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M. Iñesta
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Abstract Prototype Selection is one of the most pop-

ular approaches for addressing the low efficiency issue

typically found in the well-known k-Nearest Neighbour

classification rule. These techniques select a represen-

tative subset from an original collection of prototypes

with the premise of maintaining the same classifica-

tion accuracy. Most recently, rank methods have been

proposed as an alternative to develop new selection

strategies. Following a certain heuristic, these meth-

ods sort the elements of the initial collection accord-

ing to their relevance and then select the best possi-

ble subset by means of a parameter representing the

amount of data to maintain. Due to the relative novelty

of these methods, their performance and competitive-

ness against other strategies is still unclear. This work

performs an exhaustive experimental study of such meth-
ods for prototype selection. A representative collection

of both classic and sophisticated algorithms are com-

pared to the aforementioned techniques in a number

of datasets, including different levels of induced noise.

Results report the remarkable competitiveness of these
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rank methods as well as their excellent trade-off be-

tween prototype reduction and achieved accuracy.
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1 Introduction

The k-Nearest Neighbour (kNN) rule is one of the most

common algorithms for supervised non-parametric clas-

sification [10], where statistical knowledge of the condi-

tional density functions is not available. This rule hy-

pothesises about a given input considering the most

common label among its k-nearest prototypes of the

training set. Its simplicity, straightforward implementa-

tion and an error bounded by twice the Bayes error [6]
are important qualities that characterise this classifier.

Nevertheless, one of the main problems of this technique

is its low efficiency in both running time and memory

usage, since it needs to store and query every single

prototype of the training set in order to compute the

distances required.

Data Reduction (DR) techniques, a special case of

Data Preprocessing, are widely used in kNN classifi-

cation as a means of overcoming the previously com-

mented drawbacks. They aim at reducing the size of

the training set while keeping the same classification

accuracy as with the original data [14]. DR can be fur-

ther divided into two common approaches [19]: Proto-

type Generation (PG) and Prototype Selection (PS).

The former method creates new artificial data to re-

place the initial set while the latter one simply selects

certain elements from that set. The work presented here

focuses on PS techniques, which are less restrictive than

PG as they do not require information about type of

representation used for encoding the data [4].
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Given the importance of PS methods, numerous ap-

proaches have been proposed throughout the years [13],

typically divided into three main families: condensing

strategies, which try to keep only the most relevant pro-

totypes; editing strategies, which pursue a removal of

the prototypes located in dubious zones; and hybrid

methods, which look for a compromise between the two

previous approaches.

Moreover, a new approach has been recently devel-

oped, in which the key question is not to select pro-

totypes but to sort them by their importance for the

classification accuracy. This new approach, referred as

rank methods, is finally guided by a tuning parameter

which specifies the amount of data to keep.

Due to the novelty of the aforementioned rank-based

family, it is hitherto unclear its competitiveness against

state-of-art methodologies. To plug that gap, the present

work aims at providing a comprehensive experimen-

tal study on the performance of rank methods for PS.

A representative series of algorithms is selected from

the literature and compared against rank methods in

a number of scenarios, which differ in their size and

amount of mislabelled samples (to simulate a noisy con-

dition), and taking into account different metrics of in-

terest.

The rest of the paper is structured as follows: Sec-

tion 2 introduces some of the most common approaches

for Prototype Selection in kNN. Section 3 describes the

rank methods to be assessed. Section 4 describes the ex-

perimental set-up as well as the evaluation methodology

proposed. Results obtained are presented and analysed

in Section 5. Finally, Section 6 outlines the general con-

clusions obtained as well as possible future work.

2 Background

The Condensed Nearest Neighbour [17] was one of the

first techniques aimed at reducing the size of the train-

ing set for kNN classification. This method focuses on

keeping those prototypes close to boundaries and re-

moving the rest. The reduction starts with an empty

set S, and every prototype of the initial training set is

queried randomly. If the prototype is misclassified us-

ing the 1-NN rule and the set S, then the prototype is

included in S. Otherwise, the prototype is discarded.

At the end, the set S is returned as a representative

reduced version of the initial training set. Note that

the main assumption behind the method is that if a

prototype is misclassified with a 1NN, it is probably

close to the boundaries. Therefore, it should be main-

tained. Extensions to this technique include: Reduced

Nearest Neighbour [16], which performs the condensing

algorithm and then revisits each maintained prototype

to assure whether it is actually necessary for the clas-

sification; Selective Nearest Neighbour [23], which as-

sures that the nearest neighbour of each prototype of

the initial training set is in the condensed subset; and

Fast Condensing Nearest Neighbour [1], which provides

a fast, order-independent variant of the algorithm.

Following an inverse approach, the Editing Near-

est Neighbour [28] was the first proposal to reduce the

training set by removing outliers and noisy instances.

It starts with a set S equal to the initial training set.

The process applies the 1NN rule to each single pro-

totype in S. If the element is misclassified (class pre-

dicted by kNN does not match with the prototype one),

the element is removed from S. Otherwise, it is main-

tained. Common extensions to this technique are the

Repeated-Editing Nearest Neighbour [25], which repeat-

edly applies editing until homogeneity is reached, and

the Multi-Editing Nearest Neighbour [9], which repeat-

edly performs editing over distributed blocks of the

training set.

Several algorithms have appeared as a combination

of the two aforementioned general ideas, referred as

hybrid approaches. Some good representatives of hy-

brid methods are: the Multi-Editing Condensing Near-

est Neighbour [7], a combination of Multi-Editing and

Condensing strategies; the Decremental Reduction Op-

timization Procedure [28], in which instances are or-

dered according to the distance to their nearest neigh-

bours and then, starting from the furthest ones, those

which do not affect the generalization accuracy are re-

moved; and the Iterative Case Filtering [2], which bases

its performance on the coverage and reachability pre-

mises to select the instances subset able to maximize

the classification accuracy. In addition, Evolutionary

Algorithms (EA) have also been adapted to perform

PS [5]. For instance, the Cross-generational elitist se-

lection, Heterogeneous recombination and Cataclysmic

mutation search [11], whose name indicates the beha-

viour of its genetic operators, is considered one of the

most successful applications of EA for this task.

Unfortunately, PS methods often carry an accuracy

loss with respect to directly using the original train-

ing set. This is why PS has been hybridised with other

paradigms such as Ensemble methods [15] or Feature

Selection [8,26]. Nevertheless, we shall restrict ourselves

to consider conventional PS for our experimental study.

