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Abstract In this paper, a new approximation to off-line

signature verification is proposed based on two-class

classifiers using an expert decisions ensemble. Different

methods to extract sets of local and a global features from

the target sample are detailed. Also a normalization by

confidence voting method is used in order to decrease the

final equal error rate (EER). Each set of features is pro-

cessed by a single expert, and on the other approach pro-

posed, the decisions of the individual classifiers are

combined using weighted votes. Experimental results are

given using a subcorpus of the large MCYT signature

database for random and skilled forgeries. The results show

that the weighted combination outperforms the individual

classifiers significantly. The best EER obtained were 6.3 %

in the case of skilled forgeries and 2.31 % in the case of

random forgeries.

Keywords Off-line signature verification �
A posteriori probability � Combination of classifiers

1 Introduction

Signature verification is one of the most important research

areas in the field of person authentication using biometric

techniques. Some examples of applications are personal

identity verification for access control, banking applications,

electronic commerce, etc. A detailed state of the art on sig-

nature verification is published in [4].

There are two well known categories of verification

systems: on-line [5, 11] and off-line systems [3, 18]. In the

former, the signature signal is captured by an electronic

device, such as pen tablets, digitizers, sensitive screens in

PDAs or mobile telephones, etc. during the writing process,

thus providing dynamic information on pressure, direction,

ordering, and timing for global signature writing or local

events like individual strokes, speed and acceleration fea-

tures, pen-ups, etc. By contrast, in off-line systems the

signature is captured once the writing process is finished,

usually by document scanning, so only a static image is

available.

Off-line signature verification systems have less infor-

mation than on-line systems, because the former can only

use static features related to the signature shape as it

appears in the scanned image. Hence, the author-sensitive

characteristics described above are not available in the off-

line case and it is also difficult to segment signature strokes

due to highly stylish and unconventional writing styles that

exist. Nevertheless, due to the ease of use of these off-line

systems—as compared to on-line methods that require

special hardware to capture the dynamic features—a

number of applications prefer this approach.

In the signature verification task, there are three types of

forgeries, related to intra and inter-personal variability:

random forgeries, when the impostor has no previous

knowledge about the genuine signature or name; simple

forgeries, represented by a signature sample made with the

genuine writer’s name; and skilled forgeries, where the

impostor has knowledge about the genuine signature model

and imitates it. Obviously, random forgeries are less dif-

ficult to reject than skilled forgeries. Methods based on the

off-line approach are usually more suitable for identifying
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Universidad de Alicante, 03071 Alicante, Spain

e-mail: juanra@dlsi.ua.es

J. M. Iñesta
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random and simple forgeries, while a skilled forgery has a

similar shape to that of the genuine signature and is

therefore more difficult to detect.

In this work, we propose an expert decisions ensemble

using a confidence voting method approach for off-line sig-

nature verification for all types of forgeries. We use the term

‘‘expert’’ in the context of ensemble methods for designing

what a single classifier performs in any pattern recognition

task. So, the idea is to apply a combination of classifier

techniques (combination of experts) to solve the verification

task in a more robust manner. These strategies have been

widely applied in classification tasks and obtained better

results than individual classifiers used on their own [6].

There are many ways to apply a combination of clas-

sifiers [6]. In particular, methods based on decision confi-

dences, like those reported by van Erp et al. [16], allow the

individual classifier decisions to be weighted in order to

obtain a good classification performance.

Another category of ensemble-based studies are those

using confidence measures for each single classifier based

on a posteriori probabilities using the Bayes theory, as in

[15], where in order to solve a multiple class problem,

linear discriminant functions are calculated between each

class and the rest. The normalized sigmoids of the dis-

tances to the discriminant functions are taken as the esti-

mates for the posterior probabilities. On the other hand,

Arlandis et al. [2] proposed an interesting method based on

the k-NN, focused only on the distances to the k-NN pro-

totypes, assigning a zero probability to the prototypes

outside that neighborhood. Nevertheless, in most cases, the

zero probability is not a realistic situation. A revised for-

mula was proposed by Rico-Juan and Iñesta [12], and

involved finding the nearest neighbor to every class,

computing their inverse distances, and normalizing them to

estimate their posterior probabilities. This way, every class

has a non zero probability.

