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1
Introduction

“A problem is a chance for you to do your best.”
Duke Ellington

1.1 Music information retrieval

Music information retrieval (MIR) is a field of research devoted to the
extraction of meaningful information from the content of music sources (Orio,
2006; Typke et al., 2005). In the application of pattern recognition techniques
to MIR, two main folds can be found in the literature: audio information
retrieval (Foote, 1999; Tzanetakis and Cook, 2000b) and symbolic music
information retrieval (Downie, 2003).

In audio information retrieval, the raw digital audio signal is processed.
Usually WAV or MP3 files (Bosi and Goldberg, 2003) are the input to these
systems. No explicit information about notes, voices or any musical symbol
or tag is encoded in the signal. On the other hand, symbolic MIR is based on
processing symbols with direct musical meaning: notes with pitch, duration,
dynamics, etc. The most common formats used as input for these systems
are ASCII text files like kern, abc, MusicXML (Good, 2001; Selfridge-
Field, 1997), or binary files containing note control information like MIDI
files (Selfridge-Field, 1997). In these formats input data contain information
about what and how is to be played, instead of the rendered music itself
like in the audio signal. The semantics of both approaches is different, at
least at a first stage in information retrieval algorithms. In the case of
symbolic processing, information theory or text processing techniques can
be applied to process it. On the other hand, raw audio does not contain
explicit information about notes or voices, and thus requires to perform
signal processing to extract these musical data, a process that almost always
introduces noise to the actual musical material found in the audio stream.
Currently, some of the most active topics in audio information retrieval
have as objective the extraction of such musical information as note onsets,

1



CHAPTER 1. INTRODUCTION

timbre or voices (Dessein et al., 2010; Holzapfel et al., 2010; Pertusa, 2010).
With this preprocessing of the raw audio, many of the work lines found in
the symbolic music information retrieval can also be tackled, but with the
drawback of having to deal with the possibly noisy musical data extracted.

Other areas of research that deal with different music representations are
visual MIR and metadata MIR. The first is mainly devoted to the task of
optical music recognition, where digital images of written music are to be
converted to some other representation format, often a symbolic one like
MIDI or MusicXML (Bellini et al., 2008; Rebelo et al., 2010). The metadata
MIR has received increasing interest by the MIR community in recent years.
The coming up of new ways of interaction between music users, mainly based
on metadata such as social tags is the reason behind this (Lamere, 2008a;
Levy and Sandler, 2009; Turnbull et al., 2009). Also, the use of lyrics or
information about artists, albums, or music pieces found on web pages are
sources for metadata MIR approaches (Knees et al., 2004; Mayer et al., 2008b;
McKay and Fujinaga, 2007b; Schedl, 2008).

1.1.1 MIR research topics

The following is a non exhaustive list of some important research topics
in the MIR community, taken mainly from the call for papers of the
Ninth International Conference on Music Information Retrieval1, held in
Philadelphia, USA. No distinction is made here between symbolic or audio
MIR. References point the reader to sample works on the topic.

Harmony Chord extraction and labeling. Key finding (Gómez, 2006; Lee,
2007; Pardo and Birmingham, 2002).

Melody Melody/motive extraction, selection, segmentation, and similar-
ity (Gomez et al., 2003; Isikhan and Ozcan, 2008; Uitdenbogerd and
Zobel, 1998).

Timbre Speech-music separation, instrument identification, sound source
separation (Gerhard, 2003; Grecu, 2008; Virtanen, 2006).

Music recommendation Playlist generation, music discovering (Celma,
2006; Eck et al., 2007).

Music Visualization, User interfaces intelligent alternative user inter-
faces to access music collections based on music content or social
websites (Lidy and Rauber, 2008; Pampalk et al., 2003).

1ISMIR 2008: http://ismir2008.ismir.net/cfp
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1.1. MUSIC INFORMATION RETRIEVAL

Music classification Classification of music based on tags. Tags represent
music sets the tagged object pertains to. They often represent broad
categories of music, such as mood or genre, but can also refer to
something more specific, like composer, performer or even producer.
(cf. Content-based similarity) (Bertin-Mahieux et al., 2010; Conklin,
2009; McKay, 2010; Stamatatos and Kavallieratou, 2004).

Social and music networks listener or artist community building. Music
tagging from social data (Knees et al., 2004; Lamere, 2008a; Levy and
Sandler, 2009; Schedl, 2008).

Content-based similarity, categorization and retrieval Music similar-
ity measures, music genre classification, Query-by-humming, Query-by-
example, Query-by-rythm (Cruz-Alcázar et al., 2003; Selfridge-Field,
1998; Typke, 2007).

Music identification Cover detection, plagiarism detection (Miotto et al.,
2010; Müllensiefen and Pendzich, 2009; Stein et al., 2007).

Computational musicology musicological analysis by means of comput-
ers (Schenkerian analysis, Narmour analysis, tonal analysis,...) (Kirlin
and Utgoff, 2008; Leman, 2008; Paulus and Klapuri, 2008) (cf. Com-
putational music theories, Structural analysis.

Computational music theories Generative theories (GTTM), Descrip-
tive theories (Schenker, Narmour, Hanson,...) (De Haas et al., 2009;
Gilbert and Conklin, 2007; Hamanaka et al., 2006; Lerdahl et al., 1996;
Narmour, 1990a)

Optical music recognition (OMR) Extract music data from digital im-
ages of written music (Bainbridge and Bell, 2001; Bellini et al., 2007;
Byrd and Schindele, 2006)).

Music preservation Preservation and digitalization of old records and
printed music (Ng et al., 2008; Orio et al., 2008).

Score alignment Score following (automatic accompaniment in real time),
matching different interpretations of the same music piece (Arzt et al.,
2008; Cont, 2011).

Performance analysis performer identification, educational aid systems,
performance haptics analysis and modeling, musical gesture modeling,
expressive performance rendering (Berdahl et al., 2008; Kirke and
Miranda, 2009).
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Music Summarization thumbnailing, fingerprinting, water-marking mu-
sic (Ellis et al., 2010; Meintanis and Shipman, 2008)

Data Exchange, Archiving and Evaluation Digital music libraries, mu-
sic storage formats, music database design, building corpora for eval-
uation purposes, efficient and effective metadata archiving (mp3 tags,
liner notes, critics, etc..), index optimization for music retrieval. (Lo
et al., 2009; Silla Jr. et al., 2008)

Musical meaning Perception and cognition based analysis of music, se-
mantic analysis of music utterances. (Cook, 2001; Scheirer, 1996)

Automatic music analysis and transcription onset detection, pitch de-
tection, music transcription (Klapuri and Davy, 2006; Pertusa, 2010).

Feature representation low and high level feature extraction and repre-
sentation (McEnnis et al., 2005; Tzanetakis and Cook, 2000a)

Rhythm and meter beat tracking, rhythm pattern detection, meter de-
tection (Dixon, 2007; Seyerlehner et al., 2008).

Tonal analysis key finding (Gómez and Herrera, 2004; Rizo et al., 2006a),
automatic tonal harmonic analysis (Illescas et al., 2007).

Digital rights management Music related rights management (owner-
ship, licenses, watermarking, etc.) (Sinha et al., 2009)

Evaluation of MIR systems Evaluation and benchmarking workshops
and contests (MIREX; Orio and Rizo, 2011).

There are some other areas in computer music research that traditionally
have not fitted as MIR categories, but are nevertheless related to MIR
technologies. The most evident is perhaps automatic music composition,
that interestingly was one of the first music topics addressed by means of
computers. In the 2010 International Society for Music Information Retrieval
(ISMIR) conference, some assistants expressed publicly their concerns about
such computer music field not being considered as part of MIR. The other
one research field that is often not considered as part of the MIR area should
be music signal processing, that is, the research on fundamental methods for
low-level feature extraction, domain transformation, sound synthesis, music
post-processing, etc.

4
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1.1.2 Symbolic MIR

The goals of symbolic information retrieval can be said to be closer to the
actual music theory or musicological analysis that those of audio information
retrieval. Some of the most active work areas in the symbolic approach
nowadays are listed below:

• Audio to Score Alignment, Score Following: Either aligning a score to
an audio signal, or tracking a score using an audio signal as a reference
involves symbolic music processing techniques.

• Genre, artist or other tag-bassed classification: the objective in these
tasks is to tell the musical genre, author/performer or whatever tag
or set of tags that are to be associated with a given symbolic musical
input (often MIDI files).

• Similarity and retrieval: the final target in this workline is to be able
to perform a search in a music database to get the most similar pieces
to an input query. One of the most tackled problems is the Query
by humming problem, where the input query is an audio excerpt of a
melody sung by the user.

• Cover song identification: the detection of plagiarisms, variations or
versions of the same song is the main goal in this case.

• Chord identification: to identify sequences of chords from a flow of
single notes, or from a polyphonic music stream.

• Key finding: to guess tonality and key changes of a score from the notes
in it.

• Melody identification: to identify the melody line among several MIDI
tracks or music staves, as opposite to those that contain accompaniment

• Melody extraction: to extract a monophonic melody from a polyphonic
source. The difference with the previous task is that here the music
does not come in separate tracks or parts, but in a single polyphonic
stream.

• Motive extraction: to find motives (short note sequences) in a score
that are the most recurrent, thus acting as the main themes of the
song

• Meter detection: to reconstruct the meter from the stream of notes
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• Score segmentation: to split the song in parts like musical phrases or
sections like verse, chorus, etc.

• Music analysis: to perform musicological analysis for teaching, auto-
matic or computed assisted composition, automatic expressive perfor-
mance, or build a musical model for other MIR tasks.

1.2 Melody and genre

These are the two musical concepts targeted in this work. They are some of
the most vague, ambiguous concepts found in music theory. Very often, they
definition and scope is not clearly stated, at least not in a way that is fully
computable. Moreover, the meaning of melody is often not exactly the same
depending on the musical genre at hand. For example, in one genre, such as
pop music, the melody is typically restricted to be played or sung by a single
instrument/voice, which is not the case in classical music, for example.

This work deals with the application of pattern recognition techniques to
melody selection and genre recognition of symbolically encoded music, using
a statistical music description approach in order to capture the computable
part of the melody and genre concepts.

The rest of this chapter explores these musical concepts in greater detail,
and explains how the pattern recognition approach is undertaken.

1.3 Don’t tell me how it sounds, tell me what it
plays

The two symbolic MIR tasks described above, melody part selection and
genre recognition, are to be approached in the following way: the problem is
to be solved in absence of timbre related information. This way, a side goal of
the present work will be to provide some clues on whether this kind of tasks
can be approached by using only information extracted from the symbolic
musical stream, without taking advantage of any metadata available2.

As this section title suggests, this work focus on what the music plays,
rather than how it sounds. The quality of sound has much to do with timbre,
that is, the instruments actually playing the music, while what is played has
to do mainly with the music itself, the note stream, leaving timbre aside.

This quality of the music, timbre, is in general a valuable descriptor
when it comes to discriminate musical genre. Suppose we have two melodies

2..., except, of course, the tags needed to apply supervised learning methods.
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and we know one of them is played by a viola and the other one by an
electric guitar with distortion effect. For the first one, we could discard some
genres, including those related to modern rock or pop music, with a low
probability of getting wrong. For the second one, we could discard, with
a similar low error probability, genres related to classical or folk music, for
example. Purposely avoiding information about timbre allows for studying
intrinsic properties of melodic content, independently of which instrument, at
the very end, would be used to perform the music. This is specially relevant
to symbolic music formats like MIDI, where switching from one instrument
to another does not alter music content, but some control parameters. Thus
the symbolic music content remains the same (the score is unaltered), but the
final rendering of the encoded music can vary substantially. Related to this,
see the work by McKay and Fujinaga (McKay and Fujinaga, 2005) about the
importance of timbre and instrumentation related features for music genre
classification of MIDI files. They report up to a 46% relative weight of
instrument related features when used in combination with features derived
from musical properties such as pitch, rhythm or dynamics.

McKay takes an engineering approach to music genre recognition that
takes advantage of all the information usually found in MIDI encoded music,
trying to obtain a ‘perfect’, i.e., 100% accurate, system. This has two
important differences with respect to the approach in this thesis: first, from
the musicological point of view, genre is not associated with musical content
only, but rather with the actual information found in a specific format like
MIDI, which includes metadata like, e.g., program changes3. Such systems
are very sensitive to mere instrumentation or orchestration changes. Second,
all available MIDI information (from all tracks) is used to predict the genre
of a MIDI encoded piece, which differs from my approach, where mainly
melody tracks are sampled for data extraction.

The source materials that are used as symbolic music containers in the
present work are also MIDI files. A key property of the so called Format 1
MIDI files (the most widely used MIDI storage format), is that music is
encoded in separate tracks. Usually, each instrument taking a role in the
music piece being encoded is assigned a different track. However, this is in
no way mandatory, so one track could contain music to be played by different
instruments at different points in time, or several tracks could be assigned
to the same instrument.

3From the MIDI standard viewpoint, program change events are considered as control
events immersed within the normal music stream, rather than metadata. Counter-
intuitively, the MIDI standard defines such things like time or key signature, which clearly
have a musical meaning, as metaevents. I will not follow this distinction in this work, but
I will consider as metadata all kind of MIDI events except note events.
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In this dissertation a scientific perspective is taken that, rather to try
to build perfect classification systems, using all the information at hand,
investigates whether the musical stream, encoded in a score-like format,
conveys enough information to characterize its melodic nature, or its genre,
regardless of instrumentation. So, in this work this kind of information is
purposely ignored. A situation where a trained individual tries to recognize
the genre of several pieces played exclusively on piano could serve as a
metaphor for this goal.

The approach to music genre recognition is to rely on one of the most
relevant components in a music piece: the melody. So a first task to
accomplish is the identification of the melody within the content of a music
piece. As the music containers are MIDI files, that means to be able to
automatically distinguish which track contains the melody, being the rest of
the tracks considered as accompaniment. The necessary assumptions to be
made will be discussed in chapter 3.

Once the music is separated into melody and accompaniment, the
approach to music genre recognition in this work is to segment melody track
content in fixed length fragments (named windows), and then investigate
genre recognition of such fragments, at different lengths, using statistical
pattern recognition techniques. The research is then extended to audio
genre recognition, by means of automatic transcription of the audio content,
where such separation between melody and accompaniment in the resulting
symbolic representation does not exist.