3 Rank methods for Prototype Selection

This section introduces the gist of rank methods for PS

as well as those strategies already proposed under this

paradigm.
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The main idea behind rank methods is that proto-

types of the training set are not selected but ordered.

Following some heuristics, prototypes are given a score

that indicates its relevance with respect to classification

accuracy. Eventually, prototypes are selected starting

from the highest score until a certain criterion is ac-

complished.

A particular approach for rank methods is to fol-

low a voting heuristic, ie. prototypes vote for the rest

of the prototypes that help them to be correctly classi-

fied. After the voting process, the received score is nor-

malised to produce an importance rate so that the sum

over these rates for all the prototypes of a given class

is equal to 1. Then, the training set is sorted accord-

ing to those values and the best candidates are selected

until their accumulated score exceeds an external pa-

rameter α ∈ (0, 1] that allows the performance of the

rank method to be tuned. Low values of this parameter

will lead to a higher reduction of the size of the training

set, while high values will remove only the most irrel-

evant prototypes. Although tuning parameters may be

considered an inconvenient, in this case this is specially

interesting because the parameter allows the user to

enhance a particular objective (either reduction or ac-

curacy) depending on the requirements of the system.

The experimental study carried out in this paper

focuses on the two voting heuristics proposed so far,

to our best knowledge: Farthest Neighbour (FN) and

Nearest to Enemy (NE). Both strategies are based on

the idea that a prototype can give one vote to another

one, and the question is to decide which prototype it

is given to. Although these strategies were previously

published [22], we shall revisit below their main ideas

for a better readability of the current paper.

For the sake of clarity, some notation is presented.

We will use d(·, ·) to denote the distance between pro-

totypes used for the kNN rule. Let ζ(p) denote the

class label of prototype p. Let us call friends of p (fp)

the set of prototypes that share class label with p, ie.

fp = {p′ : ζ(p′) = ζ(p)}, and enemies of p (ep) the rest

of prototypes. As both strategies loop over each pro-

totype of the training set, we will use a to denote the

prototype issuing the vote. Then, we will use b as the

nearest enemy of a: arg minp∈ep d(a, p).

3.1 Farthest Neighbour voting

The one vote to the Farthest Neighbour (FN) strategy

searches for a prototype c, which is the farthest friend

of a but still closer than b. That is, a will give its vote

to prototype c such that

c = arg max
p

d(a, p) : p ∈ fa ∧ d(a, p) < d(a, b)

The idea is to vote for a prototype that contributes to

classify a correctly using the kNN rule as well as to

reduce the density of prototypes over a definite area.

3.2 Nearest to Enemy voting

The one vote to the Nearest to Enemy (NE) strategy

makes a vote for the friend that is the closest to b.

This friend must also be within the area centred at

a and radius d(a, b). Formally, a will give its vote to

prototype c such that

c = arg min
p
d(p, b) : p ∈ fa ∧ d(a, p) < d(a, b)

The idea is to try to avoid any misclassification pro-

duced by c using kNN rule in an area with prototypes

of other classes.

The previously described strategies can be extended

by letting b be the n-nearest enemy in order to reduce

the influence of possible outliers. We will denote these

strategies by n-FN and n-NE. For example, configura-

tion n = 2 will use the second nearest enemy to voting

prototype a, which has proved to be useful in prac-

tice [22].

4 Experimental setup

4.1 Datasets

Due to the experimental nature of the paper and in or-

der to consistently assess the introduced strategies, a

considerable number of datasets were considered. The

performance of PS algorithms is highly related to the

size of the dataset. That is why the use of small datasets1

is common in works concerning DR. However, the use of

such sets does not really make sense from our point of

view: PS aims at speeding up kNN classification by re-

ducing the information to be processed. In that sense,

datasets not containing a large amount of prototypes

can be processed relatively fast and, therefore, reduc-

tion would be useless in this scenario.

Our experiments were carried out with five corpora:

the NIST SPECIAL DATABASE 3 (NIST3) of the

National Institute of Standards and Technology, from

which a subset of the upper case characters was ran-

domly selected; the United States Postal Office (USPS)

1 Given that this number of elements is highly dependent
on the memory and computation capabilities of the system
considered, we shall restrict ourselves to the definition by Gar-
cia et al. [13] in which this threshold is set to 2, 000 proto-
types.
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handwritten digit dataset [18]; the Handwritten Online

Musical Symbol (HOMUS) dataset [3]; and two addi-

tional corpora of the UCI (Penbased and Letter). For

the two first cases, contour descriptions with Freeman

Chain Codes (FCC) [12] were extracted and the Edit

Distance (ED) [27] was used as dissimilarity measure.

In the third case, and due to its good results in the base-

line experimentation offered with these data, Dynamic

Time Warping (DTW) [24] is used. Since datasets from

the UCI may contain missing values in the samples, the

Heterogeneous Value Difference Metric (HVDM) [29] is

used for the last two datasets. Table 1 shows a summary

of the main features of these datasets.

In spite of not being a common procedure, we will

add synthetic noise to assess the robustness of the con-

sidered PS methods in this type of scenarios. The noise

will be induced by swapping labels between pairs of pro-

totypes randomly chosen. The noise rates (percentage

of prototypes that change their label) considered were

0 %, 20 %, and 40 % since these are common values in

this kind of experimentation [20].

4.2 Prototype Selection strategies

The main goal of the current work is to provide a com-

prehensive comparative experiment to evaluate the per-

formance and competitiveness of rank methods as PS

strategies. To cover the different families of approaches

presented in Section 2, we shall consider the following

particular strategies:

– No selection: all the prototypes of the initial train-

ing set (ALL).

– Classical: Condensing Nearest Neighbour (CNN),

Editing Nearest Neighbour (ENN), Fast Condens-

ing Nearest Neighbour (FCNN), Editing Condens-

ing Nearest Neighbour (ECNN) and Editing Fast

Condensing Nearest Neighbour (EFCNN).

– Hybrid: Iterative Case Filtering (ICF), Decremen-

tal Reduction Optimization Procedure (DROP).

– Evolutionary: Cross-generational elitist selection,

Heterogeneous recombination and Cataclysmic mu-

tation (CHC).

– Rank: 1-FN, 2-FN, 1-NE, 2-NE; each of them con-

sidering values of α within the range (0, 1) with a

granularity of 0.1. The extreme values have been

discarded since α = 0 would mean an empty set

and α = 1 is equivalent to ALL.

