
Dynamic Insertions in TLAESA fast NN Search
Algorithm

Luisa Micó
Dept. Lenguajes y Sistemas Informáticos

Universidad de Alicante (SPAIN)
Email: mico@dlsi.ua.es

Jose Oncina
Dept. Lenguajes y Sistemas Informáticos

Universidad de Alicante (SPAIN)
Email: oncina@dlsi.ua.es

Abstract—Nearest Neighbour search (NNS) is a widely used
technique in Pattern Recognition. In order to speed up the
search many indexing techniques have been proposed. The need
to work with large dynamic databases in interactive or online
systems, has resulted in an increase interest in adapting or
creating fast methods to update these indexes. TLAESA is a fast
search algorithm that computes a very low number of distance
computations with sublinear overhead using a branch and bound
technique.

In this paper, we propose a new fast updating method for the
TLAESA index. The behaviour of this index has been analysed
theoretical and experimentally. We have obtained a log-square
upper bound of the rebuilding expected time. This bound has
been verified experimentally on several synthetic and real data
experiments.

Keywords—nearest neighbour; dynamic index; metric spaces;
similarity search;

I. INTRODUCTION

Many pattern recognition applications implicitly use the
concept of similarity search. This concept involves different
types of search, being the nearest neighbour search the most
often used.

A naive approach to nearest neighbour search involves
a costly traversal of the whole database. To speed up this
search, a wide range of techniques has been proposed in the
literature [?].

In this work we are concerned with TLAESA fast near-
est neighbour search algorithm [?]. As many other search
algorithms, TLAESA builds, in a preprocessing step, a data
structure (index) that is later used in search time to speed up
the process. TLAESA surged as a combination of two previous
search algorithms: LAESA [?] and MDF [?] to overcome some
of their weaknesses: LAESA was very efficient in avoiding dis-
tance computations but has a linear average time complexity,
and MDF has a sublinear time complexity but is not so efficient
in reducing the number of distance computations. TLAESA
combines the strengths of both algorithms: the average number
of distance computations in a search shows to be independent
of the database size and the average time complexity grows
sublinearly with the database size.

Despite this features few attention has been devoted to the
TLAESA index build complexity. In fact, this building time
grows O(n log n) with the data base size. This feature makes

it unusable in interactive systems where the full index should
be rebuilt each time that a new data is inserted in the database.
To overcome this problem, several proposals have been made
for metric space indexes [?], [?], [?], [?].

In this work we follow an approach similar to the used
in [?] and [?]. The idea is to follow the usual procedure that
is used to build the index from scratch, but trying to reuse the
existing index as possible. If we fall into a state where the
preexisting index can not be reused, this part of the structure
is deleted and completely rebuilt.

At the end of the process we obtain an index that is exactly
the same that the one that we obtain if it were built from
scratch. Then the efficiency of the search algorithm is not
affected by the way the new object is inserted and no new
experiments about the search efficiency are necessary.

The partial rebuildings of the index are particularly expen-
sive. In this work we show that big rebuildings are very unusual
and this low occurrence probability compensates its expen-
siveness. More precisely, we have found a square logarithmic
upper bound to the average number of distance computations
that is needed to rebuild the TLAESA index. Moreover, we
have made some experiments with synthetic and real data to
illustrate the validity of the bound.

II. THE STATIC INDEX

Given a database D of n objects in a metric space E
provided with a distance function d(·, ·), TLAESA builds two
data structures:

• a table of distances

• a binary tree structure

A. Table of distances

The table of distances stores all the distances between a
selected subset P (pivots) of objects in the database and all
the objects in the database. The number m � n of pivots to
be selected is a parameter to be experimentally adjusted. Then
the size of the table (mn) grows linearly with the database
size.

There are several methods for selecting the pivots [?] [?].
Without loss of generality, in this work we apply the so called
maxmin, a simple greedy method that has been used with
excellent results.