The advantage of this approach is that, information on the actual content
of the piece with respect to genre can be known in detail. It also makes
possible to use such a system online, in a context where the musical input
occurs in real time, i.e., it is not previously stored in any place. The level
of detail on music content or, put in another way, the amount of music data
to be input in real time for the system to respond suggesting genre or style
of playing can be tuned adjusting the length of fragments that will be used
for genre recognition. Also, such a system should be easily adaptable to
different tagging taxonomies, such as artist or social tag based classification.
It is also possible to use genre recognition models in genre-oriented automatic
composition systems, such as in (Cope, 2001; Cruz-Alcázar and Vidal, 2008;
Esṕı et al., 2007).

The next sections present the task of automatic melody identification and
music genre recognition in greater detail.
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1.4. MELODY PART SELECTION

1.4 Melody part selection

Most of the MIDI or XML music formats available contain music organized
in such a way that each voice, instrument, or playing role –in particular the
melody–, is in some way stored separately from each other. Let’s name this
kind of music storage formats as multi-part music files. Most parts, apart
from the melody, play an accompaniment role. In particular, a standard
MIDI file is usually structured as a number of tracks, one for each voice4 in
a music piece. At least one of them usually contains a melody.

One of the tasks faced in this thesis is to automatically find that melody
track in a multi-part music file using statistical properties of the musical
content and pattern recognition techniques. The information used to take
decisions is based on how the notes are arranged within each voice of a
digital score, making the solution independent of specific storage formats.
Only the feature extraction front-end would need to be adapted for dealing
with different formats.

The identification of the melody track is very useful for a number of
applications. For example, in melody matching, when the query is either in
symbolic format (Uitdenbogerd and Zobel, 1999) or in audio format (Ghias
et al., 1995). The process can be speeded up if the melody track is known or
if there is a way to know which tracks most likely contain the melody, because
the query is almost always a melody fragment. Another useful application
can be helping motif extraction systems to build music thumbnails of digital
scores for music collection indexing.

In the framework of this thesis, the purpose of devising a melody
characterization model is to help a music genre recognition system to
automatically separate the melody from the rest of the music content in
a multi-part music file. This way, separate genre models for melody and
accompaniment can be built and combined when convenient.

1.4.1 What is melody?

Before focusing on the machine learning methodology used to automatically
extract the characterization of a melody, the musical concept of melody itself
needs to be reviewed. I shall begin with a definition attempt:

Melody is a somewhat elusive musical term that often refers to a
central part of a music piece that catches most of the listener’s
attention, and which the rest of music parts are subordinated to.

4In this thesis the terms part, track and voice are used interchangeably when refering
to multi-part music file content.
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This is one of many definitions that can be found in many places,
particularly in music theory manuals. Some references are provided below.
The variability of these descriptions of the concept can give an idea on the
difficulty of the task at hand.

From the music theory point of view, Toch (1997) defines melody as

“A succession of different pitch sounds brighten up by the
rhythm.”

The verb brighten suggests here that this succession of pitches is somehow
put ‘in front’ of the music performance taking place. This give some insight
on where to look at: pitches and rhythm (note onsets and durations). He
also writes

“A melody is a sound sequence with different pitches, in
opposition to its simultaneous audition that constitutes what is
named as chord”,

which is a more technical definition, but doesn’t help to discriminate between
accompaniment and melodic sequences. An interesting property of a melody
described by the same author in (Toch, 1977) is that most melodies have a
wave shape:

With the combination of ascending and descending scale-
segments melody approaches its real nature: the wave line.

The author further elaborates on this, stating the idea that melodies have
local maxima and, building on previous higher tones, the melodic sequence
arrives at the highest of these maxima, called the climax, that often appears
near the end of the melody. Therefore, note intervals are suggested as a
valuable source of information to characterize melody.

A music dictionary (Sadie and Grove, 1980) defines melody as

A combination of a pitch series and a rhythm having a clearly
defined shape.

However, this is a definition that covers all sorts of monophonic note
sequences, not only melodies. Also, it doesn’t put a melody in a context
where multiple musical parts play simultaneously, as neither of Toch
definitions do.

The music theory literature lacks works about melody in favor of works
about counterpoint, harmony, or form (Selfridge-Field, 1998). Besides, the
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concept of melody is dependent on the genre or the cultural convention,
an idea that will be incorporated in this research. The most interesting
studies about melody have appeared in recent years, mainly influenced by
new emerging models like generative grammars (M.Baroni, 1978), artificial
intelligence (Cope, 1996), and Gestalt and cognitive psychology (Narmour,
1990b). All these works place effort on understanding the melody in order
to generate it automatically.

The types of tracks (or parts) and descriptions of melody versus accom-
paniment are posed in (Selfridge-Field, 1998). The author distinguishes:

• compound melodies where there is only a melodic line where some notes
are principal, and others tend to accompany, being this case the most
frequent in unaccompanied string music.

• self-accompanying melodies, where some pitches pertain both to the
thematic idea and to the harmonic (or rhythmic) support.

• submerged melodies confined to inner voices.

• roving melodies, in which the theme migrates from part to part.

• distributed melodies, in which the defining notes are divided between
parts and the prototype cannot be isolated in a single part.

From the audio processing community, several definitions can be found
about what a melody is. Maybe, the most general definition is that of Levitin
(2002)5:

“melody is an auditory object that emerges from a series
of transformations... along the six dimensions: pitch, tempo,
timbre, loudness, spatial location, and reverberant environment;
sometimes with changes in rhythm; but rarely with changes in
contour”.

Gomez et al. (2003) gave a list of mid- and low-level features to describe
melodies:

• Melodic attributes derived from numerical analysis of pitch informa-
tion: number of notes, pitch range, interval distribution, melodic
profile, melodic density.

• Melodic attributes derived from musical analysis of the pitch data: key
information, scale type information, cadence information.

5as cited by (Kim et al., 2000)

11



CHAPTER 1. INTRODUCTION

• Melodic attributes derived from a structural analysis: motive analysis,
repetitions, pattern location, phrase segmentation.

Another attempt to describe a melody can be found in (Temperley,
2004b). In that book, the author proposes a model of melody perception
based on three principles:

• Melodies tend to remain within a narrow pitch range.

• Note-to-note intervals within a melody tend to be small.

• Notes tend to conform to a key profile (a distribution) that depends on
the key.

In order to gain more insight on the concept, an informal survey was
carried out where the subjects were asked to answer the question What
is a melody?. Both musicians and non-musicians took part in the survey.
Table 1.1 shows some of the answers gathered. The following list is a
compendium of shared melody traits found in those answers:

• (finite) succession of notes

• cantabile pitch range

• monophonic

• lead part

• identifies/characterices the piece, song

• unity

• diversity

• contains repeating patterns

• often linked to text

• done by humans

• understandable, catchy, memorizable by humans

As the reader would have noticed, most of these traits are also present
in academic definitions provided above. All these different properties that a
melody should have can be used as a reference to build an automatic melody
identification system.

In (Hewlett and Selfridge-Field, 1998), the authors identify melody as
hard to model by computers:
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Musicians
The succession of characteristic sounds that make a song,
tune or piece easily recognizable.
A succession of sounds (pitches) constituting their own sound plane,
which is of principal importance in a musical piece.
A finite set of notes that has its own meaning and character,
being accepted and assimilated in an intuitive and natural way by the human being,
allowing to distinguish, understand and memorize it in an easy way.
A succession of monodic music figures (with or without sound, that is, including silences)
made by humans for humans, with its own meaning and unity.
This definition distinguish a melody from animal singing (e.g., a songbird singing),
which has no musical meaning.
A succession of sounds distributed in time with its own identity and coherence.
A note sequence, usually ‘cantabile’ (even if transposition is needed),
and therefore monophonic, that appropriates the leading role in a music piece,
consigning the rest of the music to something called ‘accompaniment’.

Non-musicians
A note sequence played by a principal instrument that stands out among
the rest of notes played by other instruments, allowing to identify a music piece.
Set of sounds that make up songs and tunes, easily recognizable by the human being.
The part of a song that a person can remember and reproduce, being thereby monophonic.
(Note: unless you come from a very exotic tribe).

Table 1.1: Answers to the question What is melody? in an informal survey.

“Melody concept is an amalgamation of what is within the music
and what is within our minds. Computers can only address the
first.”

The kind of statistical description of music used in this work, tries to
capture part of what is computable in a melody, i.e., “...what is within the
music”, which I believe is a substantial part of what makes melody such a
recognizable, yet hard to define, musical entelechy.

1.4.2 State of the art in melody part selection

The automatic selection of melody parts has not been tackled as a main
objective in the literature until recently. A related problem that has received
great attention in the past is the extraction of melody lines from a polyphonic
source. This problem has been approached from at least three different points
of view with different understandings of what a melody is. The first approach
is melody extraction from a polyphonic audio source. For this task it is
important to describe the melody in order to leave out those notes that are
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not candidates to belong to the melody line (Eggink and Brown, 2004). In the
second approach, a melody line (mainly monophonic) must be extracted from
a symbolic polyphonic source where no notion of track is used (Karydis et al.,
2007). With this approach, Uitdenbogerd and Zobel (1998) developed four
algorithms for detecting the melodic line in polyphonic MIDI files, assuming
that a melodic line is a monophonic sequence of notes. These algorithms are
based mainly on note pitches; for example, selecting at every time step only
the note with the highest pitch (skyline algorithm). The third approach focus
on how to split a polyphonic source into a number of monophonic sequences
by partitioning it into a set of melodies (Marsden, 1992). In general, these
works are called monophonic reduction techniques (Lemström and Tarhio,
2000).

There were some early works in the literature addressing the melody part
selection problem. Ghias et al. (1995) built a system to process MIDI files
extracting a sort of melodic line using simple heuristics. Tang et al. (2000)
presented a work where the aim was to propose candidate melody tracks,
given a MIDI file. They take decisions based on single features derived from
informal assumptions about what a melody track may be.

More recently, in Madsen and Widmer (2007b), the authors propose
several methods for measuring complexity in music, based on pitch and
duration related features. They use them as a basis for building melody
track prediction models. The idea is based on the observation that there
seems to be a connection between the complexity of a musical line, and the
amount of attention that will be devoted to it on the part of a listener. The
assumption is that the melody (or lead instrument) track in a MIDI file
will contain the largest amount of information. Global and local measures
based on entropy, as well as compression ratio of entire tracks are used as
complexity metrics. Prior to computing these complexity measures, tracks
are reduced to a monophonic sequence of notes. Local measures are obtained
by means of a sliding window that extracts overlapping track segments. The
complexity of these segments is computed and the track with the highest
complexity is chosen as the ‘winner’ for that window. The track containing
the most complex voice for the longest time is predicted as the melody track.
Global measures refer to the entire track. The third model for melody track
prediction is based on the LZW compression algorithm. The track that is
less compressed is predicted as the melody track.

These models are evaluated on two data sets of popular music (Traditional
and Modern), as this genre of music is expected to have the melody
constrained to a single track. Baseline for melody track prediction by random
guessing is about 15% for the Traditional dataset and about 11% for the
Modern one. The authors report a 52% prediction success on the Traditional

14



1.4. MELODY PART SELECTION

dataset using a local complexity measure based only on inter onset interval
information and a window 12 s long. Results for the Modern dataset are
reported to be as good as a 62% success using the same measure with a
window 6 s long. They also report that comparable results on the Traditional
dataset have been achieved also by just selecting the track with the highest
average pitch. When dealing with the entire track as a whole, compression
based models outperform complexity measure based models, that in turn
outperform selecting just the highest pitched voice. Given this results on
popular music, there is evidence that a somewhat strong correlation exists
between rhytmic complexity and melody perception, as the best results were
obtained using measures based on note inter onset interval information.

Based on entropy measures, as in the previous work, (Madsen and
Widmer, 2007a) presented an algorithm for predicting the most likely melody
note at any point in a piece, using a fixed length sliding window (one to
four seconds long) to compute local complexity values for each voice (MIDI
channel). Music from Haydn and Mozart –manually annotated– is used as
a test corpus. The work showed evidence that melody in classical music
is indeed partly definable by complexity. Such measures can therefore help
melody understanding in conjunction with other structural and gestalt based
measures. Window length is a key parameter of the system presented here.
A comprehensive study on these measures as a function of the window length
is desirable but were not found in the work of Madsen.

In the context of melody retrieval from polyphonic music, Suyoto and
Uitdenbogerd (2008) found evidence that defining duration information
as inter-onset interval improves retrieval effectiveness significantly when
combined with pitch-based pattern matching, which is not the case when
note duration is used instead of inter-onset interval (IOI).

In (Gomez et al., 2003), several melody definitions are gathered from the
literature. In these definitions melody is considered an auditory object, a
sequence of pitches or a set of attributes. Melody is also associated with
the concept of unity and theme, being somewhat merged with the concept
of phrase or motive. This work also presents several methods to represent
melody such as using note frequence, pitch, note duration, intervals or
melodic contour. Also, the MPEG-7 Melody Description Scheme (ISO/IEC,
2005) is outlined, which uses, among others, a 5-step contour representation,
in which intervals are quantized to values from −2 to +2. It is identified as
the only standard that proposes an all-purpose melody description scheme.
When dealing with melody as a set of attributes, the authors identify a
list of features suitable to characterize melody, such as harmonic features
(key, scale, cadences,...), rhythmic features, pitch-based features (number of
notes, tessitura, interval distribution, melodic profile or melodic density, for
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example) and features derived from a structural analysis, such as motive
or pattern location and indexing, and phrase segmentation. Perceptual or
subjective features such as emotional/textual melodic descriptors are also
considered as suitable for melody characterization.

1.5 Music genre recognition

Music genre recognition has been approached by many authors in the MIR
community. The task could be defined as the problem of automatically
assigning one or more genre tags to a piece or a fragment of music. The
common working hypothesis is that music pieces from the same genre should
share some common attributes that would permit to correctly classify them
into genres. The problem is usually approached by supervised learning
techniques, although unsupervised methods have also been used, avoiding the
need to formulate a computable definition of what genre is. Genre modeling
is a versatile tool that not only allows to perform classification, but also to
use automatic composition algorithms to generate new songs in the learnt
genres (Cope, 1996; Cruz-Alcázar and Vidal, 2008).

