is that the selection of the proper
parameters of windows size and percentile factor is crucial.
For both Pt and µt + Pt methods, there is a turning point
in which the performance degrades to values lower than
the considered baseline B (no OSF applied). For the Pt

method there is a clear point for this change in tendency
around the 85th percentile for any window size considered.
However, for the µt + Pt approach there was not a unique
point but a range, which remarkably varied depending on
the type of ODF and window size considered.

Another point to highlight is that the static methodolo-
gies (P and µ+ P) consistently define the upper bound in
performance before the so-called turning point. This fact
somehow confirms the initial idea of using large windows
(on the limit, one single window considering the whole
O(t) function) in opposition to small windows.

The results obtained when considering window sizes in
the range [0, 1] seconds, which include the performance of
the considered reference window of W = 1.5 s, achieved
results similar to the obtained upper bound. The other con-
sidered window sizes showed a remarkable variability in
the performance, ranging from achieving figures similar to
the upper bound to figures close to the baseline B.

As a general summary for all the experimentation per-
formed, we may conclude that adaptive OSF methodolo-
gies may be avoided as static approaches obtain similar
results with less computational cost. Particularly, in our
experiments, methods considering percentile (P) or mean
and percentile (µ + P) reported the upper bounds in per-
formance.

Nevertheless, the particular percentile value used remar-
kably affects the performance. For P , the best results seem
to be obtained when the percentile parameter was set in the
range [60,70]. For µ + P the best figures were obtained
when this parameter was set to a very low value.

Finally, the commonly considered median value for the
OSF did not report the best results in our experiments.
These results point out that the median statistical descriptor
may not always be the most appropriate to be used, being

necessary to be tuned for each particular dataset.

5.1 Statistical significance analysis

In order to perform a rigorous analysis of the results ob-
tained and derive strong conclusions out of them, we now
perform a set of statistical tests. Specifically, these ana-
lyses were performed with the non-parametric Wilcoxon
rank-sum and Friedman tests [22], which avoid any assump-
tion about the distribution followed by the figures obtained.
The former method is helpful for comparisons of differ-
ent distributions in a pairwise fashion while the latter one
generalises this pairwise comparison to a generic number
of distributions.

In this work the Wilcoxon rank-sum test was applied to
assess whether there are significant differences among all
the methods proposed using the results in Table 1. The
single scores obtained for each Th/Pc constitute a sample
of the distribution for the OSF method to be tested. The
results obtained when considering a significance level of
p < 0.05 can be checked in Table 4.

Attending to the results of the Wilcoxon test, an initial
point to comment is that method T the less robust of all
considered due to its significantly lower performance in all
cases. Oppositely, method µ can be considered the best
strategy as it outperforms all other strategies. The adap-
tive equivalent to this technique, µt, achieves similar per-
formances to the static one except for the case of SuF, in
which it does not outperform the rest of the methods as
consistently as in the static case. Methods P and Pt show
an intermediate performance among the previously com-
mented extremes. Their results are not competitive with
any of the µ or µt strategies. These strategies are generally
tied with methods µ+P and µt+Pt as they typically show
significantly similar performances with punctual cases in
which one of those methods improves the rest.

We now consider the statistical analysis of influence of
the window size (W ) and the percentile values (Pc) on the
overall performance. Given that now we have two vari-
ables to be evaluated, we consider the use of the Friedman
test. The idea with this experiment is to assess whether
variations in these variables report statistically significant
difference in the F1 score, so we assume that the null hy-
pothesis to be rejected is that no difference should be ap-
preciated. Note that this type of analysis does not report
whether a particular strategy performs better than another
one but simply if the differences when using different pa-
rameters are relevant.

For performing this experiment we consider the data in
Tables 2 and 3 as they contain all the information required
for the analysis. In this regard Tables 5 and 6 show the p
significance values obtained when measuring the influence
of W and Pc, respectively.

