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Abstract. Data Reduction techniques are commonly applied in instance-
based classification tasks to lower the amount of data to be processed.
Prototype Selection (PS) and Prototype Generation (PG) constitute the
most representative approaches. These two families differ in the way of
obtaining the reduced set out of the initial one: while the former aims
at selecting the most representative elements from the set, the latter
creates new data out of it. Although PG is considered to better delimit
decision boundaries, operations required are not so well defined in sce-
narios involving structural data such as strings, trees or graphs. This
work proposes a case of study with the use of the common RandomC
algorithm for mapping the initial structural data to a Dissimilarity Space
(DS) representation, thereby allowing the use of PG methods. A com-
parative experiment over string data is carried out in which our proposal
is faced to PS methods on the original space. Results show that PG com-
bined with RandomC mapping achieves a very competitive performance,
although the obtained accuracy seems to be bounded by the representa-
tivity of the DS method.

1 Introduction

In the Pattern Recognition (PR) field, two fundamental approaches can be found
depending on the model used for representing the data [6]: a first one, usually
known as structural or syntactical, in which data is represented as symbolic
data structures such as strings, trees or graphs; and a second one, known as
statistical methods or feature representations, in which the representation is
based on numerical feature vectors.

The election of one of these approaches has some noticeable consequences:
structural methods offer a wide range of powerful and flexible high-level repre-
sentations, but only few PR algorithms and techniques are capable of processing
them; feature methods, although less flexible in terms of representation, depict
a larger collection of PR techniques for classification tasks [3].

Independently of whether we use a structural or a feature representation,
instance-based PR methods, as for instance the k-Nearest Neighbor rule (kNN),
may be applied. These methods, instead of obtaining a set of classification rules
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out of the available information, need to examine all the training data each time
a new element has to be classified. As a consequence, these methods not only
depict considerable memory requirements in order to store all the data, which
in some cases might be a very large number of elements, but also show a low
computational efficiency as all training information must be checked at each
classification task [14].

Data Reduction (DR) techniques, a particular subfamily of the Data Pre-
processing (DP) methods, try to solve these limitations by means of selecting
a representative subset of the training data [11]. Two of the most common ap-
proaches for performing this task are Prototype Generation (PG) and Prototype
Selection (PS) [13]. Both methods focus on reducing the size of the initial training
set for lowering the computational requirements and removing noisy instances
while keeping, if not increasing, the classification accuracy. The former method
creates new artificial data to replace the initial set while the latter one simply
selects certain elements from that set. Moreover, PG methods usually show a
superior reduction and accuracy than the PS ones.

It must be pointed out that the two aforementioned DR techniques show
a high dependency on the data representation used. PS algorithms have been
widely used in both structural and feature representations as the elements are
not transformed but simply selected. On the other hand, PG methods do require
to modify the data in order to create new elements and, while this process can
be easily performed in feature representations, it becomes remarkably difficult
for structured data.

In this paper we shall study the possibility of applying PG methods to struc-
tured representations by means of using Dissimilarity Space (DS) methods so
as to solve the aforementioned difficulty. DS techniques map structured data to
feature representations, thereby allowing the use of statistical PR techniques not
available for structured representations.

The rest of the paper is structured as it follows: Section 2 introduces the issue
of Prototype Generation in structured data as well as the proposed approach;
Section 3 presents the experimentation scheme implemented, the different data
sets used and the results obtained; finally, Section 4 shows the general remarks
obtained out of the study and proposes some possible future work.

2 Prototype Generation for Structural Data

The use of PS in instance-based classification assumes that the decision bound-
aries can be perfectly delimited by a subset of the prototypes in the training
set, which may not always be true. PG methods, on the other hand, create new
prototypes merging or evolving, when necessary, elements of the initial set to
better define the decision boundaries [19].