Most of the research on this topic is based on audio music corpora, and
has been taken as a benchmarking problem to demonstrate a wide range
of audio feature extraction methods and classification paradigms (Ahrendt,
2006; Lidy et al., 2010b; Scaringella et al., 2006; Silla and Freitas, 2009;
Tzanetakis and Cook, 2002a). Nowadays a number of audio corpora exist
that authors regularly use for testing their approaches (c.f. sec. 2.8.4). On the
other hand, the field of symbolic music genre recognition has been explored
in a more limited way. See section 1.5.3 for some references in this domain.
Other approaches to genre recognition are text-oriented, based on lyrics, and
using text mining techniques to classify a song according to their lyrics, i.e.,
without exploring the actual musical content (Mayer et al., 2008b). Another
approach to the problem is to use community meta-data (such as social tags)
using web-mining techniques to extract information about an author or song
from different websites or forums (Lamere, 2008b; Levy and Sandler, 2009).
Recently, hybrid systems have emerged by combining more than one of the
previous approaches (Lidy et al., 2010a; Mayer et al., 2008a; McKay et al.,
2010).

The genre concept naturally induces hierarchies in the organization of
music archives. While most of the research done in MIR deals with flat genre
taxonomies, some works consider the use of hierarchical genre taxonomies:
(Burred and Lerch, 2003), where audio signals are classified into a 4-level
taxonomy that differentiates speech and background noise from music, which
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includes a 3-level music genre taxonomy. In (McKay, 2010), the author built
a symbolic dataset with 38 leaf node classes and 3 levels of depth.

The main source of symbolic music for genre recognition are MIDI files,
usually collected from the Internet. They are by far the more abundant
kind of symbolic music format objects available, though some collections
in another formats exist, such as the RISM database (Tsou, 2011), which
contains metadata and incipits of European music manuscripts from 1600.
Other databases exist in the Humdrum kern format (Huron, 2002), like the
Essen folksong Collection (Schaffrath, 1995), or in GUIDO format (Hoos
et al., 1998). This kind of symbolic music files are mainly found on
academic sites devoted to the cataloging or preservation of classical music.
MusicXML (Good and Actor, 2003) is a score-oriented format for encoding
symbolic music, with a number of internet sites offering downloadable music
in this format.

The choice of MIDI as the source music format in this thesis is due to
the above mentioned wide availability of music pieces in this format, ranging
from early classical music to modern pop tunes. Rather than a score-oriented
format, MIDI was initially devised as a communication protocol between
synthesizers, thus being able to represent not only musical notes, but also
control events needed for real time interpretation. The standard MIDI file
format (MMA, 1990) was created to facilitate the storage of such music
interpretations. For this reasons it is considered by some authors as a pseudo-
symbolic format. Despite of that, it is widely used for symbolic MIR research,
as it is straightforward to separate note events from control events.

The definition of music genre pose several problems for computational
approaches (Aucouturier and Pachet, 2003; Lippens et al., 2004). There
is a lack of consensus in the definition of genre labels, and important
inconsistencies can be found both in the number of labels used and in the
way they are used. These problems have recently led research in the field
towards the use of user tags to classify music. With the advent of the
social network and music recommendation sites in Internet, user tags have
almost overtaken the role of the genre as the primary dimension for music
classification. Nevertheless, musical genre classifiers are useful tools for the
automatic organization of music databases, because genre is still the very
first selector used by users to browse present-day music catalogs.

There have been some claims that systems working with symbolic
information do not really reflect user’s needs, since real-world systems should
work with audio databases. This is partially true, because many people store
their music files in digital audio format, as well as music retailers do, but, on
the other hand, music scholars mainly work with scores, seldom with audio
files. Nevertheless, recent advances in polyphonic transcription and chord
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recognition from audio files suggest that it is possible to use such algorithms
to obtain a symbolic representation of music. Symbolic systems can be then
used as a back-end, working with the symbolic sequences obtained from the
audio files.

One of the goals in this thesis is to investigate systems able to recognize
the musical genre of symbolic music encoded as MIDI files, using statistical
features derived from the melodic, harmonic, and rhythmic aspects of music.

1.5.1 What is genre?

Musical genre is a quality of music that most people can perceive intuitively.
It is probably the most popular music descriptor, as it is often used to
describe, categorize, and even compare songs, albums, or authors. There
is not a formal definition of what a musical genre is. Moreover, the terms
genre and style are sometimes treated as synonyms. In (Fabbri, 1999), the
author usefully defined genre while distinguishing it from style:

• Genre is “a kind of music, as it is acknowledged by a community for
any reason or purpose or criteria, i.e., a set of musical events whose
course is governed by rules (of any kind) accepted by a community”.

• Style is “a recurring arrangement of features in musical events which is
typical of an individual (composer, performer), a group of musicians,
a genre, a place, a period of time”.

These definitions suggest that genre is a broader concept than style,
that involves in its definition the concurrence of an audience that somehow
agree in putting under the same term a collection of musical pieces. The
boundaries between different genres are imprecise, and the existence of
verified ground-truth corpora, i.e., definition by extension, seems the only
way to approximatively define these boundaries. It has been suggested
that only limited agreement can be achieved among human annotators when
classifying music by genre, and that such limits impose an unavoidable ceiling
on automatic genre classification performance (Aucouturier and Pachet,
2003; Lippens et al., 2004). In (Sordo et al., 2008) the authors compare
genre taxonomies created by experts’ consensus to folksonomies created by
the collaborative effort of a community (social tagging). They conclude
that experts, wisdom of crowds, and machines agree in the classification
and cohesion of some genres (e.g. Blues, Hip-Hop), and clearly disagree in
others (e.g. Rock).

Despite the above, in (McKay and Fujinaga, 2006b) the authors explain
some arguments in favor of using genre in music classification:
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• Genre involves a special emphasis on culturally predetermined classes
that makes it worthy of separate attention.

• Genre classification is useful to end users, who are already accustomed
to browsing both physical and on-line music collections by genre.

• Genre labels provide a vocabulary that can be used to discuss musical
categories.

• Research in automatic genre classification can also provide valuable
empirical contributions to the fields of musicology and music theory.

The authors also recommend the development of genre recognition systems
able to label different sections of a music piece differently, where windows
should be classified individually.

One of the arguments against using genre is that they do change over
time. New genres and subgenres appear regularly in the music market, while
pre-established genres tend to grow in size and, at the same time, change
their meaning. It is commonly thought that as novel musical ideas within
a genre become overused, and gradually become part of that genre concept,
certain pressure exists for new ideas to develop, leading to the raising of new
music genres. This ‘pressure’ comes from different sources. For example,
in (Temperley, 2004a), the communicative-pressure principle is discussed
and proposed as one of the forces that foster the evolution of musical
genres. Temperley argues that “music functions, at least in part, to convey
certain structures to the listener via a surface of notes. The communicative
process relies on mutual understanding between producers (composers and
performers) and listeners as to how surfaces and structures are related”. The
author of the present dissertation, as a practicing musician, has informally
identified at least two other ones. The first one exists on musically demanding
genres such as classical music or jazz: as skilled musicians and composers
get familiar with the ‘standard’ musical ideas from a genre, they start
getting bored with them. This combination of dexterity and boredom leads
their activity to innovation based on intellectual challenge, from where this
cutting-edge musicians and composers get more fun. The second source of
pressure for change exists in not so ‘musically demanding’ genres, the ones
where the entertainment industry, notably recording companies and mass-
media corporations are the driving force. As the music in these kind of
genres is not intrinsically complex or elaborated, at least from the strictly
musical point of view –though certainly it is in the more technological aspects
of the business as recording, production and selling– the innovation comes
from the need to ‘be different’ (as an equivalent to be new !) imposed by the
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media business. In this line, in (McLeod, 2001), the author suggests that
in electronic music,“the naming of new subgenres can be linked to a variety
of influences, such as the rapidly evolving nature of the music, accelerated
consumer culture, and the synergy created by record company marketing
strategies and music magazine hype”.

Nevertheless, research on music genre recognition is worth the value, as
it provides a workbench where several aspects of MIR can be tested and
evaluated. Also, despite all the criticism, musical genres remain a very
effective way to describe and tag artists and their music.

1.5.2 Application of music genre recognition systems

Immediate applications are the classification, indexation and content-based
search of digital music libraries, where digitized (MP3), sequenced (MIDI)
or structurally represented (XML) music can be found. In general, every
tag-based organization of music objects is a field of application for such
recognition systems.

Other applications include the modeling of user musical taste in order to
look for that kind of music over large musical databases. Such a model could
be used in cooperation with automatic composition procedures to guide this
latter process according to some stylistic profile provided by the user.

Music genre recognition systems can help in the task of authorship
attribution. System designed to classify fragments of music pieces can also
help in musicological analysis to guide in the search of specific stylistic devices
inside digital scores.

1.5.3 State of the art in music genre recognition

In the music genre recognition, genre is not limited to broad categories of
music, such as Jazz or Classical music. It can also mean, for example,
the identification of particular composers or performers. Also, music
classification based on mood tags is a task closely related to genre recognition.
Works on music genre recognition can be broadly divided in audio encoding
and symbolic encoding based applications. In each of this areas, further
categories can be established, based on the kind of features used for
classification, or the computational approach taken to perform recognition.
Audio based genre classification is not reviewed here, but a good review
on these works, although a bit outdated, can be found in (Ahrendt, 2006;
Scaringella et al., 2006). The reader can also refer to the ISMIR conference
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proceedings6, one of the most important conferences in the MIR field, where
a fair amount of these works can be found.

Music classification based on symbolic representations include the classi-
fication of composers, or authorship attribution (Backer and Kranenburg,
2005; Hontanilla et al., 2011; Margulis et al., 2008; Stein et al., 2007),
recognition of mood (Hu et al., 2008), or performance style (Dannenberg
et al., 1997; Stamatatos and Kavallieratou, 2004). Works focusing on genre
recognition in the symbolic domain are reviewed below, in a more or less
chronological order.

In Carpinteiro (1998) the author presents a hierarchical self-organising
map (SOM) able to analyze time series of musical events. The model can
recognize instances of a reference sequence (a fugue by J.S. Bach) in presence
of noise, and even discriminate those instances in a different musical context.
In this work, the SOM is used as sequence recogniser, using a time integration
mechanism in the input layer of two SOM, arranged one on top of the other,
to represent the reference monophonic melodic sequence in order to provide
the SOM with the ability of processing time sequences.

In the work by Thom (2000) pitch histograms are used to describe
blues fragments of the saxophonist Charlie Parker. The author developed a
probabilistic mixture model of variable-sized multinomials, and a procedure
that uses this model to learn how to perceive/generate variable-sized
histograms. The approach is able to discover powerful musical abstractions
when trained on saxophonist Charlie Parker.

(Tzanetakis et al., 2003) perform genre classification based on pitch
histograms extracted from both audio and MIDI files. Results from symbolic
and audio data are compared. A set of 100 musical pieces in MIDI format,
distributed in five genres, and an additional 500 audio pieces generated
from MIDI files, plus 500 general audio pieces were used for comparison
and evaluation. For classifiers trained on symbolic data, a 50% accuracy is
reported for a 5-genre classifier, and a 80% accuracy is obtained when using
pair-wise classifiers.

The authors in Shan and Kuo (2003) investigate the mining and
classification of music genre by melody from a collection of MIDI music,
including New Age songs from Enya, a Beatles album and Chinese folk
songs. In their approach they obtain a melody representation by deriving
chord n-grams and sequences from the previously extracted melody using
several ad-hoc heuristics. The method used is associative classification that
relate frequent itemsets to classes. They report an average accuracy from

6http://www.ismir.net

21

http://www.ismir.net


CHAPTER 1. INTRODUCTION

70% to 84% for 2-way classification using derived-chord sequences as melody
representations.

A work on melody based genre recognition is found in (Li and Sleep,
2004). The authors empirically demonstrate how dimensionality reduction
on combined feature sets can improve classification accuracy. Melodies are
extracted from a 4-genre corpus of MIDI files and represented as pitch
sequences. Feature sets based on bi-gram statistics and pitch and interval
properties are utilized. For feature selection, a PCA reduction followed by
an optimal transformation (Duchene and Leclercq, 1988) is applied, and
classification is performed by means of SVM. An average 5% improvement
on classification accuracy is obtained by combining the original feature sets,
reporting an average 73% of success when using a flat genre model.

In (McKay and Fujinaga, 2004), the authors present a system for
classification of MIDI files by genre, using a 2-level taxonomy with 3 top
genres and 9 leaf genres (the Bodhidharma dataset). They use feedforward
neural networks and k-nearest neighbour classifiers, and a genetic algorithm
for selecting models through feature selection. They report a 90% success
at leaf level and a 98% success at top level, using a five-fold crossvalidation
scheme.

(Basili et al., 2004) investigated the impact of different musical features
derived from MIDI on the accuracy of a genre recognition system using
different machine learning algorithms. Features and classification methods
were evaluated on a corpus of 300 MIDI files distributed in six genres.

In (Ruppin and Yeshurun, 2006), the authors combined techniques of
selection and extraction of musically invariant features with classification
using a compression distance similarity metric, as an approximation of the
Kolmogorov complexity. The approach was evaluated on a corpus of 50 MIDI
files distributed in 3 genres, reporting up to 85% success using a pitch/time
second derivative feature.

(Karydis, 2006) presented a music genre classification system that relies
on note pitch and duration features, derived from histograms. They con-
cluded that adding features based on note duration improve the classification
success of a system relying solely on pitch derived features.

In (DeCoro et al., 2007), the authors applied a Bayesian framework
to combine, or aggregate, a hierarchy of multiple binary classifiers, and
consequently improve performance over previous results on classifying the
Bodhidharma 2-level genre taxonomy.

The work presented in (Cataltepe et al., 2007) reported findings on using
MIDI files and audio features from MIDI, separately and combined together,
for MIDI music genre classification. They computed distances between MIDI
files using the normalized compression distance (NCD), an approximation to
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Kolmogorov complexity. Audio features were extracted from rendered MIDI
files. They evaluated their approach on the Bodhidharma dataset, getting
a 93% success rate when combining NCD and classification based on audio
features.

In (Pérez-Sancho et al., 2008), the authors presented a genre classification
framework for audio music based on a symbolic classification system. Audio
signals are transformed to a symbolic representation of harmony using a
chord transcription algorithm, by computing Harmonic Pitch Class Profiles.
Then, language models built from a ground-truth of chord progressions for
each genre were used to perform classification. A related work (Perez-Sancho
et al., 2009) modeled chord progressions as n-grams and strings, and then
applied perplexity and Naive Bayes classifiers in order to model how often
those structures are found in the target genres. The approach was evaluated
on a 2-level corpus consisting of 761 MIDI files distributed in 8 leaf sub-
genres and 3 top genres, using different textual chord representations. They
reported a 85% success at top level and a 50% success at leaf level, and
indicated that errors at leaf level occur mostly within top level genres.