As mentioned above, a desirable feature of PS me-

thods is the robustness against noise. In this sense, after

the PS process, a low k value in the kNN rule should be

enough, as hardly any noise would be expected to re-

main in the reduced set [21]. Thus, classification exper-

iments with the kNN rule will only consider k = 1 for

the set obtained when applying PS and k = 1, 3, 5, 7 for

the ALL case in order to give some hint about the loss

caused by induced noise during classification. Higher

values of k for PS may lead to a misunderstanding in

both results and discussion, since it would not be clear

whether the noise is being handled by the PS method

or by the kNN.

4.3 Performance measurement

In order to analyse the performance of PS strategies,

we have taken into account the accuracy of the classifi-

cation and the size of the selected set. While the former

indicates the ability of the method to choose the most

relevant prototypes, the latter one depicts its reduction

skills.

Although these measures allow us to analyse the

performance of each considered strategy, it is not pos-

sible to establish a comparison among the whole set

of alternatives to determine which is the best one. The

problem is that PS algorithms try to minimise the num-

ber of prototypes considered in the training set and, at

the same time, they try to increase classification accu-

racy. Most often, these two goals are contradictory so

improving one of them implies a deterioration of the

other. From this point of view, PS-based classification

can be seen as a Multi-objective Optimization Problem

(MOP) in which two functions are meant to be opti-

mised at the same time: minimisation of prototypes in

the training set and maximisation of the classification

success rate. The usual way of evaluating this kind of

problems is by means of the non-dominance concept.

One solution is said to dominate another if, and only if,

it is better or equal in each goal function and, at least,

strictly better in one of them. The set of non-dominated

elements represents the different optimal solutions to

the MOP. Each of them is usually referred to as Pareto

optimal solution, being the whole set usually known as

Pareto frontier.

Thus, the considered strategies will be compared by

assuming a MOP scenario in which each of them is a

2-dimensional solution defined as (acc, size) where acc

is the accuracy obtained by the strategy and size is

the rate (%) of selected prototypes with respect to the

original set. To analyse the results, the pair obtained by

each scheme will be plotted in 2D point graphs where

the non-dominated set of pairs will be enhanced. In the

MOP framework, the strategies within this set can be

considered the best without defining any order between

them.
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Name Instances Classes Dissimilarity

USPS 9298 10 ED

NIST3 6500 26 ED

HOMUS 15200 32 DTW

Penbased 10992 10 HVDM

Letter 20000 26 HVDM

Table 1 Description of the datasets used in the experimentation.

Unfortunately, pursuing these two objectives at the

same time prevents the performance of statistical meth-

ods to measure the actual significance about different

results achieved. This may be done if one criterion was

given more importance than the other. However, since

that particular analysis depends on the requirements

of each underlying classification task, we shall not con-

sider that case. In addition, normalised accuracy and

reduction rates could be combined into a single figure

but it would not be a good indicator for comparing dif-

ferent approaches from the point of view of PS. For all

above, we will perform a 4-fold cross validation over

each dataset considered and our analysis will focus on

overall average results.

5 Results

This section analyses the results obtained. These re-

sults can be checked in Table 2, which depicts the arith-

metic mean of the accuracy and size figures obtained for

the considered datasets. Bold values represent the non-

dominated solutions, which can be graphically seen in

Figs. 1 and 2 for the different induced noise cases con-

sidered.

Additionally, the appendix included in this paper

breaks down the accuracy and size figures for each dataset

and noise configuration. Nevertheless, the analysis is

performed on the aforementioned global average figures.

Let us pay attention first to the case when no in-

duced noise is considered. It can be observed that, when

no information was discarded (ALL scheme), conven-

tional kNN achieved some of the highest accuracy val-

ues for all k configurations. Note that increasing this

k parameter did not have any noticeable effect. Given

that the datasets considered have very little noise, ENN

algorithm did not significantly reduce the size of the

set (a reduction rate around 10 %), maintaining similar

accuracies to those achieved by the conventional kNN

strategies.

On the other side, the condensing family of algo-

rithms (CNN and its extensions) showed some remark-

able results: all of them achieved great reduction rates,

especially ECNN and EFCNN, which simply required

around a 10 % of the set size, and performed well in

terms of accuracy (only around 3 % lower than the ALL

configurations).

DROP3 also achieved high reduction rates (around

9 % of the maximum), but with a significant drop in

accuracy when compared to the conventional kNN al-

gorithm (decreased around 10 % with respect to the

scores in the ALL cases). ICF, however, achieved nei-

ther a high reduction nor a remarkable accuracy.

The CHC evolutionary algorithm obtained one of

the highest reduction rates, as it only required around

a 3 % of the total amount of prototypes. The accuracy

achieved, although lower than in most of the previous

cases, was close to an 84 %, which is a good result given

the high data reduction performed.

The NE and FN rank methods showed a very inter-

esting behaviour. When considering their probability

mass parameter α ≤ 0.5, the reduction figures obtained

covered a similar range to the reductions obtained with

the other strategies: for instance, 1-NE0.20 achieved a

similar reduction to CHC (around 3 % of the initial

set size) or 1-FN0.40 is comparable to FCNN (approxi-

mately, 20 % of the total amount of prototypes). As it

can be seen, these configurations can produce an ag-

gressive reduction in the set size, which is often paired

with a substantial accuracy loss (e.g., 2-NE0.10 which

reduces the set to approximately 1 % of its size achiev-

ing an accuracy figure around 70 %). However, more

conservative configurations such as when considering

a = 0.5 achieved results quite close to the ALL case,

with around a third or a fourth of the total number of

prototypes.