As aforementioned, generating new prototypes in structural data is not a
trivial matter. Some examples of works addressing this issue are [1] in which
the median of a strings set is calculated using edit operations or [9] in which an
iterative algorithms for the computation of the median operation on graphs is
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exposed. Nevertheless, all of them take advantage of the knowledge of the specific
structural data to create these new prototypes. Therefore, generalization to other
structural representation cannot be assumed.

A possible solution to this issue is to use DS methods to map the structural
data into a feature representation where these merging operations can be easily
applied. Broadly, DS representations are obtained by computing pairwise dissim-
ilarities between the elements of a representation set, which actually constitutes
a subset of the initial structural training data selected following a given criterion.

In this paper we focus on the particular DS representation called RandomC,
which shall be explained in the following section, for a proof-of-concept experi-
ence. The election of this method is motivated by its large application in the DS
field as well as by the fact that the sampling process is performed equally for
all clases in the set. Only one DS method is considered as the main aim of the
paper resides in the DR techniques.

Using this method, the classification results obtained after applying a set
of PG techniques to the feature representation will be compared to the results
obtained when using PS techniques in both the initial structural space and the
feature one so as to check whether PG can be useful in these situations.

2.1 Dissimilarity Space transformation: RandomC

Let X denote a structural space in which a dissimilarity function d : X×X → R+

is defined. Let Y represent the set of labels or classes of our classification task.

Let T be a labeled set of prototypes such that T = {(xi, yi) : xi ∈ X , yi ∈ Y }|T |
i=1.

In order to map the prototypes of T onto a feature space F , we resort to
RandomC algorithm [15]. This algorithm selects a random subset of prototypes
R ⊆ T , in which the number of prototypes of each class is exactly c (tuning
parameter), that is, |R| = c|Y |. The elements of R are noted ri with 1 ≤ i ≤
|R|. Then, a prototype x ∈ X can be represented in F as a set of features
(v1, v2, v3, . . . , v|R|) such that vi = d(x, ri). This way, a |R|-dimensional real-
valued vector can be obtained for each point in the space X .

In order to compare the influence of parameter c in the feature representation,
some different values will be considered at experimentation stage.

3 Experimentation

Figure 1 shows the implemented set-up for performing the experimentation. As
it can be checked, out of the initial structural elements, a feature representation
is obtained using the DS algorithm RandomC. In this experimental scheme, we
fix its c parameter to retrieve 5, 10 or 15 prototypes per class.

DR techniques are then applied to both data representations but, while PS
methods are applied to structural and feature representations, PG is only per-
formed on the latter. The techniques used are listed in the following section.

In terms of the data used, two different isolated symbol datasets have been
selected: the NIST SPECIAL DATABASE 3 (NIST3) of the National Institute
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of Standards and Technology, from which a subset of the upper case characters
was randomly chosen (26 classes, 6500 images) and the United States Postal
Office (USPS) handwritten digit dataset [12] (10 classes, 9298 samples). In both
cases, contour descriptions with Freeman Chain Codes [10] are extracted.

Nearest Neighbor (NN) algorithm, parameterized with k=1, is used for the
classification. Edit distance is considered as the dissimilarity measure for struc-
tural data whereas Euclidean distance is applied in the DS representation.

Prototypes
(structural)

RandomC

Prototype Selection

Prototype Selection

Prototype Generation

1-NN

1-NN

1-NN

Statistical classification

Structural classification

Fig. 1. Experimental set-up tested. RandomC is used as DS method. PS is applied to
both structural and feature data while PG is only performed on the latter. 1-NN is
used for the classification in all cases.

3.1 Data Reduction strategies

A representative set of PS algorithms covering a wide range of selection variants
was used for the experimentation. However, in order to perform a fair comparison
between the two DR strategies, we are only showing the results for the PS
algorithms retrieving similar size reductions to the PG algorithms. These DR
techniques are now briefly introduced:

Prototype Selection (PS) algorithms

– Fast Condensing Nearest Neighbor (FCNN) [2]: computes a fast, order-
independent condensing strategy based on seeking the centroids of each label.