In (Cruz-Alcázar and Vidal, 2008), three different classification methods
were used: two grammatical inference algorithms (ECGI and k-TSI), and
language modeling using n-gram models. These methods were tested with
two corpora of musical genres, containing three and four different styles
respectively, and several encoding formats. The best results in classification
were obtained with the n-gram models, reaching a 98.3% classification rate
with the three-classes corpus, and a 99.5% with the four-classes corpus.

The use of entropy based measures for the discrimination of different
classical music styles was investigated in Margulis et al. (2008). There, the
authors considered the use of entropy as a plausible measure that correlates
with the arousal potential –the psychological strength of a stimulus pattern–
as evidenced in some referred works. The entropy of eight musical parameters
in different classical music styles was examined. The music corpus used
for evaluation is composed of eight different repertoires of classical music.
Some interesting findings were reported, such as that average first-order and
normalized entropy for each repertoire from the 17th and 18th centuries
across all parameters was significantly correlated with the order of composer
birth dates.

In (Conklin, 2009) a method for symbolic music genre classification based
on a feature set pattern representation is proposed. An ensemble of sequential
patterns is used to classify unseen pieces using a decision list method. Results
on a small corpus of 195 folk song melodies are reported.
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Recently, some works have explored the combination of features derived
from the symbolic, audio, text, and metadata domains to improve perfor-
mance in genre classification. For example, in (McKay et al., 2010) the
authors investigated the genre classification utility of combining features
extracted from lyrical, audio, symbolic and cultural sources of musical
information. They found that cultural features extracted from web data and
listener tags were particularly effective, while they also found that features
derived from lyrics were less effective than the rest.

It must be noted that it is rather difficult to compare these works because
most of them use a different data set for their experiments. There are many
reasons for this situation. First, the different conceptions of musical genre
make it impossible to compare works dealing with different tasks, such as
genre or composer classification. However, even when the same task is carried
out, most authors have gathered their own data sets in different file formats,
because there is not any standardized, symbolic corpus for testing genre
classification algorithms. Music files are usually copyrighted material, and
this has prevented the MIR community from the creation of any publicly
available data set, although some attempts have been done in this direction,
such as the RWC database (Goto, 2004) or the Music Information Retrieval
Evaluation eXchange (MIREX)7.

From all the works dealing with symbolic music sequences, two differ-
entiated groups can be found according to the way music is described.
In the first group we can find those works that use a shallow description
of musical content, describing music using statistical features computed
from the notes. In the other group are the works that focus on the local
relationships of notes, using the music sequence itself as the input to the
classifier. Both approaches are useful to analyze music at different levels
– global and local – and are thus complementary. (Zanette, 2008) claims
that music perception takes into account statistical properties of music, as
the outcome of the composition process is an ordered sequence of events
conveying information, like a message. So statistical tools can be used to
study musical qualities. Thus, it seems reasonable to think that statistical
pattern recognition techniques can find enough information in music objects
to model the genre of a set of musical pieces.

7http://www.music-ir.org/mirex/wiki/MIREX_HOME
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1.6. BRIEF OUTLINE OF THIS THESIS

1.6 Brief outline of this thesis

As described in sections 1.2 and 1.3, this thesis tackles two MIR related
problems: melody part selection and music genre recognition using symbolic
music sources. This tasks are to be approached relying only on music content
(mainly notes) found on symbolic music objects like MIDI files. This implies
that information related to timbre is not taken into account, which is an
important characteristic of this work.

The rest of this manuscript is structured as follows:

Chapter 2: Technical background. Pattern recognition methods,
experiment design techniques and performance evaluation methods and
materials used in this thesis are reviewed.

Chapter 3: Melody part selection. Approaches using decision trees,
rule systems and fuzzy systems are discussed, and experimental results are
evaluated.

Chapter 4: Music genre recognition. Exploration of the statistical
feature space by SOMs is presented. Results from a human recognition
survey are discussed. Supervised learning experiments, by single classifiers,
ensembles, and combination of audio and symbolic data are presented and
discussed.

Chapter 5: Summary and future perspectives Conclusions and
contributions of this thesis are summarized here. Future research lines are
outlined.

25





2
Technical background

“All musicians are subconsciously mathematicians.”
Thelonious Monk

During the development of this work, many machine learning techniques
have been used or tested, from feature selection to performance evaluation.
Learning schemes from different paradigms have been applied, both as
single models or as ensembles, in order to discover which techniques are
best suited to deal with symbolic music information described by statistical
features. In particular, classifier ensembles have been targeted that use
a variety of base models and feature sets. The classical train-and-test
learning methodology has been used throughout the research, including
feature selection and performance evaluation techniques like crossvalidation
or leave-one-out estimation methods. This chapter describes all the schemes,
methods, and metrics used elsewhere. Also, experiment design is addressed
briefly, and pre-existing materials used in this research are described. This
section can be largely overlooked by those familiar with machine learning.

2.1 Unsupervised learning

Unsupervised learning (or clustering) is the process of learning from unla-
beled data. There are some reasons for interest in unsupervised learning.
For example, in some problems, collecting and labeling large sets of samples
can be very costly. Also, sometimes it is interesting to train first a model
with unlabeled data, then use supervision to label the groupings found, as
we shall do when applying self-organising maps to a music genre recognition
task. Finally, in early stages of a research, it may be valuable to do some
exploratory data analysis to gain some insight into the structure of the data
at hand. We shall discuss here the unsupervised learning techniques used in
this thesis, mainly the self-organising map or SOM.
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Figure 2.1: A competitive net for processing data grouped in three clusters.

2.1.1 Unsupervised competitive learning

Competitive learning, a type of unsupervised learning, is a method used by
some kinds of neural networks (Freeman and Skapura, 1991). In the presence
of input signals, the units in the output layer ‘compete’ for being the winning
unit, the one with the highest excitation level. Once the output value of each
unit is calculated, only the one with the highest value would be activated.
This is known as the winner-takes-all learning strategy.

An n-dimensional input vector x = {x1, x2, ..., xn} is processed by as
many units as clusters in the input space to be identified. Only the unit with
the highest excitation value would be activated with a value equal to one,
thus assigning a particular cluster to the input data:

yi =

{
1 if

∑
wijxj ≥

∑
wkjxj,∀k

0 otherwise
(2.1)

where wij is the weight for the connection between input xj and unit i.

Figure 2.1 illustrates the design of a simple net of three competitive units
able to identify clusters in a two-dimensional input space. Deciding which is
the winning unit relies on global information about each unit state. This is
represented in the figure as links between output units. A signal on one of
these links stronger than the unit activation value will make the unit become
inhibited, being its activation value equal to zero, as equation 2.1 states.
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Competitive learning algorithm

Suppose that a set of n-dimensional normalized vectors X = {x1,x2, ...,xn}
is going to be classified in k clusters. The network consists of k units, n
inputs, k weight vectors fully connecting input with units.

The competitive learning algorithm works by attracting weight vectors wi

towards the clusters. It iterates randomly on X , selecting an input sample
xi at each iteration. As the input vectors and weight vectors are normalized,
their dot product wixj equals the cosine of the angle between the vectors:

wixj = ‖wi‖ ‖xj‖ cosα = cosα

A test step chooses wm, the weight vector to update, to be the one whose
dot product is the maximum. This is the weight vector closest to the input
sample xj.

An update step moves wm towards the direction of xj. Several alternative
update rules can be used:

• Learning coefficient update: ∆wm = ηxj, η ∈ [0..1]. η decreases toward
zero at each iteration.

• Update by difference: ∆wm = η(xj −wm)

• Batch update: Weight updates are accumulated. Weights are modified
only at certain epochs.

Finally, the algorithm uses a stop criterion to end learning. This criterion
could be set in several ways, typically setting a maximum number of update
iterations to be performed.

Convergence analysis

For the competitive learning method to converge it is necessary that the
target clusters satisfy certain conditions. A solution is stable if weight vectors
remain ‘inside’ the clusters they represent. The solution is unstable if the
clusters overlap or they are very large, preventing the algorithm to find a
stable solution.

Suppose P = {p1,p2, ...,pm} is a set of vectors in an n-dimensional space,
located in the same semi-space. Then the set of vectors x = α1p1 + α2p2 +
...+ αmpm with αi > 0 is the cone defined by P.

A cone defined by a cluster contains all the vectors falling ’inside’ the
cluster. The angular diameter of a cone defined by normalized vectors is
proportional to the wider angle found between two vectors in the cluster. A
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sufficient condition to reach a stable solution is that the angular diameter of
the cluster cones must be smaller than the distance between them. In this
case a stable solution exists where weight vectors ‘fall’ inside each cluster
cone and remain there.

2.1.2 Self-organising maps (Kohonen networks)

A neural network whose inputs are real values computes a function

f : <n → <m.

The domain of f can be represented by a self-organising map (SOM), or
Kohonen network, (Freeman and Skapura, 1991; Kohonen, 1990), a particular
kind of unsupervised competitive net. When an input vector in a particular
region is selected, only one SOM unit is activated. This one is known as the
Best Matching Unit, BMU, the one with the maximum activation value.

SOMs are neural methods able to obtain approximate projections of
high-dimensional data distributions in low-dimensional spaces, usually bidi-
mensional. Different clusters in the input data can be located in the built
neural map. These clusters can be semantically labelled to characterize the
training data and also hopefully future new inputs.

Given the problem of mapping an n-dimensional space using an unidi-
mensional vector of Kohonen units, the goal is for each unit to specialize in a
particular area of the input space. When the network is fed with inputs from
such an area, the corresponding BMU will compute the highest excitation
value.

A Kohonen unit computes the distance between an input vector x and
its weight vector w. Any metric can be used to compute such distance. The
euclidean distance is the most commonly used.

In its simpler configuration, a SOM is organized as an unidimensional
array of units. All units located r positions to the right or to the left of an
unit make up the neighbourhood of radius r of this unit.

The SOM learning algorithm uses a neighborhood function φ(i, k, t). It
represents the coupling strength between BMU i and unit k at iteration t
of the training process. Only weight vectors of units in the neighborhood of
the BMU are updated at each new input. The neighborhood function value
is usually a function of the topological distance between the units:

φ(i, k, t) = φ(‖ri − rk‖ , t)

where ri,rk ∈ ND are the coordinates of units i and k in the map,
respectively. Thanks to the competitive learning rules and the neighborhood
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function, the SOM behaves as an elastic surface that adapts itself to the input
data domain. The stiffness of this surface is determined by the average radius
and form of the φ function.

A simple choice is to define φ(i, k, t) = 1 for all i units whose distance to
k is less or equal to r and φ(i, k, t) = 0 for other units. As it is desirable for
the amount of adaptation of weight vectors to decrease with time, it is usual
to select φ(i, k, t) = α(t) for units within radius r, where α(t) is a monotonic
decreasing function (0 < α(t) < 1). This type of neighborhood function is
known as bubble neighborhood.

Another type of commonly used neighborhood function is defined in terms
of the Gaussian function:

φ(i, k, t) = α(t) exp(−‖ri − rk‖
2

2σ2(t)
)

where α(t) is the same coefficient as in the bubble neighborhood. The
standard deviation of the gaussian function, σ(t), defines the width of the
neighborhood, similar to the bubble radius r. Here, α(t) and σ(t) are both
monotonic decreasing functions. Their precise form is not important. They
can be linear respect to the number of iterations, defined as

α(t) = α(0)(1− t/T )

where T is the maximum number of iterations for the training process. They
can also be defined as functions of inverse time:

α(t) = A/(B + t)

where A and B are constants. This kind of time-decreasing function is
adequate when working with very large maps and long training cycles,
because it allows for a fine adjustment of the weight vectors. The correct
values for this functions and their parameters are defined empirically.

The neighborhood radius value for a bubble-like neighborhood function
usually decreases linearly to one during training:

r(t) = 1 + (r(0)− 1)(1− t/T )

Figure 2.2 shows the influence area of the neighborhood function at initial
time t0, at t > t0 and at last iteration when t = T . The xy plane represents
a bidimensional SOM. The neighborhood radius decreases as t increases, and
so does the learning coefficient, represented as the distance between the top
discs representing neighborhood area and the map.

Next, the SOM training algorithm is presented.
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Figure 2.2: Neighborhood and learning rate evolution during SOM training.

General SOM training algorithm.

start Select initial values for w1, w2, ..., wm randomly. Define the initial
radius r, and a neighborhood φ with a learning rate α.

step1 Select an input vector x according to a given probability distribution.

step2 Select the BMU m (i.e., the unit closer to x).

step3 Update the weight vectors using the neighborhood function and the
following update rule:

wk(t+ 1) = wk(t) + φ(m, k, t)(x(t)−wk(t)), ∀1 ≤ k ≤M

where M is the number of units in the map.

step4 If the maximum number of iterations T has been reached then stop;
else modify φ as defined and return to step1.

The update rule in step 3 attracts the weight vector of unit m in the
direction of x. The weight vectors in its neighborhood are also attracted in
the same direction, though not quite as much as for unit m. The euclidian
distance is used here to measure the distance between x and the weight
vectors. During learning, the neighborhood size and the value of φ gradually
decrease, reducing the influence of a unit on its neighborhood.

The convergence of the learning process is influenced by many factors,
such as the form of the neighborhood function, the neighborhood size and
the way it is modified during the process. This could lead to specific problems
like the formation of knots of units with virtually the same weight vectors
or units that are excited with similar input vectors in different areas of the
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map. It becomes difficult to ‘undo’ these knots if the network plasticity has
decreased to a very low value. As there exists no general convergence proof for
multidimensional SOMs, best practice recommends the use of neighborhood
functions and learning parameters that are known to lead the learning process
to convergence.

SOM convergence analysis

A neighborhood function like

φ(i, k) =


1 if i = k

1/2 if i = k ± 1
0 otherwise

produces a concentration of units around the center of the input
distribution. The hard coupling of the units attracts them towards this
center. The correct learning strategy consists of starting the learning process
with a hard coupling, and reduce it gradually as the learning progresses.

In the bidimensional SOM case, this strategy makes the network units to
concentrate at the center. However, the distribution periphery also attracts
the units, unfolding the network and helping to achieve convergence. If it is
empirically known that training data are centered in the coordinates origin,
initializing network weights with small values helps backing this learning
process.

The parameters for the neighborhood function are searched in a way that
a threshold is obtained (unidimensional case), from which stable states of the
network can be reached. In the n-dimensional case an adequate neighborhood
function, a good initialization and an adjusting process for the α and r
parameters are chosen in order to avoid the network to freeze1. In case the
convergence process gets stuck, it is advisable to reset training with initial
random weights, and also try either a greater neighborhood radius or a lesser
decreasing ratio for the learning coefficient.