When considering α > 0.5, these methods progres-

sively tend to the ALL case as they also include proto-

types located at the lowest positions of the rank (i.e.,

the ones with the least number of votes). This increase

in the reduced set size (up to an 80 % of the complete

set size when α = 0.9) did not carry a remarkable accu-

racy improvement (less than a 3 % of improvement with

respect to the α = 0.5 cases). Nevertheless, it should be

noted that the 1-NE0.90 improved the accuracy of the

ALL case with 80 % of the initial set size, possibly be-

cause the method discarded noisy instances present in

the datasets.
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Name
Noise 0 % Noise 20 % Noise 40 %

Acc Size Acc Size Acc Size

ALL (k = 1) 93.4 100 76.3 100 63.3 100
ALL (k = 3) 93.5 100 86.3 100 75.7 100
ALL (k = 5) 93.4 100 90.9 100 86.1 100
ALL (k = 7) 93.1 100 91.5 100 89.0 100

ENN 92.3 93.3 91.0 67.1 88.4 48.7
CNN 90.3 18.0 67.8 57.3 55.7 72.6

FCNN 90.4 17.7 67.5 55.1 55.5 71.2
ECNN 90.0 10.4 87.6 9.0 84.4 8.5
EFCNN 90.1 10.5 88.0 8.9 84.3 8.1
DROP3 84.6 9.5 74.4 9.9 63.5 10.7

ICF 77.3 15.3 68.2 17.1 59.0 18.4
CHC 84.4 3.1 71.5 2.6 60.2 2.3

1-FN0.10 80.8 3.6 83.1 4.2 83.5 4.9
1-FN0.20 86.2 8.3 87.1 10.0 85.7 11.5
1-FN0.30 88.5 14.2 88.3 16.8 81.7 19.3
1-FN0.40 90.1 20.3 86.0 24.9 73.4 29.3
1-FN0.50 91.3 28.3 80.4 34.9 68.1 39.3
1-FN0.60 92.0 38.3 76.9 44.9 64.1 49.2
1-FN0.70 92.6 48.4 75.2 54.9 62.9 59.2
1-FN0.80 93.0 60.6 73.3 64.9 60.0 69.2
1-FN0.90 93.4 80.1 74.0 80.1 59.8 80.5

1-NE0.10 71.7 1.3 81.6 3.3 83.4 4.4
1-NE0.20 79.9 3.3 86.6 8.1 86.0 10.7
1-NE0.30 85.3 6.4 88.6 14.4 82.3 18.4
1-NE0.40 89.1 10.7 86.9 22.4 75.0 28.4
1-NE0.50 91.3 17.3 80.8 32.3 68.8 38.4
1-NE0.60 92.2 27.8 76.7 42.2 64.5 48.3
1-NE0.70 92.8 41.8 74.5 52.2 62.8 58.3
1-NE0.80 93.2 60.2 72.7 62.6 60.0 68.4
1-NE0.90 93.5 80.1 74.3 80.1 60.0 80.3

2-FN0.10 80.4 3.6 82.9 3.9 83.4 4.3
2-FN0.20 85.7 8.2 86.8 9.1 85.3 10.3
2-FN0.30 88.2 14.0 87.8 15.7 84.6 17.3
2-FN0.40 89.8 19.8 86.8 22.8 76.8 26.6
2-FN0.50 90.9 27.5 80.3 32.7 68.1 36.7
2-FN0.60 91.7 37.5 75.9 42.7 63.6 46.6
2-FN0.70 92.4 47.9 73.3 52.7 61.2 56.6
2-FN0.80 93.0 60.4 71.2 62.8 58.1 66.6
2-FN0.90 93.4 80.1 73.5 80.1 59.0 80.1

2-NE0.10 71.2 1.3 80.5 2.7 82.9 3.6
2-NE0.20 79.6 3.3 86.0 6.8 86.1 9.0
2-NE0.30 84.7 6.2 88.0 12.3 85.3 15.8
2-NE0.40 88.7 10.4 88.3 19.3 77.7 25.0
2-NE0.50 91.0 16.4 81.4 28.9 68.8 35.0
2-NE0.60 92.1 26.9 75.8 38.8 63.8 44.9
2-NE0.70 92.7 41.2 72.0 48.8 60.6 54.9
2-NE0.80 93.2 60.1 70.9 60.7 57.5 64.9
2-NE0.90 93.5 80.1 74.0 80.1 59.3 80.1

Table 2 Average figures of the results obtained with the datasets considered. Values in bold represent the non-dominated
elements defining the Pareto frontier.
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In summary, rank methods proved their capability

of producing a good trade-off between reduction and

classification accuracy in terms of their reduction pa-

rameter α. This way, the user is able to tune the reduc-

tion degree according to the requirements of the par-

ticular application, thus prioritising either accuracy or

reduction depending on the particular requirements of

the application.

The following lines present the analysis of the per-

formance when noise is induced in the set. As results

show qualitatively similar trends, remarks will not focus

on a particular noise configuration but on the general

behaviour.

The mislabelling noise in the samples dramatically

changed the previous situation. Accuracy results for

conventional kNN suffered an important drop as noise

figures raised. Nevertheless, the use of different k values

palliated this effect and improved the accuracy rates.

Especially remarkable is the k = 7 case in which kNN

scored the maximum classification rate compared to the

other schemes in both noisy configurations considered.

ENN algorithms proved their robustness in these

noisy environments, as their classification rates were al-

ways among the best results obtained. Moreover, the re-

duction rates achieved were higher than in the noiseless

scenario, since the prototypes these approaches remove

are the ones actually producing class overlapping.

Results with CNN and FCNN schemes depicted their

sensitiveness to noise as they obtained some of the worst

accuracies in these experiments. Due to the impossibil-

ity of discarding noisy elements, the reduction is not

properly performed, leading to a situation in which

there is neither an important size reduction nor a re-

markable performance. Furthermore, the use of differ-

ent k values did not upturn the accuracy results.

EFCNN and ECNN, on the contrary, were less af-

fected than CNN and FCNN due to the introduction

of the editing phase in the process. This improvement

is quite noticeable as, while the latter approaches ob-

tained accuracy rates of around 50 % and 60 % with a

reduction rate between 50 % and 70 %, the former algo-

rithms achieved precision rates over 80 % with roughly

10 % of the prototypes.

Hybrid algorithms DROP3 and ICF, just like the

CNN and FCNN approaches, were not capable of cop-

ing with noisy situations either. Accuracy rates ob-

tained were quite poor like, for instance, the case of

the ICF method with a 40 % of synthetic noise was

not able to reach a 60 % of accuracy. However, it must

be pointed out that, despite achieving similar accuracy

rates, hybrid algorithms still showed better reduction

figures than the CNN and FCNN strategies. For exam-

ple, for an induced noise rate of 40 %, CNN obtained

an accuracy of 55.7 % with 72.6 % of reduction while

DROP3 achieved 63.5 % with only a 10.7 % of proto-

types.

Results obtained with the CHC evolutionary scheme

showed its relative sensitivity to noise. In these noisy

scenarios, although it still depicted one of the highest

reduction figures amongst the compared methods with

rates around 2 %, its classification performance was sig-

nificantly affected as no result was hardly higher than

70 %.