In this paper, we describe in detail the appropriate fea-

tures, the individual classifiers, and their suitable combi-

nation in order to perform an off-line biometric verification

system. Contrary to what happens in other related studies,

like those by Abreu and Fairhurst [1], where a weighted

sum-based fusion method is proposed in order to ensemble

different classifier votes and the weights used in the fusion

need to be estimated, or in [13] where SIFT descriptors of a

signature image are used as features and a Naive Bayes

classifier in used for verification, in our approach, the use

of a function distance automatically estimates the confi-

dence of each individual classifier (see Sect. 3).

In Sect. 2, we explain the different local and global

features that were chosen to describe the signature image.

In Sect. 3, the results obtained when applying different

verification systems to a database of signatures are shown.

Finally, some conclusions and future lines of work are

presented.

2 Signature feature extraction from a binary image

The main idea of this feature extraction stage is to obtain

different kinds of features to use with a specific verification

system. Four different representations of the same image

(Fig. 1a) were designed in order to obtain relevant informa-

tion. The goal of the first three methods is to summarize the

image matrix information in rectangular regions that represent

signature shapes (Fig. 1b) as local features. The fourth method

extracts global information applying some morphological

erosions [14] until the signature disappears.

2.1 Preprocessing

The input signature image is preprocessed in two consec-

utive stages that are described below.

Binarization First, the image is binarized using a global

histogram threshold algorithm. A morphological closing

filter [14] is then applied in order to correct gaps and

spurious points that may have appeared after thresholding.

From this moment on, the classical representation of a

bitmap image as a matrix with the black pixels as the

smallest portions of the object (I½x; y� ¼ 1) and the white

pixels as the background (I½x; y� ¼ 0) is utilized.

Segmentation and partition Once we have the binary image,

the next step is to locate the signature in the image and to

extract the region of interest (ROI) as the signature

bounding box. Then, this ROI is divided into a sub-structure

of smaller regions. The foreground and background features

described below are extracted from these areas of the ROI.

Fig. 1 a Original image.

b After being binarized,

morphologically closed and

divided into 4� 2 regions
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2.2 Foreground features

The subregions defined to represent the signature ROI are

described by the number of foreground pixels that belong

to each of them. The number of sub-regions along the X or

Y axis of the image may not be a divisor of the number of

pixels for the ROI in those directions, so limiting pixels can

be shared proportionally among different regions. If this

situation occurs, each region involved accumulates the

proportional value of this pixel to its account, as displayed

in the simple example in Fig. 2.

The bitmap image ROI is named I½IXM; IYM�, with IXM �
IYM dimensions. And R½RXM;RYM� will be the matrix with

the proportional summatory of foreground pixels, with

RXM � RYM representing the ROI subdivision size in X and

Y . A discussion on the optimal number of ROI region

subdivision will be presented in the results section.

A foreground feature matrix is defined, F 2 QRXM�RYM :

F ¼ fij; i ¼ 1. . .RXM; j ¼ 1. . .RYM . Each value of this

matrix, fij, represents the number of foreground pixels in the

corresponding image subregion Rij, as shown in the exam-

ple in Fig. 3, based on the signature displayed in Fig. 1b.

2.3 Background features

The algorithm used to extract the background features is

based on that of Vellasques et al. [17]. This algorithm

computes four projections (up, down, left, and right) that

are plotted for each pixel in the image. When any of these

projections touch the foreground object, the counter

associated with that pixel increases one unit. Note that

these projections are considered until the ROI limits, not

just to sub-region limits. In this way, we can distinguish

four different categories of background pixels, according

to the value of their counter. In addition, a fifth category

is added in order to provide more information: there are

two situations that are similar in geometry but totally

different from a topological point of view. A background

pixel can be surrounded by object pixels and then the

projections will touch them and the number will be 4, but

this pixel could belong either to an isolated region or to

an open region. So, our algorithm assigns a value of 5 to

the number if the pixel lies in an isolated background

area.

Therefore, five matrices are extracted as features, one

for each counter value. Bk 2 QRXM�RYM : Bk ¼ bk
ij; k ¼

1. . .5; i ¼ 1. . .RXM ; j ¼ 1. . .RYM as background features.

Each value of these matrices, bij, represents the number of

pixels with a particular counter value in the corresponding

image subregion Rij, as shown in the example in Fig. 4.

For example, note how feature 2 gets the highest scores

in most of the subregions because for this particular

image most of the pixel projections hit foreground for

two directions. In the case of the top left-hand region

(R11), the down and right projections of 224 pixels hit

foreground.