Maxmin recursively selects the m pivots as follows:

• the first pivot (p1) is randomly chosen. Let P1 = {p1},

• the following pivots (pi) are the farthest objects to the
actual pivot set

pi = argmax
r∈D

min
p∈Pi−1

d(p, r); Pi = Pi−1 ∪ {pi}

B. Binary tree structure

This structure is based on the MDF-tree [?], built using an
hyperplane partitioning approach.

The tree structure is just a way to represent a partition of
the objects in the database. Each node t stores:

• an object (tr) that acts as representative of the objects
stored in its subnodes (the partition).

• the radius of the partition (tρ). That is, the distance
from the representative to the most distant object in
the partition.

As representative of the whole tree a random element of
the database is chosen. Then, the rest of the tree is recursively
built as follows:

• the representative (lr) of the left subtree (l) is the same
than the representative of his father (tr);

• the representative (rr) of the right subtree (r) is the
most distant object to the left representative (lr);

• the objects near to lr than rr goes to the left partition;

• the objects near to rr than lr goes to the right partition.

C. TLAESA search procedure

The TLAESA search procedure is similar to the MDF
search procedure. The main difference is that, in order to avoid
some distances computations, it uses a lower bound (g(·, ·))
instead of the real distance.

d(x, q) ≥ g(x, q) = max
p∈P
|d(p, q)− d(p, x)|

Note that the distances d(p, x) are stored in the table. The
distances d(p, q) are computed and stored at the beginning of
the procedure. Then, the computation of the lower bound can
be done without computing any further distance.

The search of the nearest neighbour is a depth traversal of
the tree. The algorithm recursively descents the tree following
the nearest representative according to the lower bound. Once
it reaches a leaf, a real distance is computed and the nearest
neighbour is updated if necessary. Then it goes back in
the recursivity avoiding descending by branches where it is
impossible to find the nearest neighbour (for that, it uses the
radius of the partition) [?].

III. THE INCREMENTAL INDEX

The goal of the incremental algorithm is to be able to insert
a new object q into the index recycling as much of the previous
index as possible. The final aim of the dynamic algorithm is
to obtain the exact index that would have been obtained if the
index had been build from scratch, then, no search degradation
performance occurs.

As the TLAESA index has two components we are going
to study them separately.

A. Updating the table

We are going to follow the minmax algorithm that was used
to build the initial table but now using the database D∪{q} [?].

The algorithm begins selecting the same random prototype
that was used to build the previous index. Each time a new
pivot is proposed two cases are possible:

• the proposed pivot is the object to be inserted (q), then
the table from this point should be recomputed;

• the proposed pivot p is not q, then it should be the
same that was chosen when the old index was built. In
this case all the distances d(p, ·) stored in the previous
table can be reused. The only distance to compute is
d(p, q).

If we suppose that all the elements were extracted i.i.d.
from an unknown probability distribution, the the probability
of being q the i-pivot is 1

n .

If q is the new i pivot, the cost of rebuilding the table is
at most m + (m − i + 1)n. Then, it is easy to find that the
expected number of distance computations, due to updating
the table, when inserting an object in an index with n objects
can be bounded by:

Eτ (n) ≤
m∑
i=2

1

n
(m+ (m− i+ 1)n) ≤ m(m+ 1)

2

Surprisingly, after some cancellations, the bound finally
does not depends on the database size.

B. Updating the tree

The strategy to update the tree is similar to the one used
updating the table.

The idea is to follow the same algorithm that was used to
build the old tree but stopping if q, the object to be inserted,
is selected as representative. In such case this branch of the
tree is rebuilt.

Inserting q into a leaf node is trivial. inserting q into a
node t with children l and r, has three possibilities (events)
(see fig. ??):

1) if d(tr, q) > tρ, the subtree should be rebuilt,
2) if d(lr, q) < d(rr, q), q is inserted in l,
3) if d(lr, q) ≥ d(rr, q), q is inserted in r.