The NE and FN rank-based methods demonstrated

to be interesting algorithms in the noiseless scenario:

for low α values, the reduction rates achieved, together

with the high accuracy scores obtained, are very com-

petitive against other methods; at the same time, high α

values achieved accuracy figures comparable to, or even

higher than, the ALL case with just 20 % to 40 % of the

initial amount of prototypes. Results in the proposed

noisy situations reinforce these remarks for the former

case: on average, none of these algorithms showed ac-

curacy rates lower than 80 % while, at the same time,

the number of distances computed did never exceed the

20 % of the maximum. It is also important to point out

that, while ECNN and EFCNN schemes also showed a

remarkable reduction rate with good accuracy figures,

these approaches internally incorporate an editing pro-

cess for tackling the noise in the data, whereas the rank

methods depicted a clear robustness to these situations

by themselves, as long as α remains low. Nevertheless,

if α is increased, the accuracy of these methods notice-

ably lowers since the algorithm is forced to include all

prototypes in the computed rank, which progressively

leads to the ALL case. In such situation, the 1NN search

is not able to cope with the noise, which results in the

low accuracy figures obtained.

In addition to the commented results, we now tackle

the PS-based classification from the point of view of a

MOP problem.

Considering the case with no induced noise (Fig. 1),

the solution portraying the maximum accuracy result

with the least number of prototypes is the 1-NE0.90,

defining the right-hand end of the Patero frontier. The

ALL and ENN configurations do not belong to this fron-

tier as, although they achieved roughly the same ac-

curacy as the previous method, they required a larger

amount of prototypes. The rest of the solutions, in spite

of exhibiting lower accuracy results, in some cases the

loss was not much significant. Examples of this be-

haviour can be checked in the non-dominated algorithm

EFCNN, which achieved accuracy results around 3 %

lower than the maximum, computing roughly a fifth

of the maximum number of distances, respectively. Re-

garding the proposed rank methods (in red), it can be
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observed that in the non-dominated frontier, in the re-

gion of up to 20 % of the total of distances (the one in

which most of the PS algorithms studied lie) there is a

clear balance between them and the rest of the strate-

gies. This proves the competitiveness of these methods

with respect to other classic strategies. Additionally,

rank methods also cover the region above the 20 % of

distances since the probability mass α allows the selec-

tion of the amount of prototypes to maintain.

With respect to the datasets with induced noise (see

Fig. 2), the first difference is that the ALL case (with

k = 7) belongs to the Patero frontier for both noise

figures considered. However, other schemes were equally

capable of achieving the same accuracy with a lower

computational cost. For instance, when considering the

case of inducing 40 % of noise in the datasets, both

the 7NN and ENN configurations achieved very similar

accuracies but, while the former method requires the

computation of all the distances, the latter requires less

than a half of them.

Rank methods depicted remarkable compromises be-

tween accuracy and number of prototypes when con-

sidering low α values. An important number of con-

figurations proved to be capable of dealing with these

noise figures since they constituted part of the non-

dominance frontier. For instance, in the 20 % of noise

situation, the 1-NE0.30 configuration only differed in a

3 % of accuracy with respect the maximum (given by

7NN) but computes roughly a 15 % of the total amount

of distances. However, when setting α to a high value,

accuracy was noticeably affected since the algorithms

were forced to include noisy prototypes with fewer votes

located at the lower parts of the rank. In this case,

points moved away from the Pareto frontier, proving

not to be interesting configurations for such amount of

noise.

6 Conclusions

The k-Nearest Neighbour (kNN) rule is one of the most

common, simple and effective classification algorithms

in supervised learning. Prototype Selection (PS) algo-

rithms have been used as a way of improving some kNN

issues such as computational time, noisy instances re-

moval or memory usage. Due to the importance of the

task, there is a large and ever increasing number of ap-

proaches to perform PS. Among these approaches, rank

methods have recently emerged as an interesting alter-

native. Based on a particular relevance criterion, these

methods rank the prototypes for eventually performing

a set reduction guided by a tuning parameter.

In our comprehensive experimentation, voting-based

rank methods were compared to a representative set of

PS algorithms in order to evaluate their performance.

Our results reported a competitive performance against

more complex proposals, achieving remarkable compro-

mises between reduction rates and accuracy.

Furthermore, when configured to maintain a rather

reduced amount of prototypes, these methods also showed

a noteworthy robustness against noise without the re-

quirement of preprocessing with an editing step, as other

strategies do. Finally, especial interest lies in the fact

that the considered rank methods are guided by a tun-

ing parameter. Although this parameter may be seen as

a drawback, it permits the user to enhance either size

reduction or classification accuracy depending on the

requirements of the system.

Due to the demonstrated competitiveness and stra-

ightforward implementation, rank methods constitute

an interesting alternative to other classically considered

PS strategies. As future work, it would be interesting to

develop new heuristics or further extend the proposed

ones.
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Appendix: Partial results obtained

This appendix breaks down the general results into the figures obtained by each single Prototype Selection algorithm and
dataset studied. For a better understanding, each table corresponds to a different induced noise configuration of the three
considered.

Name
HOMUS Letter NIST3 Penbased USPS Average

Acc Size Acc Size Acc Size Acc Size Acc Size Acc Size

ALL (k = 1) 88.6 100 95.8 100 91.2 100 99.4 100 91.9 100 93.4 100
ALL (k = 3) 87.5 100 95.8 100 91.9 100 99.1 100 93.3 100 93.5 100
ALL (k = 5) 86.5 100 95.8 100 92.3 100 99.3 100 93.3 100 93.4 100
ALL (k = 7) 85.6 100 95.6 100 91.9 100 99.2 100 93.3 100 93.1 100

ENN 85.1 88.6 94.0 95.6 90.7 90.9 99.3 99.4 92.4 92.1 92.3 93.3
CNN 85.8 26.0 92.1 17.3 87.7 22.2 98.4 4.8 87.6 19.9 90.3 18.0

FCNN 85.7 24.6 92.3 17.8 87.8 21.1 98.4 4.9 87.6 20.2 90.4 17.7
ECNN 82.9 15.8 91.0 12.7 87.5 10.8 98.5 3.9 90.2 8.9 90.0 10.4

EFCNN 82.5 15.2 91.4 13.6 88.1 11.4 98.5 3.9 89.8 8.6 90.1 10.5
DROP3 77.3 15.2 84.4 12.6 82.3 9.5 94.0 3.4 85.2 6.7 84.6 9.5