2.4 Contour features

The object contour is encoded by the links between each

pair of 8-neighbor pixels using 4-chain codes in the way

proposed by Oda et al. [9], where only the orientations of

the links are taken into account (see Fig. 5), so there are

two directions for the 8-vertical codes (north and south)

that are mapped to 1, etc.

Four matrices are extracted, one for each direction, denoted

as Ck 2 QRXM�RYM : Ck ¼ ck
ij; k ¼ 1. . .4; i ¼ 1. . .RXM;

j ¼ 1. . .RYM, as contour features. In a similar way to that done

Fig. 2 Toy example to illustrate the proportional accumulative

accounts for the foreground pixels from a 3� 3 pixel ROI divided

into 2� 2 subregions. The shared pixel accumulate their proportional

parts to the subregions they belong to

Fig. 3 Foreground features,

F, for a 4� 2 region division of

the ROI containing the signature

in Fig. 1b. The image has been

undersampled for clarity
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for the previous sets of features, each cell of these matrices

represents the summatory of a direction for each region, as

shown in an example in Fig. 6.

All the features discussed in the previous sections are

normalized using p0ij ¼ pij=
P

pij to obtain better perfor-

mance, where pij are the matrix values for a particular

feature.

2.5 Vector of pixel erosion rates

Morphological erosion of n pixels is applied to the binary

image. At each step, the number of remaining foreground

pixels after erosionðiÞ is divided by the number of fore-

ground pixels after erosionði� 1Þ. These ratios help to

describe the thickness of the strokes. The algorithm is

detailed below, where I is the image and N is the length of

the final vector of features, v 2 RN :

When this procedure is applied to the example signature,

the values for v displayed in the next table are obtained:

i 1 2 3 4 5

v½i� 0.2352 0.0340 0.0 0.0 0.0

where N ¼ 5 has been fixed heuristically for this particular

example. Actually, this maximum vector dimensionality

has to be large enough for any foreground pixels to dis-

appear in N or less erosions. That is, all vectors should be

zero at the last positions of this feature vector. There is no

risk of taking a very large N as the Euclidean distance is

used to compare these vectors, so these null extra dimen-

sions would cause just a small computation cost to the

Fig. 4 Arrays of background

features, Bk . Five arrays are

computed for the 4� 2 regions

for the signature from Fig. 1b

Fig. 5 Four 2D directions for

contour chain codes using

8-neighbors, but only coding the

four different orientations of the

segments

Fig. 6 Contour features. 4 Ck

4� 2 matrices with the

summatories of the number of

pixels for each direction from

Fig. 1b
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distance calculation, but contributing to it with zeroes. On

the other hand, choosing a small N would cause an under-

representation of this feature as very thick strokes need a

high number of erosions to be deleted. Therefore, it is

preferable in practice to chose a reasonable high value

for N.

3 Verification system schemes

The verification systems utilized are based on classification

schemes and were adapted to the verification task. Two

kinds of verification algorithms were compared based on

the different feature descriptions utilized. The Euclidean

distance was used to compare the different vectors of

features. After computing it, another distance function is

proposed to implement the expert confidence, as explained

below. In the first verification algorithm considered, only

one expert is used to take the decision. These experts are

nearest neighbor classifiers applied to each of the feature

categories described above. In the second case, the 11

experts are used and combined to take the final decision.

The novelty of this work resides in the use of an ensemble

of different measure functions whose results take values in

very different ranges. These two systems are explained in

more detail as follows:

Individual verification system This system is based on the

four sets of features described above. The 11 individual

classifiers used are based on the image pixels (1 foreground

classifier), the background information (5 background

classifiers, one per matrix), the four directions of the chain

contour codes (4 classifiers), and the rate vector from

erosions (1 classifier based on the n-erosion vector).

All the decisions are taken in these classifiers under a

nearest neighbor approach based on the Euclidean distance.

Ensemble verification system This one is based on com-

bining decisions using the confidence voting methods with

two rules [16]:

– Sum rule: Each class sums the confidence given by

each individual decision system. The winning class

(genuine or impostor) is the one that accumulates the

highest summation score.

– Product rule: This works in the same way as the sum

rule, but the product of the individual confidences is

used to obtain the final score for each class.