Bidimensional self-organising maps

Self-organising maps can be arranged as multidimensional lattices. A very
useful configuration for visualization purposes consists in organising the units
in the map in a bidimensional plane, in such a way that a neighborhood of
radius r of a unit includes all units within a distance r from the unit.

A specific advantage of bidimensional SOMs is its competence to produce
effective visualization of the clustering they produced. The units can be

1A networks freezes when its weight vectors do not update, or they do it too soon
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Rectangular layout Hexagonal layout

Figure 2.3: Two usual unit configuration in a bidimensional SOM.

interconnected in a rectangular or hexagonal layout (Figure 2.3), being the
hexagonal one more visually appealing. The visualization shows a non-lineal
projection of the probability density function of n-dimensional input data
into a bidimensional space, that is the result of the SOM learning process.

After the training stage, a new input vector is assigned to the map unit
whose weight vector is closer to it. Any metrics can be used to measure
the distance between input vectors and weight vectors. In this work the
euclidean distance is used to select the winning unit, as described in the
general algorithm presented in section 2.1.2. An input vector activates only
the unit whose weight vector is closer to it.

An optimal correspondence between the bidimensional map and the
probability density function of the input data p(x) that preserve the local
structures of p(x) is highly desirable –the map projection of p(x) can be
thought as a pressed flower. In most situations the exact form of p(x) need
not to be known, especially when x is many-dimensional. It is more important
to automatically find those dimensions and subspaces of the input domain
where a significant number of input values concentrates.

Map calibration

A map is calibrated by labeling map areas with labels corresponding to
certain input classes. This is achieved feeding the trained map with a set of
labeled input samples. Units being activated by certain samples are labeled
with these samples’ class. Each unit can be tagged with several labels, being
usually one of them the most frequent label. Ties can happen, however.
Once calibrated, the SOM can be used for classification purposes. The most
frequent label will be the one assigned to input samples firing the unit.
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Map visualization

SOMs are usually visualized using the U-map representation, where the units
are displayed as hexagons with a dot or label in their centre. The grey level of
unlabeled hexagons between units represents the distance between neighbor
units (the clearer the closer they are). For labelled units, grey level is an
average of the neighbor distances to this unit. This way, clear zones are
clusters of units, sharing similar weight vectors. The labels are a result of
calibrating the map with a series of test samples and indicate the class of
samples that activates more frequently each unit. Fig. 2.4 shows an example
of a U-matrix visualization of a SOM.

Figure 2.4: Example of U-matrix SOM visualization. The map has been
calibrated using samples tagged REAL. They form a cluster on the right of
the map, while units on the left are left untagged.

Another form of map visualization is the Sammon projection (Sammon,
1969), able to map n-dimensional data to a lower- (usually two-) dimensional
space in such a way that the inherent data‘structure’ is approximately
preserved. Fig. 2.5 shows the same map as in Fig. 2.4 using the Sammon
projection.

SOM parameter selection

Map shape An hexagonal lattice is to be preferred for visual inspection.
The edges of the map ought to be rather rectangular than square, because
the network of weight vectors must be roughly oriented along the major
dimensions of the input distribution p(x), in order to stabilize during the
learning process. Therefore, visual inspection of the input data distribution,
e.g. by Sammon mapping, can help finding suitable map dimensions.

35



CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.5: Example of Sammon projection of the map shown in Fig. 2.4.
Lattice nodes correspond to map units. The more compact node cluster
corresponds to the area tagged REAL in that figure.

Learning with few training samples When the number of training
samples is rather small, a cyclic training can be performed, where each
training sample is used several times. Several alternatives exist: samples may
be applied cyclically or in a randomly permuted order, or randomly selecting
input samples. In practice, cyclic application order is not significantly worse
than the other, mathematically better justifiable, alternatives.

Quality of learning It may be obvious that an optimum map configura-
tion should exist for a given input dataset. When it comes to compare maps
trained with the same input data and using the same neighborhood function,
the best one (that closer to the optimum) would be the one whose average
quantization error is smaller. The average quantization error, or Q error, for
short, is the mean of ‖x−wi‖ for all training samples, where x is the input
sample and wi its BMU weight vector. This measure is obtained inputting
the training data once again to the already trained network. Therefore, an
appreciable number of random initializations of the initial weight values, or
trials, ought to be tried, then selecting the map with the lower Q error.
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It is non-sense to compare the Q error of maps with different neighborhood
functions, as this value is minimum when φ(i, k) = δ(i, k) (Kronecker delta
function). However, the map would have not auto-organising power with such
a function. In general, the Q error depends strongly on the neighborhood
function.

Missing input sample components It is still possible to train a SOM
with incomplete data. The SOM implementation used in this work can deal
with missing input sample components by computing distance calculation
and weight vector modification steps using available input components.

SOM implementation The SOM implementation used in this work is
the SOMPAK package (Kohonen et al., 1995). It comes with utilities for
training and calibrating maps, then use them to cluster or classify new data.
It also includes U-mat and Sammon visualization utilities, as well as tools
for visualizing selected weight vectors components (called planes).

2.2 Supervised learning

2.2.1 Bayesian classifier

The Bayesian classifier is a supervised parametric classifier (Duda et al.,
2000). For a problem of c classes it computes a set of discriminant functions
gi(x), i = 1, . . . , c. It assigns a feature vector x to class ωi if

gi(x) > gj(x) for all j 6= i. (2.2)

(2.3)

For minimum-error-rate classification, gi(x) = P (ωi|x) is taken. Applying
the Bayes rule

P (ωi|x) =
p(x|ωi)πi∑c
j=1 p(x|ωj)πj

(2.4)

where πi are the priors of each class. Taking logarithms, and discarding the
denominator, since it is the same for all classes, we can write

gi(x) = ln p(x|ωi) + ln πi (2.5)

which is a convenient form of the discriminant function. Often, the densities
p(x|ωi) are assumed to be multivariate normal–that is, p(x|ωi) ∼ N(µi,Σi).
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In the general case, where the covariance matrices Σi are different for each
class, the resulting discriminant functions are quadratic:

gi(x) = xtWix + wt
ix + wi0, (2.6)

where

Wi = −1

2
Σ−1
i , (2.7)

wi = Σ−1
i µi, (2.8)

and an independent term

wi0 = −1

2
µtiΣ

−1
i µi −

1

2
ln |Σi|+ ln πi. (2.9)

Covariance matrix, mean vectors, and priors can be estimated by
maximum likelihood as follows:

µ̂i =
1

N

N∑
j=1

xj (2.10)

Σ̂i =
1

N

N∑
j=1

(xj − µi)(xj − µi)T (2.11)

π̂i =
ni
N

(2.12)

where N is the number of samples in a conveniently tagged training dataset,
and ni is the number of samples from class ωi.

Näıve Bayes classifier

The above assumptions lead to a classifier with up to (n2 + 4)c/2 parameters
to estimate: Σi, µi, and πi, for all i = 1 . . . c. Moreover, in multivariate
classification situations, with different covariance matrices, problems may
occur in the quadratic Bayesian classifier when any of the matrices Σi

is singular. This usually happens when there are not enough data to
obtain efficient estimative for the covariance matrices Σi, i = 1, 2, ..., c. A
straight forward modification of the general case, often used in classification
problems, is to assume that features are independent of each other, so that
Σi is diagonal. This both reduces the number of parameters to estimate,
making the classifier more robust, while eluding the potential singular matrix
problem. In this case, a so called Näıve Bayes classifier can be constructed,
where
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p(x|ωi) =
∏
j

p(xj|ωi). (2.13)

This assumption doesn’t hold for most problems. However, despite its
simplicity, it has been shown that such a classifier can obtain near optimal
classification errors (Domingos and Pazzani, 1997).

2.2.2 Nearest neighbour classifier

Also called the k-nearest neighbour, or k-NN classifier, this is one of the most
frequently used non-parametric (or lazy) learning algorithms (Aha et al.,
1991). It is trained by just storing training instances, and optionally do some
pre-computation that usually involves computing distance matrices. A test
instance may then be classified by calculating the distance to surrounding
training instances, and tagging it with the most frequent class label from
the k nearest training instances. Others strategies for assigning a class label
to a test instance could be used, like performing a weighted vote based on
distances to each of the neighbours.

In order to compute distances between points in feature space, several
choices exist. The Euclidean distance is the most commonly used. Other
alternatives such as Manhattan distance, or tangent distance (Duda et al.,
2000) can be applied, depending on the training data. In order to prevent
features with large values dominate distance measurements relative to
features with small values, features are often normalized or standardized
before storing them.

The choice of the number of neighbours k is important. It is often chosen
to be odd in order to prevent the risk of ties. When the number of training
samples is high, a higher value of k can be appropriate. An often used value
is the square root of the number of training samples. If k is too large, the
probability of including points of different classes increases. If it is too small,
outliers or noisy training samples can easily distort the classifier outcomes.
When k = 1, the classifier is called simply a nearest neighbour classifier

While its training phase is usually very fast, the disadvantage of k-NN is
that, like other lazy learners, classifications can be computationally expensive
to perform. A straightforward implementation would have a O(n2) time
complexity, where n is the number of training instances, as the distances
from the test point to all training points must be computed. However, a
variety of more efficient implementations are widespread available (Gómez-
Ballester et al., 2006; Moreno-Seco et al., 2000, 2003).
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2.2.3 Support Vector Machines

Support vector machines (SVM) are a type of discriminant-based classifiers
that rely on preprocessing input data to represent samples in a higher
dimension, where they will be linearly separable. With an appropriate non-
linear mapping to a sufficiently high dimension, data from two classes can
always be separated by an hyperplane. SVMs are designed specifically for
two-class problems, but they can be generalized to K-class problems by
defining K two-class problems, each one separating one class from all others.

Each pattern xk can be transformed by a nonlinear mapping φ to a higher
dimension space:

yk = φ(xk) (2.14)

where φ() is also called a basis or kernel function. The first step in building
a SVM is to choose an appropiate kernel for the problem at hand. In many
cases, polynomials, Gaussians, or other basis functions like sigmoids, are
used. The dimensionality of the mapped space can be arbitrarily high. A
linear discriminant in this space is

g(y) = wty + b. (2.15)

Let zk = ±1, according to whether sample k is in ω1 or ω2. Thus a
separating hyperplane ensures

zkg(yk) > 0, (2.16)

as shown in Figure 2.6. The distance ρ from the hyperplane to the instances
closest to it on either side is called the margin, and the optimal separating
hyperplane is the one that maximizes the margin. The goal of training a
SVM is to find this hyperplane. It is expected that the larger the margin,
the better generalization of the classifier. Assuming that a positive margin
ρ exists, then

zkg(yk)

||w||
≥ ρ, k = 1, . . . , n, (2.17)

and the goal is to find the weight vector w that maximizes ρ. To ensure
uniqueness of the solution, the additional constraint ρ||w|| = 1 is imposed,
which means that the solution should also minimize ||w2||. The common
formulation of this optimization problem is to fix ρ and solve
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min
w,b

1

2
||w||2 (2.18)

subject to zk(w
tyk + b) ≥ 1 ∀k = 1, ..., n. (2.19)

The support vectors are the training samples for which Eq. 2.17 is an
equality. That is, the support vectors are the training samples lying on the
margin, and so they constraint its width, as they are the closest points to
the hyperplane.
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Figure 2.6: Optimal hyperplane in a two-class problem projection. SVs are
support vectors lying on the maximum margin hyperplanes.

Suppose that the data are not separable in the mapped space, which
depends on the mapping function used, and the presence of outliers. Then
Eq. 2.18 has no solution. The constraints can be relaxed by introducing
positive slack variables associated to certain training samples yi:

zi(w
tyi + b) ≥ 1− ξi. (2.20)

If 0 < ξi < 1 the margin is not satisfied, but yi is still correctly classified,
as in Figure 2.6. If ξj > 1, then the sample is misclassified. Slack variables
are introduced as a margin error term that penalizes the objective function:
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min
w,b,ξi

1

2
||w||2 + C

∑
i

ξi. (2.21)

where the parameter C is a positive constant balancing the objective of
maximizing the margin and minimizing the margin error.

Several alternatives exist for training a SVM. One of the most popular,
implemented in the WEKA toolkit, and used in this work is the sequential
minimal optimization (SMO) algorithm (Platt, 1999). From the abstract of
this reference, we can read

Training a Support Vector Machine (SVM) requires the solution
of a very large quadratic programming (QO) optimization prob-
lem. SMO breaks this large QP problem into a series of smallest
possible QP problems. These small QP problems are solved
analytically, which avoids using a time-consuming numerical QP
optimization as an inner loop.

An important benefit of the SVM approach is that the complexity of the
resulting classifier is characterized by the number of support vectors rather
than the dimensionality of the transformed space. As a result, SVMs tend
to be less prone to problems of overfitting than other methods.

2.2.4 Multilayer Perceptron

A multilayer perceptron is a kind of feed-forward neural network. This is a
class of classifiers inspired by the model of a neuron from the organic brain.
They are composed of units called nodes or neurons, that are interconnected
by weighted links, as depicted in Figure 2.7. Concepts are learned by
modifying the values of these weights. The nodes are organized into layers.
The nodes xi in the input layer are provided with input data. The zk nodes in
the output layer provide the output of the network when an input instance
is present at the input layer. Usually, when a neural network is used for
classification purposes, each output node is associated with each possible
class. This kind of two-layer networks are called perceptrons. They are
only capable of learning linearly separable classes. However, if one or more
hidden layers of nodes are added in between the input and output layers, the
resulting multilayer perceptron is capable of learning non-linear relations.