ICF 57.9 18.8 83.0 24.8 82.4 16.1 88.4 9.0 75.0 7.8 77.3 15.3
CHC 71.9 3.2 81.1 7.1 83.9 3.0 95.7 1.2 89.2 0.8 84.4 3.1

1-FN0.10 72.6 3.9 70.7 3.5 82.5 4.3 94.6 4.1 83.8 2.2 80.8 3.6
1-FN0.20 77.7 8.9 81.4 8.3 86.2 9.4 97.2 9.2 88.4 5.5 86.2 8.3
1-FN0.30 80.2 15.1 86.8 14.4 87.9 15.8 98.0 15.8 89.6 10.1 88.5 14.2
1-FN0.40 83.5 21.9 89.3 18.6 88.8 22.4 98.8 22.4 90.0 16.2 90.1 20.3
1-FN0.50 85.3 30.0 91.9 26.0 89.6 31.0 98.9 30.4 90.5 24.0 91.3 28.3
1-FN0.60 86.9 40.0 93.3 36.0 90.3 41.0 99.1 40.4 90.6 34.1 92.0 38.3
1-FN0.70 88.3 49.9 94.2 46.0 90.5 51.0 99.2 50.4 91.0 44.9 92.6 48.4
1-FN0.80 89.2 60.8 95.0 60.1 90.4 61.2 99.2 60.5 91.2 60.2 93.0 60.6
1-FN0.90 89.8 80.3 95.4 80.1 91.0 80.0 99.3 80.1 91.6 80.1 93.4 80.1

1-NE0.10 66.6 1.7 54.9 1.2 74.7 2.1 77.7 0.3 84.7 1.1 71.7 1.3
1-NE0.20 74.0 4.1 71.4 3.6 82.5 5.0 84.2 0.7 87.6 3.1 79.9 3.3
1-NE0.30 78.0 7.6 81.0 7.4 86.9 9.2 90.7 1.6 89.9 6.3 85.3 6.4
1-NE0.40 82.4 11.8 88.1 12.6 88.4 15.0 96.1 3.2 90.8 11.1 89.1 10.7
1-NE0.50 85.0 18.5 91.7 19.7 89.6 22.4 98.8 7.4 91.4 18.3 91.3 17.3
1-NE0.60 87.3 28.7 93.6 29.7 90.0 32.2 99.2 20.1 91.0 28.3 92.2 27.8
1-NE0.70 88.8 43.0 94.5 41.6 90.1 42.9 99.3 40.0 91.1 41.3 92.8 41.8
1-NE0.80 89.5 60.6 95.1 60.1 90.7 60.0 99.3 60.1 91.5 60.1 93.2 60.2
1-NE0.90 89.9 80.3 95.5 80.1 91.0 80.0 99.3 80.1 91.7 80.1 93.5 80.1

2-FN0.10 72.7 3.9 69.9 3.5 81.6 4.3 95.0 4.2 83.0 2.1 80.4 3.6
2-FN0.20 77.2 8.8 81.3 8.3 86.1 9.4 97.1 9.3 87.0 5.1 85.7 8.2
2-FN0.30 80.2 14.9 86.6 14.4 87.3 15.8 98.0 15.9 88.9 9.1 88.2 14.0
2-FN0.40 83.3 21.5 89.0 18.2 88.3 22.4 98.7 22.5 89.6 14.4 89.8 19.8
2-FN0.50 85.0 29.3 91.5 25.4 89.0 30.7 98.9 30.6 90.0 21.4 90.9 27.5
2-FN0.60 86.6 39.3 93.1 35.3 89.7 40.7 99.1 40.5 90.1 31.7 91.7 37.5
2-FN0.70 87.9 49.2 94.2 45.3 90.3 50.7 99.2 50.5 90.2 43.7 92.4 47.9
2-FN0.80 89.1 60.4 95.2 60.1 90.5 60.9 99.2 60.6 90.9 60.1 93.0 60.4
2-FN0.90 89.7 80.3 95.5 80.1 91.1 80.0 99.3 80.1 91.5 80.1 93.4 80.1

2-NE0.10 66.6 1.5 54.3 1.3 74.3 2.1 79.3 0.4 81.7 1.1 71.2 1.3
2-NE0.20 72.9 3.7 71.6 3.8 82.2 5.0 84.2 1.0 87.1 3.0 79.6 3.3
2-NE0.30 77.8 6.9 80.5 7.5 86.2 9.1 89.8 1.9 89.1 5.8 84.7 6.2
2-NE0.40 82.1 10.8 88.2 12.6 88.0 14.7 95.7 3.7 89.8 10.1 88.7 10.4
2-NE0.50 84.7 17.2 92.0 19.3 89.2 21.7 98.7 7.6 90.5 16.4 91.0 16.4
2-NE0.60 87.2 27.3 93.5 29.0 89.8 31.3 99.2 20.1 90.5 26.9 92.1 26.9
2-NE0.70 88.9 42.0 94.6 41.1 90.1 42.0 99.3 40.0 90.9 40.7 92.7 41.2
2-NE0.80 89.6 60.3 95.2 60.1 90.7 60.0 99.4 60.1 91.3 60.1 93.2 60.1
2-NE0.90 89.8 80.3 95.4 80.1 91.2 80.0 99.4 80.1 91.7 80.1 93.5 80.1

Table 3 Results in terms of classification accuracy and set size reduction obtained by the different datasets considered when no noise
is induced. The last two columns depict average results of the aforementioned figures of metric.
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Name
HOMUS Letter NIST3 Penbased USPS Average

Acc Size Acc Size Acc Size Acc Size Acc Size Acc Size

ALL (k = 1) 72.9 100 79.0 100 75.1 100 83.3 100 71.4 100 76.3 100
ALL (k = 3) 81.0 100 88.6 100 85.9 100 94.1 100 81.9 100 86.3 100
ALL (k = 5) 85.2 100 93.5 100 91.2 100 98.4 100 86.4 100 90.9 100
ALL (k = 7) 85.1 100 94.0 100 91.4 100 99.0 100 87.9 100 91.5 100

ENN 83.1 60.6 92.3 71.1 89.9 62.3 98.5 75.6 91.2 66.0 91.0 67.1
CNN 65.5 61.1 71.4 56.4 65.5 59.5 74.5 52.3 62.2 57.1 67.8 57.3