In order to perform the complexity analysis we have
to make the assumption that the tree is not pathologically

(1)

lr

rr

q

lr

rr

q

(2)

lr

rr

q

(3)

Fig. 1. Representation of the three possibilities when inserting an object in
a node: the subtree should be rebuilt (1), the object is inserted in l node (2),
and the object is inserted in r node (3).

unbalanced. That is, we suppose we can define an imbalance
factor α ∈ [0.5, 1):

α = max
t∈T

max{|l|, |r|}
|t|

where T is the set of all the subtrees (with children), |t| is
the size (number of nodes) of the tree t, and l (r) is the left
(right) subtree of t.

Then, the height h of the tree can be bounded by:

h < − log(n)

log(α)

and the cost of building a MDF tree with n objects is bounded
by nh < −n log(n)

log(α) .

Now, as we are supposing the objects were extracted i.i.d
from an unknown probability distribution, the probability of
event ??) is 1

n , and the probabilities of ??) or ??) is n−1
n .

Therefore, the expected number of distance computations
when inserting in a MDF tree with n objects can be expressed
recursively as:

Et(n) ≤ 1 +
1

n
n

(
− log(n)

log(α)

)
+
n− 1

n
Et(αn)

Which leads to

Et(n) ≤
log2(n)

2 log2(α)
− 3 log(n)

2 log(α)

C. Expected number of distance computations

Then, the expected number of distance computations when
inserting in the TLAESA index is bounded by:

E(n) = Eτ (n) + Et(n)

≤ m(m+ 1)

2
+

log2(n)

2 log2(α)
− 3 log(n)

2 log(α)
∈ O(log2(n))

Intuitively, what is happening here is that the high cost of
rebuilding a large part of the structure is overcome by the low
probability of the event.

In the next section we are going to design some experi-
ments to illustrate the validity of this result.

IV. EXPERIMENTAL RESULTS

Due to its ubiquity, there exists fast search algorithm
specialised in the Euclidean distance [?], [?]. TLAESA was
not devised to compete with those algorithms, it was devised
to work with very expensive distances (i.e. the edit distance),
were the saving of a few distance computations can overcome
the cost of maintaining complex data structures.

Nevertheless, we include some experiments with the Eu-
clidean distance over a uniform distribution. This choice was
made mainly because it is a well known distance and then,
it is easy to understand what is happening. Furthermore, it is
very easy to make increasingly difficult series of experiments.

We also make a series of experiments with real data and
a non Euclidean distance (the edit distance) to show that
the conclusions extracted from the Euclidean distance can be
extrapolated.

All those experiments are addressed to show that our upper
bound is accurate enough.

In this section, all the experiments follows the same pattern:

• First, a series of experiments with increasing number
of pivots are performed in order to find the optimal
number of pivots.

Fig. 2. Distance computations caused by an insertion for increasing size
databases. Uniform distribution in the unit hypercube using the Euclidean
distance in dimensions 5, 10, 15. Average of 10000 repetitions.

• Then, we perform one insertion in 10000 databases of
each size. The sizes increase from 100 to a maximum
that depends on the experiment in steps of 100. The
average number of distance computations needed to
insert an object for each size is plotted. To have an
idea of the distribution of the number of distance
computations, we also represent the 95% percentile,
that is, in the 95% of the databases (of each size), the
number of distances computations needed to update
the index is bellow this value.

• As our bound depends of the imbalance factor α, a
series of experiments was addressed to measure this
value. For that, a series of MDF trees was generated
from databases with sizes ranging equally than in
the previous set of experiments. In this case, only
15 different databases were generated for each size.
For each MDF tree we measured the imbalance factor
and we used the average of all of them. Note that
the imbalance factor depends on the maximum of
a series of values (the tree node size ratio), then
as the number of values increases (the size of the
tree), it is more likely to find pathological high values
of α. To avoid this effect, instead of finding the
maximum, we find the 95% percentile. This value is
called the reduced imbalance factor. Then the value
of the reduced imbalance factor αr, is lower than the
imbalance factor (α). As a consequence, the value of
the upper bound computed from αr (showed in the
plots) is lower than the upper bound computed from
α. That means that the experimental average has not
longer to be lower than the depicted upper bound,
although in all the experiments it does.