– Farther Neighbor (FN) [16]: gives a probability mass value to each prototype
following a voting heuristic based on neighborhood. Prototypes are selected
according to a parameter (fixed to 0.3 in our case) that indicates the prob-
ability mass desired for each class in the reduced set.

– Cross-generational elitist selection, Heterogeneous recombination and Cat-
aclysmic mutation algorithm (CHC) [7]: evolutionary algorithm commonly
used as a representative of Genetic Algorithms in PS. The configuration of
this algorithm has been the same as in [4].
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Prototype Generation (PG) algorithms

– Reduction by Space Partitioning 3 (RSP3) [18]: divides the whole space
until a number of class-homogeneous subsets are obtained; a prototype is
then generated from the centroid of each subset.

– Evolutionary Nearest Prototype Classifier (ENPC) [8]: performs an evolu-
tionary search using a set of prototypes that can improve their local quality
by means of genetic operators.

– Mean Squared Error (MSE) [5]: generates new prototypes using gradient
descent and simulated annealing. Mean squared error is used as cost function.

The parameters of these algorithms have been established following [19].

3.2 Results

Results obtained for the different datasets proposed can be found in Tables 1
and 2 respectively. The performance metrics considered are the accuracy of the
classification task and the size of the reduced set obtained (in % with respect to
the whole dataset). ALL refers to results obtained when using the whole training
set (no DR algorithm is applied).

RandomC (5) RandomC (10) RandomC (15) No DS

Type Algorithm Acc Size Acc Size Acc Size Acc Size
- ALL 86.1 100.0 86.7 100.0 87.0 100.0 91.0 100.0

PS
FCNN 82.0 30.9 82.0 30.4 82.3 29.9 87.8 21.1

1-FN(0.3) 79.7 16.8 81.5 16.9 81.2 16.9 87.9 15.8
CHC 74.5 3.0 73.1 3.2 73.1 3.2 83.9 3.0

PG
RSP3 86.2 38.6 86.2 39.4 86.1 38.4 - -
ENPC 84.7 18.6 84.7 17.7 84.8 15.7 - -
MSE 82.8 7.0 83.2 5.6 83.1 5.7 - -

Table 1. Results obtained with the NIST dataset for the proposed DS algorithm
RandomC configurations. No DS depicts results obtained in the initial structural space.
Selection and generation techniques are regarded as PS and PG respectively. ALL
stands for the case in which no selection or generation is performed. Size normalization
(%) is obtained with respect to the ALL case.

A first initial remark is that, in general, the DS process carries a reduction
in the classification accuracy. For a given algorithm, when comparing the No
DS accuracy results with any of the corresponding RandomC cases, there is a
significant decrease in these figures. In the NIST set this effect is more noticeable:
for instance, in the 1-FN(0.3) case of the NIST dataset, roughly a 10 % is missed
between the original space and the RandomC (10) one. In the USPS, however,
this effect is less accused, getting even to the point that the results obtained for
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RandomC (5) RandomC (10) RandomC (15) No DS

Type Algorithm Acc Size Acc Size Acc Size Acc Size
- ALL 91.3 100.0 91.7 100.0 91.7 100.0 91.8 100.0

PS
FCNN 87.7 21.1 88.4 20.1 88.2 20.1 87.6 20.2

1-FN(0.3) 89.3 15.0 89.8 15.0 89.6 15.0 89.6 10.1
CHC 87.4 0.9 88.0 0.9 88.4 0.9 89.2 0.8

PG
RSP3 91.4 18.7 91.7 17.7 91.7 18.3 - -
ENPC 89.8 5.7 90.7 5.0 90.6 5.5 - -
MSE 88.9 1.1 89.8 1.2 89.4 1.2 - -

Table 2. Results obtained with the USPS dataset for the proposed DS algorithm
RandomC configurations. No DS depicts results obtained in the initial structural space.
Selection and generation techniques are regarded as PS and PG respectively. ALL
stands for the case in which no selection or generation is performed. Size normalization
(%) is obtained with respect to the ALL case.

the PS algorithms in the feature representation are similar, and in some cases
better, than the corresponding ones in the initial space.