Each node in the hidden and output layers typically computes a function
f of its inputs that produces an activation output. Such function is chosen
as to be a continuous non-linear function. Often, a ‘S’ shaped, or sigmoid
function is used, like the hyperbolic tangent, or the logistic function,
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Figure 2.7: A fully connected three-layer perceptron.

logistic(x) =
1

1 + e−x
, (2.22)

shown in Figure 2.8. Some networks also include a bias input to hidden or
output units through a weighted link, wj0 and wk0. The signal from each
output unit is a non-linear discriminant function gk(x), expressed as

gk(x) ≡ zk = f

(
h∑
j=1

wkj f

(
d∑
i=1

wjixi + wj0

)
+ wk0

)
. (2.23)

Backpropagation learning algorithm

The method most frequently used to learn the weights of the network is
the backpropagation algorithm. It is a supervised method, that aims at
minimizing the error in the output units, by adjusting the link weights
between layers. The basic learning process is to start with an untrained
network, with possibly random weights, present a training sample at a time,
and compare the network output vector z with a target output vector t. For
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Figure 2.8: The logistic function, often used as the non-linear activation
function of a perceptron unit.

the sake of simplicity, consider a three-layer perceptron without bias inputs.
The training error is computed as

J(w) =
1

2
||t− z||2. (2.24)

The backpropagation learning rule is based on gradient descent. The
network weights are updated as to reduce the training error:

∆w = −η ∂J
∂w

, (2.25)

where η is the learning rate. It controls how large the adjustments to the
weights are during each training iteration. Weight vectors are therefore
updated at each sample input, or iteration m

w(m+ 1) = w(m) + ∆w(m). (2.26)

Applying Eq. 2.24, the learning rule for hidden-to-output weights is

∆wkj = ηδkyj, (2.27)

where δk is called the sensitivity of output unit k, and it is defined as

δk = (tk − zk)f ′(netk) (2.28)

where f(netk) = zk. Similarly, the sensitivity for a hidden unit yj is defined
as

δj = f ′(netj)
c∑

k=1

wkjδk (2.29)
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where f(netj) = yj. This propagates the training error in the output back to
the hidden layer, and implicitly computes an effective target activation value
for each hidden unit. Thus, the learning rule for the input-to-hidden weights
is

∆wji = ηδjxi. (2.30)

There is a variety of training protocols for applying the backpropagation
algorithm. Given a multilayer network structure, they usually involve an
initialization step, setting up how training samples are presented to the
network, and specifying some stopping criterion. The latter usually involves
setting up a threshold θ on the training error, and stop training when the
change in the criterion function J(w) is smaller than θ.

A three-layer network can learn any continuous function from input to
output, given sufficient number of hidden units, proper non-linearities and
weights. In particular, any posterior probabilities can be represented by a
three-layer net.

2.2.5 Decision trees and rule learning methods

Decision trees

Decision trees, when used as classification tools, represent discrete-valued
functions. They can be re-represented as sets of if-then rules to improve
human readability. They are very popular inductive inference algorithms,
applied to a wide variety of tasks.

Decision trees classify instances by sorting them down the tree from the
root to some leaf node, which provides a discrete value for the instance, thus
effectively classifying it. At each tree node, a test on some attribute of the
instance is performed, each branch descending from that node corresponding
to one of the possible values of the attribute. If the attribute is not discrete,
the test is often an inequality splitting the attribute’s range in two descending
branches. In general, decision trees represent a disjunction of conjunctions
of constraints on the attribute values of instances. Each path from the root
to a leaf is a conjunction of attribute tests, being the tree itself a disjunction
of these conjunctions.

Several algorithms for learning decision trees exist. Here we describe the
CART (Classification And Regresion Trees) (Duda et al., 2000) methodology,
which is the one used in the random forest classifier described in section 2.2.5.
CART provides a general framework that can be instantiated in various ways
to produce different decision tree learning algorithms.
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Every decision tree learning algorithm progressively splits the training
set of samples into smaller and smaller subsets. Each splitting correspond
to a new node in the tree. In the ideal case, a perfect split will left samples
from different classes in different subsets. This kind of subsets are called pure
subsets. In practice, mixed classes are found in a subset, thus a decision tree
learning algorithm should use a criterion on whether it should stop splitting
at a given point or select another attribute and grow the tree further. The
CART approach considers a number of decisions to be made in order to
instantiate a decision tree learning algorithm:

How many splits will there be at a node? It strongly depends on the
attribute used for splitting. Often, a node is split in two branches,
resulting in binary decision trees.

Which attribute(s) should be tested at a given node? Fundamentally,
the attribute and the test performed on it should produce immediate
descendent nodes as pure as possible. Several different mathematical
measures of node impurity exist that have basically the same behavior:
node impurity should be 0 when all samples reaching that node are
from the same class. On the other side, it should be maximum when
all classes are equally represented in the sample subset reaching the
node. Entropy impurity is the most popular measure:

i(N) =
∑

jP (ωj) log 2P (ωj),

where N is a node and P (ωi) is the proportion of samples from class
ωi at node N . The drop in node impurity in a binary tree is defined by

∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR), (2.31)

where NL and NR are the left and right descendent nodes and PL
is the proportion of samples at node N that will go to NL. The best
test is the one maximizing ∆i(N). The impurity reduction (when using
entropy impurity) is the information gain obtained when splitting node
N . Single attribute based tests are often used, as they are easier to
compute. This way, splitting hyperplanes are perpendicular to axes
in the input space, creating regions that are assigned to particular
classes. The optimization of Eq. 2.31 is performed locally. So, the
impurity reduction is a greedy method and reaching a global optimum
is not guaranteed.
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When to stop splitting Growing a binary decision tree until each leaf
has the lowest possible impurity typically leads to overfitting the
training data. On the other hand, stopping splitting to early will
degrade classification power. Several different stop criteria can be
used: maximum tree depth is established prior to training, or a node
is declared a leaf when the classification error in a validation set is
minimized. Another criteria for stop splitting could be that the number
of samples reaching a node is below a given threshold. Likewise, a small
threshold can be set on node impurity reduction. A node is declared a
leaf if its best candidate split reduces node impurity by less than this
threshold.

Pruning the tree Pruning is the alternative to stopped splitting. In
pruning, trees are grown fully, until node impurity at leaves is
minimum. All sibling leaves are then considered for merging, that is, if
they elimination produces a small increase in impurity, they are deleted.
The benefits of pruning is that it avoids the horizon effect present in
every greedy method of search.

Labeling leaf nodes Given that a leaf node is pure, it gets the class label
of the training samples reaching this node. However, when a leaf node
is not pure, it is labeled by the class that has most training samples
represented at the leaf.

Dealing with missing attributes Samples with missing attributes are
called deficient samples. A straightforward strategy is to simply delete
them from the training data, but this is quite wasteful. Another
technique is to ignore samples with missing values when computing
node impurity on a given attribute. When it comes to classifying
deficient test samples, one approach is to use the test at a node
whenever possible but to use an alternative test whenever a test sample
is missing that attribute. For this to be possible, during training each
non-leaf node is assigned an ordered set of surrogate tests, in such
a way that the sample’s missing value is replaced by the value of
the non-missing attribute most strongly correlated with it. Another
technique consists of assigning most likely values (virtual values) to
missing attributes.

The random forest classifier

Random forests (RF) (Breiman, 2001) are weighed combinations of decision
trees that use a random selection of features to build the decision taken
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at each node. This classifier has shown good performance compared to
other classifier ensembles with a high robustness with respect to noise. One
forest consists of K trees. Each tree is built to maximum size using CART
methodology without pruning. Therefore, each leaf on the tree corresponds
to a single class. The number F of randomly selected features to split on the
training set at each node is fixed for all the trees. After the trees have grown,
a new sample x is classified by each tree and their results are combined.,
giving as a result a membership probability for each class ωi. Given a RF
with K trees, where each tree Tj outputs decision dj on an input sample x,
this probability p(ωi|x)

p(ωi|x) =

∑
j δ(ωi, dj)

K
(2.32)

where

δ(ωi, dj) =

{
1 if dj = ωi

0 otherwise
(2.33)

RIPPER rule induction algorithm

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) (Co-
hen, 1995) is a propositional rule learner. It builds a ruleset by repeatedly
adding rules to an empty ruleset until all positive examples are covered.
Rules are formed by greedily adding conditions to the antecedent of a rule
(starting with empty antecedent) until no negative examples are covered.
After a ruleset is constructed, an optimization post-pass manipulates the
ruleset so as to reduce its size and improve its fit to the training data. A
combination of cross-validation and minimum-description length techniques
is used to prevent overfitting.

RIPPER is an improvement on a technique called reduced error pruning
(REP), initially devised to prune decision trees (Quinlan, 1987), later
adapted to rule learning systems (Cohen, 1993). It is an overfit-and-simplify
learning strategy to handle noisy data, that first grows a model that overfits
the training data, then simplifies or prunes the model. This usually leads
to improved error rates on unseen data. Being REP a computationally
expensive algorithm, some improvements on it were devised. Incremental
reduced error pruning (IREP) improves on REP by achieving comparable
results much faster. RIPPER is a modification of IREP to increase its
generalization power without greatly affecting its computational efficiency. It
does so by three modifications: a new metric for guiding the pruning phase,
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a new stopping condition for adding rules to a rule set, and a technique for
optimizing the rules learned by IREP.

The fact that RIPPER starts considering less prevalent classes first,
makes it suitable for some kind of problems with imbalanced data, such
as the melody characterization problem studied in section 3.

2.2.6 The 1R classifier

The 1R rule learner is a very simple algorithm that proves surprisingly
effective on the standard datasets commonly used for evaluation (Holte,
1993). Its aim is to learn a single rule from a training set, that classifies
an object on the basis of a single attribute (like a one-level decision tree).
The 1R algorithm chooses the most informative single attribute and bases the
rule on this attribute alone. The algorithm assumes that the attributes are
discrete. If not, then they must be discretized. Missing values are handled
in the algorithm by treating them as a separate value in the enumeration of
an attribute.

This is an sketch of the algorithm:

• For each attribute a, form a rule as follows:

– For each value v from the domain of a,

∗ Select the set of instances where a has value v.

∗ Let c be the most frequent class in that set.

∗ Add the following clause to the rule for a:
if a has value v then the class is c

– Calculate the classification accuracy of this rule.

• Use the rule with the highest classification accuracy.

In this thesis, 1R is used for testing the discrimination power of single
features for music genre recognition, so it is used on one-dimensional datasets.

2.3 Information Fusion

The existence of multiple sources of information related to a concept, or
multiple viewpoints of a single object, is common place in the multimedia
world, where music is not an exception. This naturally leads to the existence
of multiple feature spaces conceived to describe the same type of objects.
Here comes a set of techniques known as information fusion, or more
specifically, data fusion defined in Wikipedia as
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... the use of techniques that combine data from multiple sources
and gather that information in order to achieve inferences, which
will be more efficient and potentially more accurate than if they
were achieved by means of a single source.

Below, two subsets of such techniques are described, early fusion and late
fusion.

2.3.1 Early fusion

A common approach to use multiple feature spaces in a machine learning
system is to fuse all them in a single, multimodal feature space. This
approach is called early fusion and it is defined in (Snoek et al., 2005) as

A fusion scheme that integrates unimodal features before learning
concepts.

Figure 2.9 shows a scheme of the method. An advantage of early
fusion techniques is that correlation between features extracted from different
modalities can be exploited to improve a classification system performance.
Also, only one (multimodal) model need to be learned. A disadvantage of the
approach is that difficulties to combine features into a common representation
could sometimes arise.
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Figure 2.9: An early fusion scheme for music related features.

2.3.2 Late Fusion

The problem arouse naturally as a need of improvement of classification
rates obtained from individual classifiers. As the limits of existing individual
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methods are approached and it is hard to develop better ones, the solution
of the problem might be just to combine existing well performing methods,
hoping that better results will be achieved. This kind of information fusion
is called late fusion or decision fusion and it is defined in (Snoek et al., 2005)
as

A fusion scheme that first reduces unimodal features to separately
learned concept scores, then these scores are integrated to learn
concepts.

i.e., first a set of models is trained (maybe on the same or different feature
spaces), and then their individual decisions on new input data are combined
in some way to produce a consensus decision. Late fusion focuses on the
individual strength of single modalities. As several classification schemes
can be used to learn from data, there is no need to rely on a particular one,
yielding a priori more robust systems. A disadvantage of these methods is
the potential loss of correlation in a mixed feature space. Also, in general, it
requires a greater learning effort than the early fusion approach, where only
one model is trained.

Figure 2.10 shows a late fusion scheme. The next section discusses some
strategies used in this work to perform the fusion of classifier outputs in a
single ensemble outcome.
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Figure 2.10: A late fusion scheme for music related features.

2.4 Ensemble Methods

Ensemble methods combine decisions from a set of base classifiers, in order
to improve both the accuracy and robustness of single classifiers. Works on

51



CHAPTER 2. TECHNICAL BACKGROUND

this subject point out the importance of the concept of diversity in classifier
ensembles, with respect to both classifier outputs and structure (Cunningham
and Carney, 2000; Dietterich, 2000; Kuncheva, 2003; Partridge and Griffith,
2002). The ensemble methods presented here could be regarded as commit-
tees of ‘experts’ (Blum, 1997), in which the decisions of individual classifiers
are considered as opinions supported by a measure of confidence, usually
related to the accuracy of each classifier. The final classification decision is
taken either by majority vote or by a weighing system.

2.4.1 Voting schemes

Designing a suitable method of decision combinations is a key point for
the ensemble’s performance. Different possibilities have been explored and
compared in this work. In particular, several weighted voting methods, along
with the unweighted plurality vote (the most frequent class is the winner
class). In the discussion that follows, N stands for the number of samples,
contained in the training set X = {xi}Ni=1, M is the number of classes in a
set C = {cj}Mj=1, and K classifiers, Dk, are utilized.

Several choices are presented below. They are numbered for further
reference.

Unweighted methods

1. Plurality vote (PV). Is the simplest method. Just count the number
of decisions for each class and assign the sample xi to the class cj that
obtained the highest number of votes. The problem here is that all the
classifiers have the same ‘authority’ regardless of their respective abilities to
classify properly. In terms of weights it can be considered that wk = 1/K
∀k.

Weighted methods

2. Simple weighted vote (SWV). The decision of each classifier, Dk,
is weighted according to its estimated accuracy (the proportion of successful
classifications, αk) on the training set (Opitz and Shavlik, 1996). This way,
the authority for Dk is just ak = αk. Then, its weight wk is:

wk =
ak∑
l al

(2.34)

Also for the rest of weighting schemes presented here (except the last
one), the weights are the normalized values for ak, as shown in this equation.
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Figure 2.11: Different models for giving the authority (ak) to each classifier
in the ensemble as a function of the number of errors (ek) made on the
training set.

The weak point of this scheme is that an accuracy of 0.5 in a two-
class problem still has a fair weight although the classifier is actually
unable to predict anything useful. This scheme has been used in other
works (Stamatatos and Widmer, 2002) where the number of classes is rather
high. In those conditions this drawback may not be evident. The following
methods (numbers 3 to 5) were first proposed in (Ponce de León et al.,
2006), to overcome this limitations. A comparison study between all methods
presented here is discussed in section 4.4.