Attending to the results obtained, we can check the re-
markable influence of the W parameter in the overall re-
sults as all cases report very low p scores which reject the
null hypothesis. The only exception is the Pt in the SFB
case in which p is not that remarkably low, but still would
reject the null hypothesis considering a typical significance
threshold of p < 0.05.
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Figure 3: Evolution of the F1 score when considering the Pt strategy for the dataset proposed.
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Figure 4: Evolution of the F1 score when considering the µt + Pt strategy for the dataset proposed.

In terms of the percentile value (Pc), the p significance
values obtained clearly show the importance of this pa-
rameter in the design of the experiment. This points out
the clear need to consider this as another parameter in the
design of onset detection systems.

Finally, note that this statistical analysis confirms the ini-
tial conclusions depicted previously: static approaches are
significantly competitive when compared to adaptive me-
thods; window sizes for adaptive method remarkably in-
fluence the performance of the system; when considering



Method SFB SuF
T µ P µ+ P µt Pt µt + Pt T µ P µ+ P µt Pt µt + Pt

T – < < < < < < – < < < < < <

µ > – > > > > > > – > > > > >

P > < – = < = = > < – = < > =

µ+ P > < = – < = > > < = – = = >

µt > < > > – > > > < > = – > =

Pt > < = = < – > > < < = < – =

µt + Pt > < = < < < – > < = < = = –

Table 4: Results obtained for the Wilcoxon rank-sum test to the comparison results depicted in Table 1. Symbols (>), (<),
and (=) state that the onset detection capability of the method in the row is significantly higher, lower, or not different to
the method in the column. Symbol (–) depicts that the comparison is obviated. A significance level of p < 0.05 has been
considered.

Method SFB SuF
Pt 0.03209 4.917 · 10−9

µt + Pt < 2.2 · 10−16 < 2.2 · 10−16

Table 5: Statistical significance results of the Friedman test
when measuring the influence of the window size (W ) in
the overall performance.

Method SFB SuF
Pt < 2.2 · 10−16 < 2.2 · 10−16

µt + Pt < 2.2 · 10−16 < 2.2 · 10−16

Table 6: Statistical significance results of the Friedman test
when measuring the influence of the percentile (Pc) in the
overall performance.

OSF methods relying on statistical descriptions, the per-
centile should be considered as another design parameter
due to its relevance in the results.

6. CONCLUSIONS

Onset detection, the retrieval of the starting points of note
events in audio music signals, has been largely studied
because of its remarkable usefulness in the Music Infor-
mation Retrieval field. These schemes usually work on a
two-stage basis: the first one derives a time series out of
the initial signal whose peaks represent the candidate on-
set positions; the second assesses this function by setting a
threshold to minimise the errors and maximise the overall
performance. While the first of such processes has received
significant attention from the community, the second stage
has not been that deeply studied.

In this work we have studied the actual influence of a
proper design of this second stage in the overall perfor-
mance. More precisely we addressed three main points:
measuring the benefits of static and adaptive threshold tech-
niques, the use of different statistical descriptions for set-
ting this threshold, and the influence of the considered win-
dow size in adaptive methodologies.

Our experiments show that static methodologies are clearly

competitive when compared to adaptive methodologies. Ad-
ditionally, our results report the remarkable influence that
the different statistical descriptions and window sizes con-
sidered have on the overall performance, being thus im-
portant parameters to be considered in onset detection sys-
tems.

Future work considers extending this study to other des-
criptive statistic measures such as central tendency des-
criptors (e.g., harmonic and weighted means) or shape-
based features (e.g., kurtosis and skewness), and conside-
ring the possibility of including specific weights for each
of them. Also, the exploration of different machine learn-
ing methods to avoid use of hand-crafted rules by auto-
matically inferring the optimal threshold curve are also
considered as a line to pursue. Finally, end-to-end systems
based on deep learning is also a line to further pursue.
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