A second important point to comment is that for both structural and feature
representations, PS techniques depict a decrease in the classification accuracy
when compared to the ALL case. This effect is a consequence of the reduction
in the set size. PG, on the other hand, is capable of both achieving a remarkable
size reduction, just as PS, and retrieving classification results close to the ALL
case, showing the robustness of these methods. Especially interesting is the RSP3
algorithm which gets the same accuracy as the corresponding ALL scenario with
barely a third of the initial set size.

Nevertheless, the main outcome out of the results obtained by the PG algo-
rithms is that the scores they obtain in the feature domain are similar, when
not higher, than the ones obtained by PS schemes in the initial structural space.
This proves the proposed strategy as a clear competitor of PS in structural data,
especially considering the simplicity of the RandomC DS algorithm employed.

Computation times were also measured for the classification schemes. Results
proved DS strategies as much faster than structural ones because of the com-
plexity reduction achieved by using Euclidean distance instead of Edit distance.
For instance, classification times for the ALL case in the structural space for
NIST and USPS span for 1127 and 216 seconds respectively while, for the Ran-
domC (15) case, these tasks are accomplished in 102 and 6 seconds respectively.

Experiments show that the performance of PG seems to be limited by the
results achieved by the ALL case in the feature space, then limiting the appli-
cation of these techniques in situations where performance is a must. However,
as the maximum achievable score is given by the ALL case, not PG algorithm
but the DS technique are actually limiting the performance. In sight of this,
performance might be boosted with the use of more robust DS algorithms.

Finally, the different c values for RandomC do not seem to have a remarkable
effect on the results. For a given PS or PG technique, neither accuracies nor sizes
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do significantly change as this parameter is varied. As a consequence, low c values
may be considered.

4 Conclusions

Prototype Generation techniques for Data Reduction in instance-based classi-
fication aim at creating new data out of the elements of a given set so as to
lower the memory requirements while precisely defining the decision boundaries.
Although these methods are commonly used in statistical Pattern Recognition,
they turn out to be quite challenging for structural data as the merging oper-
ations required cannot be as clearly defined as in the former approach. It has
been proposed the use of Dissimilarity Space representations, which allow us to
map structural data representations into feature ones, so as to benefit from the
advantages Prototype Generation methods depict.

The experimentation performed shows some important outcomes. PG ap-
proaches applied to structural data using a DS representation are capable of
competing with PS methods in the original space even though the mapping pro-
cess implies information losses. However, PG methods are not capable of achiev-
ing accuracies reached in the non-reduced structural space as the mapping pro-
cess does always carry a decrease in the overall performance, thus bounding the
maximum achievable accuracy in the target space. Finally, classification using
DS representations has been proved as a faster option than the one performed in
the structural space as costly distance functions like Edit Distance are replaced
by low-dimensional Euclidean distance. This evinces the proposed approach as
an interesting trade-off option between precision and time consumption.

Furthermore, work developed here opens several avenues for future work and
extensions. For instance, a more comprehensive experimental setup could be
addressed with datasets of other complex structures (such as trees or graphs),
including a larger set of PS and PG algorithms. Moreover, experimentation with
more advanced methods to map structured data into feature vectors, such those
reported in [15,17], would be of great interest since accuracy achieved in our
results seems to be bounded by the DS method applied. Finally, the inclusion
of artificial noise in the data as well as the use of different parameters for the
Nearest Neighbor classifier could be considered so as to assess the robustness of
the system in adverse scenarios.

Acknowledgements

This work was partially supported by the Spanish Ministerio de Educación, Cul-
tura y Deporte through a FPU fellowship (AP2012–0939), the Spanish Ministerio
de Economı́a y Competitividad through Project TIMuL (No. TIN2013-48152-
C2-1-R supported by EU FEDER funds), Consejeŕıa de Educación de la Comu-
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