3. Re-scaled weighted vote (RSWV). The idea is to assign a zero
weight to classifiers that only give N/M or less correct decisions on the
training set, and scale the weight values proportionally. As a consequence,
classifiers with an estimated accuracy αk ≤ 1/M are actually removed from
the ensemble. The values for the authority are computed according to the
line displayed in figure 2.11-left. Thus, if ek is the number of errors made by
Dk, then

ak = max{0, 1− M · ek
N · (M − 1)

}

4. Best-worst weighted vote (BWWV). In this ensemble, the best
and the worst classifiers in the ensemble are identified using their estimated
accuracy. A maximum authority, ak = 1, is assigned to the former and a null
one, ak = 0, to the latter, being equivalent to remove this classifier from the
ensemble. The rest of classifiers are rated linearly between these extremes
(see figure 2.11-center). The values for ak are calculated as follows:

ak = 1− ek − eB
eW − eB

,
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where
eB = min

k
{ek} and eW = max

k
{ek}

5. Quadratic best-worst weighted vote (QBWWV). In order to give
more authority to the opinions given by the most accurate classifiers, the
values obtained by the former approach are squared (see figure 2.11-right).
This way,

ak = (
eW − ek
eW − eB

)2 .

6. Weighted majority vote (WMV) The theorem 4.1 in (Kuncheva,
2004) states that accuracy of an ensemble of conditionally independent
classifiers is maximized by assigning weights

wk ∝ log
αk

1− αk
where αk is the individual accuracy of the classifier.

Given s = [s1, . . . , sK ]T the vector with the label output of the ensemble,
where sk is the label suggested for a sample x by classifier Dk, the classifiers
in the ensemble are said to have conditional independence if P (s|ωj) =∏K

i=1 P (si|ωj).
In order to use a voting method of this type as a reference for the

previously proposed methods (numbers 3 to 5), in this case the weight of
each classifier is computed as:

wk = log
αk

1− αk
In order to guarantee minimum classification errors, the prior probabilities

for the classes have to be taken into account too. See (Kuncheva, 2004) for
a proof. The key conclusion of this theorem is that the optimal weights do
not take into account the performance of other members of the ensemble but
only magnify the relevance of the individual classifier based on its accuracy.

Classification by weighted methods.

Once the weights for each classifier decision have been computed, the class
receiving the highest score in the voting is the final class prediction. If ĉk(x)
is the prediction of Dk for the sample x, then the prediction of the ensemble
can be computed as

ĉ(x) = arg max
cj∈C

∑
k

wkδ(ĉk(x), cj) , (2.35)
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being δ(a, b) = 1 if a = b and 0 otherwise.
Since the weights represent the normalized authority of each classifier,

it follows that
∑M

k=1 wk = 1. This makes possible to interpret the sum in
Eq. 2.35 as P (x|cj), the probability that x is classified into cj, and ĉ(x) as
the class for which this probability is maximum.

2.4.2 Ensemble diversity

Model diversity is a key design factor for building effective classifier
ensembles. This has been empirically shown to improve the accuracy of an
ensemble over its base models when they are numerous enough.As an informal
definition of diversity in an ensemble of classifiers, let us cite Kuncheva
in (Kuncheva, 2004):

Intuitively, we want the ensemble members to be as correct as
possible, and in case they make errors, these errors should be on
different objects.

This method of producing a pool of classifiers followed by a selection
procedure to pick the classifiers that are most diverse and accurate is know as
overproduce-and-select method for ensemble building. For selecting the most
diverse models within the ensemble the Pareto-optimal selection strategy can
be applied in order to discard models not diverse or not accurate enough.

Pareto-optimal selection

Let A = {a1, . . . , am} be a set of alternatives characterized by a set of criteria
C = {C1, . . . , CM} . The Pareto-optimal set A? ⊆ A contains all non-
dominated alternatives. An alternative ai is non-dominated iff there is no
other alternative aj ∈ A, j 6= i, so that aj is better than ai on all criteria.

This strategy for selecting the best set of models is based on rating them
in pairs, according to two measures (Kuncheva, 2004). So, in our case the
alternatives ai are pairs of classifiers (or models). The first measure is the
inter-rater agreement diversity measure κ, defined on the coincidence matrix
M of the two models in a pair. The entrymr,s is the proportion of the dataset,
which model hi labels as cr and model hj labels as cs. The agreement between
both classifiers is given by

κij =

∑
kmkk − ABC

1− ABC
(2.36)

where ABC is agreement-by-chance
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ABC =
∑
r

(
∑
s

mr,s)(
∑
s

ms,r) (2.37)

The second one is the pair average error, computed by

eij = 1− αi + αj
2

(2.38)

where αi and αj are the estimated accuracies of both models. This way,
classifiers are selected in pairs. Those with low κ and low average error will
be candidates for selection. Figure 2.12 depicts a sketch of a non-dominated
pair. The pairs lying inside the grey area would dominate pair < 2, 3 >,
as it would be better than it on all criteria (κ and e, in this case). As
there is no such pair, < 2, 3 > is in the Pareto-optimal set of selected pairs.
The solid line represents the Pareto-optimal set of pairs, while the dashed
line represents the kappa-error convex hull set, also used to prune classifier
ensembles (Margineantu and Dietterich, 1997). The convex hull is a subset
of the Pareto-optimal set.

<1,2>

<3,4>

<2,3>

e

k

non-dominated pair

Figure 2.12: A non-dominated pair example in Pareto-optimal selection.

The number of classifiers in the pruned ensemble cannot be specified in
advance with Pareto-optimal selection. This lack of control on the ensemble
size is seen as a defect of the method.

2.5 Feature selection

Given an ad hoc feature set, it is often desirable to know which features are
relevant for a particular classification problem, in terms of the classifier’s
performance. Also, the demand for a large number of samples grows
exponentially with the dimensionality of the feature space, a limitation
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known as the curse of dimensionality. The fundamental reason for this is that
high-dimensional functions have the potential to be much more complex than
low-dimensional ones, hence harder to learn. Feature selection techniques
exist that reduce such large feature spaces by keeping most informative
features. Another way to achieve such dimensionality reduction is to apply
feature extraction techniques, consisting of deriving a smaller set of new
features from the original ones. However, usually these techniques do not
discard original features as they are still needed to compute the new ones.
In this section, feature selection and extraction techniques used elsewhere in
this work are presented.

2.5.1 A feature ranking technique

This method is a simple feature ranking technique for two-class problems. It
assumes feature independence, that obviously do not hold in most cases, but
can help selecting the most a priori relevant features. As it doesn’t check
for correlations, feature redundancy is not detected. The method tests the
separability between classes provided by each descriptor independently, and
uses this separability to obtain a feature ranking.

Consider that the M features at hand are random variables {Xj}Mj=1

whose N sample values are those in some dataset. We drop the subindex
j for clarity, because all the discussion applies to each feature. The set of
N feature values are split into two subsets: {X1,i }N1

i=1 are the descriptor
values for samples from class ω1, and {X2,i }N2

i=1 are those for samples from
class ω2, X1 and X2 are assumed to be independent random variables, since
both classes are assumed to follow independent population distributions. We
want to know whether these random variables do indeed belong to different
distributions. Considering that both sets of values hold normality conditions,
and assuming that the variances for X1 and X2 are different in general, the
test contrasts the null hypothesis H0 ≡ µ1 = µ2 against H1 ≡ µ1 6= µ2. If H1

is concluded, it is an indication that there is a clear separation between the
values of this descriptor for the two classes, so it is an a priori good feature
for classification. Otherwise, we must conclude that both X1 and X2 follow
the same data distribution, and this particular feature, taken alone, will not
help to discriminate between classes ω1 and ω2.

The Welch’s test is used for contrasting the hypothesis. It defines the
following statistic:

z =
|X̄1 − X̄2|√

s21
N1

+
s22
N2

, (2.39)

57



CHAPTER 2. TECHNICAL BACKGROUND

where X̄1 and X̄2 are estimated means, and s2
1 and s2

2 are estimated variances
for the feature values in a given dataset. The greater the z value is, the wider
the separation between both sets of values is for that descriptor. A threshold
to decide when H0 is more likely than H1, that is to say, the descriptor
passes the test for the given dataset, must be established. This threshold,
computed from a t-student distribution with infinite degrees of freedom and
a 99.7% confidence interval, is z = 2.97. Features with a z value greater
than the threshold are kept, and the rest are discarded. Furthermore, the z
value permits to rank features tested on the same dataset according to their
separation ability.

2.5.2 Fast Correlation-Based Filter

The fast correlation-based filter (FCBF) described in (Yu and Liu, 2003) is a
feature search method that uses a symmetrical uncertainty (SU) correlation-
based measure to evaluate features. This measure indicates how much of
a feature can be predicted given the information in another feature. The
method finds a set of predominant features in two steps. First, relevant
features are ranked according to their SU value with respect to the class
(SUc). A threshold δ on SUc can be established to discard features not
enough relevant . In the second step, redundant features are further
discarded. A feature Fq with rank q is considered redundant if its SU with
respect to any feature Fp such that p < q is greater than its SUc. FCBF has
been shown to efficiently achieve high degree of dimensionality reduction for
high-dimensional data, while enhancing or maintaining predictive accuracy
with selected features.

The correlation measure SU between two variables X and Y is defined as

SU(X, Y ) = 2

[
IG(X|Y )

H(X) +H(Y )

]
, (2.40)

where

IG(X|Y ) = H(X)−H(X|Y ), (2.41)

where H(X) is the entropy of variable X and H(X|Y ) is the entropy of X
after observing values of another variable Y , known as conditional entropy.
They are defined as
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H(X) = −
∑
i

P (xi) log2(P (xi)), (2.42)

H(X|Y ) = −
∑
j

P (yj)
∑
i

P (xi|yj) log2(P (xi|yj)). (2.43)

The SU measure is in the range [0, 1], with the value 1 indicating that
knowledge of the value of either one completely predicts the value of the other,
and the value 0 indicating that X and Y are independent. In experiments
reported by the authors in (Yu and Liu, 2004), the relevance threshold δ
is heuristically set to be the SUc value of the bN/ logNc-th ranked feature
for a given data set. However, when no prior knowledge about the data is
available, the authors recommend using δ = 0.

2.5.3 Principal component analysis

A technique that deals with the correlation between features to obtain
new, uncorrelated features is Principal Component Analysis (PCA). This is
achieved transforming the original feature space of d dimensions into a new
space where features are uncorrelated and calculated as linear combinations
of the original ones. PCA finds the orthogonal axes of the new space. The
first axis is the one where the variability of the original data is maximum,
that is, its direction is that of a line in the original feature space where the
projection of sample points gives the maximum dispersion. The second axis
is one orthogonal to the first where dispersion is maximum, and so on. The
transformation can be expressed as

Y = W TX (2.44)

where Y are the transformed samples, W is a d×d orthogonal transformation
matrix, and X are the original samples. It can be proven that

µY = W TµX (2.45)

ΣY = W TΣXW (2.46)

where µX ,µY are the sample means, and ΣX ,ΣY the covariance matrices in
the original and transformed space, respectively. ΣY is a d × d diagonal
matrix, showing that new space features are uncorrelated. The values λi in
the diagonal of this matrix are the eigenvalues of ΣX , and the columns of
W are its eigenvectors. ΣX is a symmetric positive semidefinite matrix, with
real eigenvalues. Furthermore, these values are ordered:
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λ1 ≥ λ2 ≥ . . . ≥ λd (2.47)

corresponding to the variance of the transformed samples in each dimension.
Thus, the dimension associated with the first eigenvalue has the greater
variance, and the first column of W –the eigenvector associated with λ1–
defines the direction for this dimension. This is the first principal component
–the first axis in the transformed space–, and it explains the maximum
variance direction of the original samples. The same applies to the other
transformed dimensions. The axes in the transformed space are ordered by
eigenvalue, so selecting only the first k axes that provide a large value of
the total original variance, the dimensionality of the original space can be
reduced at a low cost. Often, there will be just a few k large eigenvalues,
and this implies that k is the inherent dimensionality of the data, while the
remaining d− k dimensions generally contain noise.

An interesting point in PCA is that the coefficients of W can be
interpreted to understand how original features contribute to the total
variance of the samples. Features corresponding to coefficients with larger
values are considered to contribute more to the variance explained by the
principal component under study.

A drawback of this technique is that, despite possibly k < d, in general all
the original features still need to be computed, as features in the transformed
space are linear combinations of them.

2.6 Fuzzy systems

Fuzzy systems are reasoning systems based on fuzzy logic, a form of many-
valued logic derived from the fuzzy set theory. A good introduction to fuzzy
logic can be found in (Lee, 1990). In contrast with crisp logic, fuzzy logic
truth values ranges in degree between 0 and 1. In most fuzzy systems,
facts are expressed by fuzzy variables, often called linguistic variables. Each
variable x has a term set T (x) over its universe of discourse U , from which
it can take values up to a certain degree. For example, if speed is a linguistic
variable, its term set could be

T (speed) = {slow,moderate, fast}

where each term is characterized by a fuzzy set or membership function.
Fuzzy sets are sets whose elements have degrees of membership. Thus, for a
term t, µt : U =⇒ [0, 1] denotes its membership function. This function has
often a bell-like, triangular or trapezoidal shape, as in Figure 2.13. In this
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example, a speed value of 80 km/h would be considered as moderate rather
than fast.
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Figure 2.13: Representation of fuzzy speeds by fuzzy sets.

This way, a fuzzy expression like speed IS fast has a truth value between
0 and 1, depending on the actual numerical value of speed. Expressions are
connected by logical operators like ∧ (AND), and ∨(OR), to express more
complex facts. This operations are often implemented as

µx ∧ µy = min(µx, µy)

µx ∨ µy = max(µx, µy)

Other implementations include bounded product, bounded sum, etc. See (Lee,
1990) for a detailed description.

The knowledge about the problem domain is implemented as fuzzy rules,
where fuzzy expressions connected by logical operators form the antecedent
part of the rule. A fuzzy system is said to be a Mamdani -type fuzzy system
when its rules’ consequent is a fuzzy expression itself. Another kind of fuzzy
systems are Takagi-Sugeno systems, where the consequents are real-valued
functions. In this work only Mamdani-type fuzzy systems are used. A fuzzy
system contains four modules:

• a knowledge base (KB), comprised of a data base (DB) and a rule base
(RB). The DB are the linguistic variables and their associated terms
and membership functions. The RB is the set of fuzzy rules defined in
the system.