A. Uniform distribution

As we said in the introduction of the section, this series of
experiments is devoted to study the behaviour of our algorithm
in an Euclidean space with artificial data drawn uniformly from
hypercubes of dimensions 5, 10 and 15. First we performed
some experiments to find, for each dimension, which is the
optimum number of pivots. In this case we found that 14,
90 and 390 pivots are adequate for 5, 10 and 15 dimensions
respectively (the experiments are not shown here because they
are almost equal to the experiments that can be found in [?]).

Fig. ?? shows the results of the average number of distance
computations needed to rebuild the index. The plots also shows
the reduced imbalance factor in each case (0.81, 0.85 and 0.90
for dimension 5, 10 and 15 respectively) and the plotting of
the upper bound.

Note that, in all the cases the average is below the upper
bound. Moreover, the percentile 95% curve shows that, when
the databases becomes larger, the event of having to rebuild
big portions of the database are increasingly unlikely.

Fig. 3. Distance computations caused by an insertion for handwritten
characters contour chains using the edit distance. Average of 10000 repetitions.

Fig. 4. Distance computations caused by an insertion for handwritten
characters contour chains using the edit distance. Average of 10000 repetitions.

B. Contour chains

In order to assess the relevance of our model in a pattern
recognition task, we applied it on the real world problem of
handwritten digit classification. We used the NIST Special
Database 3 of the National Institute of Standards and Tech-
nology. This database consists in 128 × 128 bitmap images
of handwritten digits and letters. In this series of experiments,
we only focus on digits written by 100 different writers. Each
class of digit (from 0 to 9) has about 1,000 instances, then the
whole database we used contains about 10,000 handwritten
digits. In our experiments each digit was coded as a contour
chain [?] and as dissimilarity measure the edit distance [?] was
used.

In this case, 300 pivots were used and the reduced imbal-
ance factor was found to be αr = 0.90.

Figure ?? shows the result for increasing size databases
(from 100 to 8000 in steps of 100). Once more, the average
number of distance computations respect our upper bound and
as well as in the case of the Euclidean distance, the percentile
95% curve shows that the rebuilding of big portions of the
database is increasingly unlikely as the data base grows.

C. English dictionary

A last experiment using an English dictionary was
performed. An English dictionary of 69069 words was
extracted from the dictionary of the GNU spell checker
(ftp.gnu.org/gnu/aspell/dict/0index.html).
The edit distance was used as dissimilarity measure.

Fig. ?? shows the average number of distance computations
for databases ranging from 100 to 4000 strings. In this case
340 pivots were used and the reduced imbalance factor was
found to be 0.89. As in the previous experiments, similar
conclusions can be drawn: the average number of distance
computations is bounded by our upper bound, and the number
of big reconstructions practically disappear when the database
grows.

V. CONCLUSIONS

In this work we have proposed a new algorithm that
overcome the problem of inserting new elements into an
existing TLAESA index with a very low mean computation
cost, O(log2(n)). We have proved this result both, theoretically
and experimentally.

This problem is important because it allows the use of
this type of indexes in incremental learning frameworks. This
technique has shown to be very appropriate because the index
on which the insertion is performed has a very low probability
of provoking large changes on it.

The main drawback of this algorithm is that, in the present
form, it is not suitable when strict real time restrictions should
be followed. The worst case complexity for an insertion can be
as worse as O(n log n). Nevertheless, the algorithm provides
an easy way to estimate its computation time, and then, we
have the opportunity of delaying the insertion and store the
object in an auxiliary structure.

Note that one of the objectives in this work was to obtain
exactly the same index that would have been obtained if we
had construct the index from scratch. In this case we avoid
performances degradations due to the insertion. Following the
previous procedure this is not assured, and we are going
to have a trade off between efficiency in search time and
efficiency in insertion time. Nevertheless, we think this worth
being explored.

ACKNOWLEDGEMENTS

This work has been supported in part by grants TIN2009-
14205-C04-01 from the Spanish CICYT (Ministerio de Ciencia
e Innovación), and the Consellerı́a d’ Educació de la Comunitat
Valenciana through project PROMETEO/2012/017.