FCNN 64.4 57.7 71.8 55.0 65.7 55.9 74.0 49.4 61.7 57.6 67.5 55.1
ECNN 80.0 12.3 88.6 10.5 85.0 8.8 96.8 4.8 87.6 8.8 87.6 9.0

EFCNN 79.9 11.4 89.2 11.3 86.4 9.1 96.9 4.4 87.4 8.2 88.0 8.9
DROP3 64.1 15.2 78.0 12.7 69.0 9.5 88.2 5.3 72.9 6.7 74.4 9.9

ICF 48.2 18.8 81.1 28.4 68.1 16.1 87.3 14.3 56.2 7.8 68.2 17.1
CHC 61.1 3.2 67.3 4.8 70.8 3.0 86.7 0.9 71.5 0.9 71.5 2.6

1-FN0.10 73.4 4.2 74.7 4.2 83.3 4.4 95.9 4.4 88.0 4.0 83.1 4.2
1-FN0.20 77.8 9.9 84.3 10.1 86.9 10.0 97.5 10.2 88.9 9.9 87.1 10.0
1-FN0.30 79.6 16.7 88.2 16.8 87.4 16.6 97.7 16.9 88.5 17.0 88.3 16.8
1-FN0.40 79.3 24.8 84.8 25.2 84.5 24.9 96.2 24.2 85.3 25.4 86.0 24.9
1-FN0.50 75.3 34.7 80.3 35.2 80.0 35.0 89.0 34.2 77.4 35.4 80.4 34.9
1-FN0.60 73.5 44.7 77.9 45.2 77.2 44.8 85.0 44.2 70.8 45.4 76.9 44.9
1-FN0.70 73.0 54.7 76.0 55.2 75.3 54.8 81.6 54.1 70.3 55.4 75.2 54.9
1-FN0.80 71.3 64.7 74.6 65.2 73.6 64.8 79.0 64.2 68.0 65.4 73.3 64.9
1-FN0.90 72.1 80.1 75.7 80.1 73.5 80.0 80.4 80.1 68.4 80.2 74.0 80.1

1-NE0.10 72.6 3.3 70.7 3.2 82.3 3.2 94.4 3.0 87.8 3.6 81.6 3.3
1-NE0.20 77.7 8.0 82.6 8.1 86.1 7.7 97.4 7.5 89.3 9.0 86.6 8.1
1-NE0.30 80.0 14.3 87.9 14.6 87.8 13.8 98.2 13.4 89.0 16.0 88.6 14.4
1-NE0.40 79.7 22.1 85.6 23.8 85.4 21.8 97.6 20.0 86.0 24.1 86.9 22.4
1-NE0.50 75.4 32.0 80.7 33.7 80.1 31.9 89.5 29.7 78.4 34.1 80.8 32.3
1-NE0.60 72.9 42.0 78.1 43.7 76.4 41.6 84.5 39.7 71.4 44.1 76.7 42.2
1-NE0.70 71.5 52.0 75.9 53.8 74.2 51.6 80.3 49.7 70.4 54.1 74.5 52.2
1-NE0.80 70.2 62.5 74.6 63.8 72.6 62.1 77.7 60.3 68.4 64.2 72.7 62.6
1-NE0.90 72.1 80.2 76.1 80.1 73.9 80.0 80.9 80.1 68.8 80.2 74.3 80.1

2-FN0.10 73.9 3.8 73.3 3.8 83.2 4.2 96.3 4.2 87.6 3.4 82.9 3.9
2-FN0.20 78.1 8.9 83.0 9.1 86.7 9.5 97.6 9.5 88.7 8.4 86.8 9.1
2-FN0.30 79.7 15.4 86.7 15.6 87.2 16.1 97.5 16.2 88.1 15.0 87.8 15.7
2-FN0.40 79.7 22.8 87.9 22.0 84.9 23.5 96.2 23.2 85.4 22.7 86.8 22.8
2-FN0.50 75.9 32.6 80.5 32.0 79.8 33.4 88.4 33.1 76.8 32.6 80.3 32.7
2-FN0.60 73.3 42.6 76.2 42.0 75.7 43.4 84.1 43.1 70.1 42.6 75.9 42.7
2-FN0.70 71.4 52.6 73.4 52.0 73.4 53.4 80.4 53.1 68.1 52.6 73.3 52.7
2-FN0.80 69.7 62.6 70.9 62.0 72.3 63.4 77.3 63.1 65.8 62.6 71.2 62.8
2-FN0.90 71.6 80.1 74.8 80.1 73.4 80.0 79.7 80.1 67.8 80.1 73.5 80.1

2-NE0.10 72.4 2.6 68.0 2.7 80.9 2.8 94.0 2.5 87.3 2.9 80.5 2.7
2-NE0.20 76.7 6.5 81.1 6.9 86.2 6.7 97.0 6.3 89.0 7.4 86.0 6.8
2-NE0.30 79.6 11.8 86.7 12.7 87.8 12.1 97.7 11.3 88.3 13.7 88.0 12.3
2-NE0.40 81.5 18.6 88.8 20.2 86.0 18.8 97.9 17.7 87.6 21.2 88.3 19.3
2-NE0.50 75.7 28.2 81.6 30.0 80.1 28.6 90.0 26.5 79.4 31.0 81.4 28.9
2-NE0.60 71.7 38.1 76.8 40.0 75.8 38.4 83.1 36.5 71.8 41.0 75.8 38.8
2-NE0.70 69.0 48.1 73.0 50.0 72.1 48.4 76.9 46.5 68.8 51.0 72.0 48.8
2-NE0.80 68.7 60.8 71.1 60.7 71.5 60.4 76.9 60.0 66.1 61.4 70.9 60.7
2-NE0.90 72.1 80.3 75.2 80.1 73.8 80.0 80.3 80.1 68.5 80.1 74.0 80.1

Table 4 Results in terms of classification accuracy and set size reduction obtained by the different datasets considered with when
using a 20 % of induced noise. The last two columns depict average results of the aforementioned figures of metric.