The confidences for each of the individual verification

systems are based on the Euclidean distance from the target

sample to the training set prototypes. A revision of the

expression to compute the a posteriori probability based

on [15] and [2] applied to k-NN is used. In this case,

the estimation involves computing the nearest neighbor

prototype for each class and normalizing the inverse of the

distance. So, the estimation is P̂ðxijxÞ where xi is the i-th

class (genuine or impostor) and x is the feature vector of a

new example to verify. The new estimation is computed as:

P̂ðxijxÞ ¼
1

eþminyi2xi
fdðx;yiÞgP

j
1

eþminyj2xj
fdðx;yjÞg

This estimation is based on the nearest neighbor sample to

genuine and impostor signature prototypes in the database.

An e value is introduced as a positive small value close to

0. This allows the formula to be computed without over-

flow errors.

4 Results

A subcorpus of the MCYT bimodal database [10] was used

for the experiments. In the case of signatures, highly skilled

forgeries were also available. Forgers were provided with

the signature images of the clients to be forged and, after

practicing with them several times, they are asked to imi-

tate the shape with natural dynamics, i.e., without breaks or

slowdowns. The resulting subcorpus comprises 2250 sig-

nature images (resolution 850� 360 pixels), 75 different

users with 15 genuine signatures, and 15 forgeries per user

(contributed by 3 different user-specific forgers).

The signature subcorpus is divided into training and test

sets in order to try out the system verification. It has been

used in other studies such as [10] with the similar training/

test structure and skilled/random forgeries.

There are two ways to choose training/test sets:

Skilled forgeries: There are 15 genuine/impostor exam-

ples per user, so 5� 75� 2 ¼ 750 examples were

chosen for the training set (5 genuine and 5 impostor

signatures) and the rest of examples, 10� 75� 2 ¼
1;500, made up the test set. If 10 examples per user were

chosen, then the training set had 10� 75� 2 ¼ 1;500

examples and the test set 5� 75� 2 ¼ 750. The signa-

tures were chosen randomly.

Random forgeries: There are 15 genuine examples and

15� 74 forgeries (the rest of the genuine signature

users). The size of training/test sets was similar to that in

the previous case, but the impostor signatures were

selected from the rest of the users randomly.

In a verification system, four situations are possible: an

impostor is accepted (false acceptance, FA), an impostor is

rejected (true rejection, TR), a correct user is rejected

Pattern Anal Applic (2012) 15:113–120 117
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(false rejection, FR) and a correct user is accepted (true

acceptance, TA). Performance measures of verification

systems are related to the frequency with which the error

situations occur. One common performance measure is the

so called equal error rate (EER) which is the point attained

when FA and FR rates coincide. Also a particular

representation of the sensitivity versus specificity called

receiver operating characteristic (ROC) curve is often

utilized.

In this paper, the overall system performance when

a posteriori user independent decision thresholds are used

is reported by means of detection error tradeoff (DET)

plots [8], which are graphical representations of FA versus

FR rates with a particular axis scaling, and ROC curves.

Average EER tables when using a posteriori user-depen-

dent thresholds are also given following the operational

procedure proposed in [7] for computing the individual

EER for each user.

In the preliminary trials, different numbers of regions

were tested. Since, the image aspect size was 2� 1, the

image region divisions tested were proportional to that

ratio: 2� 1, 4� 2, 6� 3, 8� 4, 10� 5, and 12� 6, in

order to establish the number of divisions for the rest of

the experiments. A division of the ROI into 8� 4 sub-

regions yielded a lower EER than the early experiments

on random forgeries with both the individual and

ensemble decisions systems. Thus, the RXM and RYM

parameters were fixed to 8 and 4, respectively, to perform

the rest of the experiments.

Signature off-line verification performances for the

proposed systems using individual and combined decisions

are shown for a posterior user-dependent decision thres-

holding. Five cross-validation tests were performed for all

the experiments, so averages and dispersions are presented

in the tables. Also the sensitivity of the verification

ensemble architecture was tested removing one of the

eleven individual experts from the final combination, and

the results were always worse than those obtained with a

combination of all the experts.

Table 1 presents the EER results on skilled forgeries and

Fig. 7 displays the ROC curves for some of those experi-

ments. From these results, we can see that the best per-

formances for skilled forgeries were obtained by the

combination of experts. The summatory rule outperformed

the product rule, although there were no significant dif-

ferences between them. This significance exists when the

combined results are compared to the individual classifiers,

for any of the features utilized.

Also, when assessed using the ROC, the combined rules

(fbde in the graphs) clearly outperformed the rest. In these

curves the quality is measured by the area under the curve,

and the curves corresponding to the combined rules

are clearly over the rest. No significant differences

are observed between the curves for both combination

rules.