14 Jose J. Valero-Mas et al.

Name
HOMUS Letter NIST3 Penbased USPS Average

Acc Size Acc Size Acc Size Acc Size Acc Size Acc Size

ALL (k = 1) 60.0 100 65.4 100 62.6 100 70.1 100 58.6 100 63.3 100
ALL (k = 3) 70.4 100 76.9 100 75.7 100 83.9 100 71.4 100 75.7 100
ALL (k = 5) 80.3 100 87.9 100 87.2 100 94.5 100 80.8 100 86.1 100
ALL (k = 7) 83.0 100 90.9 100 90.0 100 97.5 100 83.5 100 89.0 100

ENN 80.0 41.7 89.7 53.1 88.2 43.4 96.7 58.3 87.4 46.8 88.4 48.7
CNN 53.4 75.6 58.4 72.5 54.4 74.8 61.9 69.0 50.6 71.3 55.7 72.6

FCNN 53.0 73.3 58.4 71.8 53.8 71.7 61.7 67.6 50.4 71.5 55.5 71.2
ECNN 76.8 10.1 85.9 9.3 82.6 7.6 94.1 6.4 82.4 9.1 84.4 8.5

EFCNN 76.9 9.4 86.2 9.8 84.4 7.3 93.9 5.7 79.9 8.5 84.3 8.1
DROP3 54.2 15.2 69.7 13.9 56.8 9.5 77.8 8.4 58.9 6.7 63.5 10.7

ICF 39.0 18.8 73.2 29.9 56.3 16.1 80.0 19.2 46.7 7.8 59.0 18.4
CHC 48.2 3.2 56.8 3.5 55.7 3.0 80.7 0.9 59.5 0.8 60.2 2.3

1-FN0.10 73.9 4.8 76.3 5.0 83.2 4.9 96.4 4.8 87.5 4.8 83.5 4.9
1-FN0.20 77.2 11.4 84.3 11.6 85.0 11.2 96.0 11.4 85.9 11.7 85.7 11.5
1-FN0.30 73.9 19.5 79.6 19.9 81.5 19.0 94.6 18.3 79.0 19.7 81.7 19.3
1-FN0.40 69.7 29.1 70.0 30.6 72.7 29.3 82.9 28.0 71.6 29.4 73.4 29.3
1-FN0.50 64.9 39.1 66.1 40.6 66.8 39.3 76.2 37.9 66.3 39.4 68.1 39.3
1-FN0.60 60.7 49.1 63.7 50.6 63.3 49.0 72.1 47.9 60.7 49.4 64.1 49.2
1-FN0.70 60.8 59.1 62.2 60.6 62.4 59.0 68.3 58.0 60.8 59.4 62.9 59.2
1-FN0.80 58.0 69.1 60.7 70.6 58.9 69.0 65.2 67.9 57.1 69.4 60.0 69.2
1-FN0.90 58.3 80.4 60.2 80.8 59.2 80.3 64.5 80.1 57.0 80.7 59.8 80.5

1-NE0.10 73.0 4.3 76.0 4.5 84.0 4.2 96.2 4.3 87.8 4.6 83.4 4.4
1-NE0.20 77.3 10.5 84.2 11.0 85.9 10.1 96.3 10.5 86.3 11.4 86.0 10.7
1-NE0.30 74.9 18.4 79.3 19.3 82.1 17.7 95.5 17.2 79.6 19.2 82.3 18.4
1-NE0.40 70.1 28.0 70.9 30.2 73.8 27.9 84.7 26.7 75.6 29.0 75.0 28.4
1-NE0.50 65.0 38.0 67.1 40.3 67.8 38.0 76.8 36.7 67.4 39.0 68.8 38.4
1-NE0.60 60.7 48.1 64.2 50.2 63.6 47.8 72.3 46.6 61.9 49.0 64.5 48.3
1-NE0.70 60.6 58.1 62.5 60.2 62.3 57.8 67.5 56.7 61.3 59.0 62.8 58.3
1-NE0.80 57.7 68.1 60.9 70.3 59.1 67.8 64.5 66.7 57.8 69.1 60.0 68.4
1-NE0.90 58.4 80.3 60.3 80.6 59.4 80.1 64.7 80.1 57.3 80.6 60.0 80.3

2-FN0.10 73.9 4.3 76.1 4.4 83.6 4.4 95.7 4.4 87.9 4.1 83.4 4.3
2-FN0.20 77.0 10.1 83.2 10.6 84.8 10.3 95.5 10.5 86.1 10.1 85.3 10.3
2-FN0.30 76.5 17.2 85.0 17.5 84.0 17.2 94.8 17.2 82.8 17.3 84.6 17.3
2-FN0.40 72.0 26.3 74.3 27.4 75.7 27.0 84.5 26.1 77.5 26.5 76.8 26.6
2-FN0.50 64.1 36.3 67.6 37.4 67.4 37.2 75.6 36.1 65.9 36.4 68.1 36.7
2-FN0.60 60.6 46.3 63.3 47.4 63.0 46.9 70.1 46.1 61.2 46.5 63.6 46.6
2-FN0.70 59.0 56.3 60.4 57.4 61.4 56.9 65.9 56.1 59.3 56.4 61.2 56.6
2-FN0.80 56.3 66.3 57.9 67.4 58.2 66.9 62.7 66.1 55.3 66.5 58.1 66.6
2-FN0.90 57.6 80.0 59.0 80.1 58.6 80.0 63.9 80.1 55.8 80.2 59.0 80.1

2-NE0.10 73.8 3.4 74.3 3.8 82.7 3.5 95.6 3.7 88.0 3.8 82.9 3.6
2-NE0.20 77.2 8.6 83.5 9.5 86.2 8.5 97.1 8.9 86.7 9.5 86.1 9.0
2-NE0.30 77.3 15.3 85.3 16.3 84.9 15.1 95.1 15.5 83.8 16.7 85.3 15.8
2-NE0.40 72.7 24.3 75.1 26.8 76.0 24.4 87.2 23.7 77.7 25.6 77.7 25.0
2-NE0.50 64.5 34.3 68.3 36.8 68.5 34.6 76.5 33.7 66.2 35.6 68.8 35.0
2-NE0.60 60.4 44.3 63.5 46.8 63.5 44.3 70.4 43.6 61.4 45.6 63.8 44.9
2-NE0.70 58.1 54.3 60.6 56.8 60.2 54.3 64.7 53.6 59.3 55.6 60.6 54.9
2-NE0.80 55.2 64.3 57.9 66.8 57.2 64.3 61.2 63.7 55.9 65.6 57.5 64.9
2-NE0.90 57.6 80.1 59.1 80.1 59.4 80.0 64.3 80.1 56.3 80.2 59.3 80.1

Table 5 Results in terms of classification accuracy and set size reduction obtained by the different datasets considered with when
using a 40 % of induced noise. The last two columns depict average results of the aforementioned figures of metric.