Table 1 Performance on skilled forgeries for a posterior user-

dependent decision thresholding

5 Training

examples

10 Training

examples

foreground 21.1 � 0.5 15.8 � 0.8

background:1 43.6 � 0.5 43.1 � 1.2

background:2 24.2 � 0.6 19.8 � 0.5

background:3 23.2 � 0.4 19.1 � 1.5

background:4 30.0 � 0.6 26.8 � 1.0

background:5 33.2 � 0.3 28.1 � 0.7

directions:1 21.6 � 0.2 17.6 � 0.4

directions:2 19.2 � 0.6 14.8 � 0.9

directions:3 22.2 � 0.4 17.7 � 0.5

directions:4 21.0 � 0.6 15.8 � 0.4

15-erosion 26.9 � 0.6 24.0 � 0.5

combined sum rule

F?B[1-5]?D[1-4]?E

10.9 � 0.6 6.3 � 0.4

combined pro rule

F?B[1-5]?D[1-4]?E

11.0 � 0.6 6.4 � 0.3

Average EERs (%) � dispersion (ð maxE � minEÞ=4)
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Fig. 7 ROC representation of

skilled forgeries using a

different number of training set

examples. a 5 genuine and 5

false. b 10 genuine and 10 false
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Table 2 presents the EER results on random forgeries

and Fig. 8 displays the ROC curves for some of those

experiments. Note that the same comments on the skilled

forgeries experiments can be applied to these results, with

significant better performances for the combination of

experts and no significant differences between both com-

bination rules.

When 10 examples were used in the training set, all the

systems improved their performances and lower EERs

were obtained in all cases. Note that for random forgeries,

the EERs obtained by the combined rules were roughly half

of those yielded with 5 examples, and for skilled and

forgeries the EERs were lowered to a third. They obtained

an EER of 6.3 and 2.31 % as the best results in skilled and

random forgeries, respectively. The dispersions obtained

were much lower in this case for the combined rules, so

these systems are also performing more consistently for the

different partitions of the database.

These performances are comparable to those published

in similar works using the same database [3], although in

that work, the authors did not provide any deviation mea-

sure, so we can not evaluate the significance of the dif-

ferences. In any case, the main objective of our work was

to show how the combination of partial decisions using a

function based on a posteriori probability measure

improves both the performance and the robustness of the

system.

5 Conclusions and future work

A number of methods for off-line signature shape feature

extraction from a binary image have been described. Each

set of features was used for an individual signature verifi-

cation systems based on Euclidean metrics. In order to

achieve a better performance, weighted voting-based

ensembles of the verification system were constructed. An

a posteriori probability estimation has been proposed in

order to normalize the confidences provided for each ver-

ification system in the voting stage. This approach has

proved to reduce the final EER significantly. Also consis-

tent improvements have been found when assessing the

system using ROC curves.

This expert combination approach is planned to be

applied to different databases in the future to explore its

robustness in other situations and how it performs when

weighted decisions are used. In addition, we will explore

its capabilities when dealing with other kind of data in the

biometric recognition field.
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Fig. 8 ROC representation of

random forgeries using a

different number of training set

examples. a 5 genuine and 5

false. b 10 genuine and 10 false

Table 2 System performance on random forgeries for a posterior

user-dependent decision thresholding

5 Training

examples

10 Training

examples

foreground 12.4 � 0.7 8.3 � 0.4

background:1 40.5 � 1.0 39.2 � 0.4

background:2 15.8 � 0.6 11.6 � 0.6

background:3 16.1 � 0.7 11.1 � 0.3

background:4 22.3 � 1.3 17.7 � 1.2

background:5 22.2 � 0.2 16.8 � 0.5

directions:1 12.8 � 0.8 7.5 � 0.5

directions:2 13.1 � 0.8 7.5 � 0.8

directions:3 12.9 � 0.7 8.4 � 0.7

directions:4 14.9 � 0.7 8.8 � 0.7

15-erosion 27.6 � 0.8 21.1 � 0.9

combined sum rule

F?B[1-5]?D[1-4]?E

6.5 � 0.5 2.31 � 0.14

combined pro rule

F?B[1-5]?D[1-4]?E

6.8 � 0.5 2.35 � 0.14

Average EERs (%) � dispersion (ð maxE � minEÞ=4)
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