• a fuzzy inference engine. The core module that applies fuzzy inference
methods to derive a fuzzy consequence from fuzzy inputs.
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• an input fuzzyfication interface. It converts crisp input values into fuzzy
values.

• an output defuzzyfication interface. It converts the system fuzzy
outcomes into crisp output values.

Let’s define a simple problem in order to illustrate how a fuzzy system
operates. Consider we want to evaluate the risk of driving a car2. Two
possible input variables could be the age of the driver and the power of the car
engine. The linguistic variables and their terms and associated membership
functions are represented in Figure 2.14. Our domain expert has provided
us with two fuzzy rules:

R1: IF age IS young AND car-power IS high
THEN risk IS high

R2: IF age IS normal AND car-power IS medium
THEN risk IS medium
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Figure 2.14: Example of fuzzy variables, their linguistic terms and respective
membership functions.

The fuzzy system then operates in three steps:

1. Fuzzyfication step (Figure 2.15). Measurements of the relevant input
variables are converted into appropriate fuzzy sets to express measure-
ment uncertainties by linguistic terms, converting the original crisp
variable into a fuzzy variable. For each fuzzy expression (x IS a), µa(x)
is computed.

2This example was borrowed from a tutorial in fuzzy logic, part of the Advanced Course
on Knowledge Discovery, Ljubljana, 2005, by Michael R. Berthold. This tutorial can be
found here: http://videolectures.net/acai05_berthold_fl/ .
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2. Fuzzy inference (Figure 2.16). The fuzzyfied measurements are used
by the inference engine to evaluate the rules stored in the fuzzy rule
base. The result of this evaluation is one or several fuzzy sets defined
on the universe of possible outputs. Applying the operators that
connect fuzzy expressions in a fuzzy rule antecedent, we obtain the
degree of fulfillment of the rule. For example, in Figure 2.16, for
rule R1 the AND operator has been implemented by taking µR1 =
min(µyoung(x), µhigh(y)).

Rule activation is the process by which the degree of fulfillment of a
rule acts on an output fuzzy set. Activation methods include taking
the product or the minimum of the degree of fulfillment and the
output membership function. The figure illustrates the minimum as
the activation function.

Finally, results from each rule are accumulated. In our example, the
maximum of the activations level for both rules is taken as the final
fuzzy output value. Other accumulation operators are the bounded
sum, or the normalized sum.

3. Defuzzyfication (Figure 2.17). The fuzzy outputs are finally converted
into crisp numbers (either a single value or a vector) that, in some sense,
is the best representative of the fuzzy output sets. The most commonly
used method of defuzzyfication is the Center Of Gravity (COG) that
computes the centroid of the area of aggregated output membership
functions.

Fuzzy systems have been criticized because in their classical definition
they don’t make use of training data (Duda et al., 2000), and rely uniquely
on human expert’s knowledge. Neural networks and genetic algorithms have
been used to allow fuzzy systems to learn their KB from training data. In
the next section fuzzy systems extended by genetic algorithms are discussed.

2.6.1 Genetic fuzzy systems

A fuzzy system making use of a genetic algorithm (GA) in its design process
is called generically a genetic fuzzy system (GFS). In this work the use of
a GA in a fuzzy system is limited to the definition of the data base. In
particular, a GA is used to learn fuzzy membership functions for predefined
linguistic variables from training data. The common approach is that an
individual in the GA population represents a different DB definition, that
is, each chromosome contain a coding of all membership functions giving
meaning to the linguistic terms. The degree of adaptation of an individual is
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Figure 2.15: The fuzzyfication step. For each fuzzy expression in a rule, the
corresponding linguistic term membership function is applied to crisp input
values x and y, and a probability for the fuzzy term to be true is obtained.
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Figure 2.16: Fuzzy inference step example. The minimum (associated to
the AND operator) of fuzzy term probabilities is taken as the probability of
the rule. Membership functions of linguistic terms in output fuzzy terms
are truncated at the rule probability level. The final accumulation step
aggregates areas under the truncated output fuzzy sets.
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Figure 2.17: Defuzzyfication example. The Centre Of Gravity method is
used to obtain a crisp output value.

measured using a fitness function that usually is based on the application of
a fuzzy system to a test dataset, using a KB formed by a predefined RB and
the DB encoded in the individual’s chromosome (Cordón and Herrera, 1995).
A method for properly encoding membership functions into a chromosome
and decoding them is explained in section 3.3.2.

2.7 Experiment design

2.7.1 Orthogonal arrays

Orthogonal arrays (OA) (Hedayat et al., 1999) are a device often used for
experiment design. Frequently, experiments have some free parameters to
configure (for example, the number of runs in a GA). The combination
of parameter values can lead to a huge number of experiments to be
performed, which is often not practical. In this situation, a reduced number
of experiments is desirable, while one would like to be sure that the free
parameter space is explored in a consistent way. An orthogonal array of
m runs, n variables, strength s and level l, denoted OA(m,n, l, s), ensures
that, given any s < n parameters with l values each, all their respective
values will appear in combination in an equal number of experiments. This
avoids testing all possible combinations, while remaining confident that every
combination of s parameters appears at least once in some experiment. Here
is an example, denoted OA(8, 5, 2, 2):
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00000
10011
01010
00101
11001
10110
01111
11100

This example express the configuration of 8 experiments with 5 free
parameters, each of which can take 2 different values (0 and 1, mapping
to whatever values make sense for the parameters). Each row corresponds to
a different experiment setup, and each column to a different parameter. The
strength of the array (2) says that taking any two columns, any combination
of 0’s and 1’s would be tested and equal number of times (two times in this
example).

2.8 Performance evaluation

This section reviews which are the evaluation metrics and methods used in
this work. It also presents some of the music collections previously available
in the literature.

2.8.1 Evaluation metrics

The most widely used metrics to assess the accuracy of a classification method
is the correct classification ratio or its inverse, the classification error rate.
This accuracy is usually estimated using different datasets for training and
testing the classifier.

Information retrieval metrics

When assessing the performance of a two-way classification method, it
becomes relevant the use of information retrieval (IR) metrics. There
exist a huge variety of such metrics, aimed at measuring the effectiveness
of information retrieval methods, notably those working with text. Such
systems are often devoted to the retrieval of relevant documents from a
document database, given a query. In the case of a two-way classifier, these
metrics can be applied to each class separately, measuring the effectiveness
of the classifier in successfully classifying samples of that class. The problem
can then be posed in this terms: ‘Retrieve all samples of class X from the
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database’. In this case, the test data are the ‘database’ from which relevant
samples from the given class shall be extracted.

Precision and Recall are the most widely used metrics to assess a system’s
effectiveness in the IR world. They are also fairly well understood quantities.
These are their classic definitions:

Precision The proportion of retrieved material that is actually relevant.

Recall The proportion of relevant material actually retrieved in answer to
a query.

In terms of measuring the output given by a classifier for a given query
class A, we can redefine precision as

the proportion of test samples that actually belong to class A
among those predicted as A by the classifier.

Recall can as well be redefined as

the proportion of test samples predicted as A with respect to all
A samples in the test set.

Precision and recall can also be interpreted as probabilities:

• Precision as an estimate of P (A/CA), the conditional probability that
an item will actually belong to class A given that it was predicted to
be A.

• Recall as an estimate of P (CA/A), the conditional probability that an
item will be labeled as class A given that it actually belongs to class
A.

where CA is the classifier answer and A represent the actual class of the
sample.

Both precision and recall can be computed in terms of error and success.
Given a two class problem, a confusion matrix can be build. Such a matrix
contains information about actual and predicted classifications done by a
classifier. Table 2.1 shows the confusion matrix for a two class (A and B)
classifier.

The entries in the confusion matrix have the following meaning with
respect to class A:
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Table 2.1: Confusion matrix for a two class classifier

predicted
A B

actual A TP FN
B FP TN

true positive (TP) number of correct predictions for class A samples.

true negative (TN) number of correct predictions for class B samples.

false positive (FP) number of incorrect predictions for class B samples.

false negative (FN) number of incorrect predictions for class A samples.

Here, we identify class A with positive samples and class B with negative
ones.

Given the confusion matrix, the precision (P ), recall (R), and accuracy
(Ac) measures are calculated as in eqs. 2.48 to 2.50:

P =
TP

TP + FP
(2.48)

R =
TP

TP + FN
(2.49)

Ac =
TP + TN

TP + TN + FP + FN
(2.50)

Note that both P and R are a per-class measure, while Ac is the accuracy of
the model being evaluated.

The effectiveness of the system determined by P , R, and Ac may not be
an adequate performance measure when the number of negative instances is
much greater than the number of positive instances. Suppose there are 1000
instances, 995 of which are negative instances and 5 of which are positive
ones. If the system classifies them all as negative, the accuracy, as well as
the precision for the negative class, would be 99.5%, even though the classifier
missed all positive cases. Other performance measures account for this by
including TP in a product. One of the most widely used is the F -measure:

F =
2×R× P
R + P

that is actually the harmonic mean of precision and recall. This measure will
be used to assess classifier performance whenever the problem has one class
that is underrepresented with respect to the other one.
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2.8.2 Evaluation methods

In order to estimate the generalization error of a classifier, datasets are
typically split in training and test (or validation) sets. The classifier is built
using trained data, and its performance is evaluated on test data. A key
question is to avoid overfitting training data, as this normally is a sign of
poor performance on unseen data.

Cross-validation This is one common method that is used to evaluate how
well a classifier is expected to perform. This involves first randomly dividing
the ground-truth instances into k equally sized parts. The classification
algorithm is then used to train k models that are each validated once. The
training and validation of each of the k models is called a fold. Each fold
involves using one of the k data partitions for validation and the other k− 1
partitions for training. Each of the k partitions is thus used for validation
exactly once, and none of the k trained models is ever validated on instances
that were used to train it. The average error rate and standard deviation
of the error rate is then computed across all folds. Usually a choice of k
between 3 and 10 is made, depending on the size of the dataset and the
number of classes in it. As a rule of thumb, one would like to have a
sufficient number of training samples from all classes, in order to build an
accurate model , as well as enough test samples that will allow robust error
estimation. Also, It is usually best to make sure that each class is represented
in comparable proportions in each data subset. Stratified crossvalidation is
a form of crossvalidation that keep class proportions across folds. Whenever
possible, a balanced dataset, where all classes are represented more or less
equally, is desirable for evaluating a classifier. However, this depends on the
nature of the problem to solve. For example, in melody part selection, a
problem addressed in Chapter 3, when building ground-truth sets from real
data, melody samples are underrepresented, compared to non-melody ones.

Leave-one-out When only a small ground-truth dataset is available for
training, a leave-one-out error estimation scheme could be appropriate. This
is merely a crossvalidation where k = n, where n is the number of instances
in the dataset. The classifier is trained n times on n−1 instances, and tested
in the remaining instance. This technique generally gives good estimates, as
the trained models been evaluated are almost identical to the classifier been
tested, when trained with the whole dataset). However, it can be a very
time consuming task, depending on the time complexity of the classification
scheme been used.
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File-level crossvalidation In some of the experiments in music genre
recognition performed here, a number of samples can be extracted from a
single MIDI file. This means that, using a simple crossvalidation scheme,
samples from the same MIDI file (indeed, from the same MIDI track) could
be found in both the train and test partitions. In order to avoid that, in those
experiments a MIDI file-level crossvalidation process is used, where samples
from the same MIDI file are always assigned to the same partition.

Classifier ensemble crossvalidation Evaluating classifier ensembles re-
quire three different datasets: one for training the base classifiers, one for
testing them and estimating their performance (and therefore their weight)
in the ensemble, and a third one to estimate the ensemble performance.
When only a dataset is available for estimating performance, a crossvalidation
strategy can be used. In general, the dataset is divided in k parts, as usually.
At least one of them is used for testing base classifiers, and another one for
validating the ensemble. The rest of partitions is usually used for training
base models. This experiment set up can be rotated and results averaged,
choosing each time different partitions for testing/validation, so each sample
is at least used for validation once.

Another variant of this evaluation technique for classifier ensembles
is to perform a nested crossvalidation within the ensemble. An outer
crossvalidation is performed, reserving one partition for validating the
ensemble, the rest of them to ‘train’ it. Training the kind of ensembles
used in this work (based on weighted and unweighted voting rules), means to
train base models, and to estimate their weights in the ensemble. For this,
an inner crossvalidation is performed. The ensemble training data is divided
in a number of partitions, and base classifiers are crossvalidated with them.
Results from this ‘internal’ evaluation are used to set up base model weights.
Then the base models are trained using the whole ensemble training data, in
order to perform an outer crossvalidation iteration.

Significance tests

Statistical hypothesis testing and significance testing tools based on interval
estimation can help to conclude whether a given classifier is better than
another based on their relative cross-validation performances. Such statisti-
cal hypothesis testing makes it possible to judge the likeliness that a given
average classification accuracy across cross-validation folds, for example, will
be within a certain range of the true performance of the classifier on new
data.

70



2.8. PERFORMANCE EVALUATION

There are a number of different hypothesis testing techniques that can be
used. Student’s paired t test can be used to examine the results of k folds in
order to, with a chosen confidence level, accept or reject the hypothesis that
the true error rate of a classifier is at or below some value.

A contingency table may be constructed in order to indicate how well
two classifiers perform on the same validation set after being trained on the
same training set. Such a table specifies the number of instances correctly
classified by both classifiers, the number incorrectly classified by both, the
number correctly classified by one but incorrectly by the other and vice versa.
McNemar’s test makes it possible to use a contingency table to test, with a
given confidence level, the hypothesis that the two classifiers have statistically
the same error rate.

In practice, one often wishes to test more than two classifiers in order to
find which is truly the most accurate. For example, consider the case where
l candidate algorithms are each trained on k datasets, such that there are k
trained classifiers for each of the l algorithms, and one wishes to test the l
algorithms for statistically significant differences in performance. Analysis of
variance (ANOVA) provides a means for doing this, by testing the hypothesis
that the mean error rates of the l groups are equal. If this hypothesis is
rejected, then a multiple comparisons test should be applied. The Tukey-
Kramer Honestly Significant Diference (TK-HSD) is one of the methods
available. It is a single-step multiple comparison procedure and statistical
test generally used in conjunction with an ANOVA to find which means
are significantly different from one another. The TK-HSD test is applied
simultaneously to the set of all pairwise comparisons. It identifies where the
difference between two means is greater than the standard error would be
expected to allow. It assumes equal variance in the compared distributions.
It has been used in several MIREX evaluation contest editions, starting from
2008.

2.8.3 Ranking aggregation

In pattern recognition applications, there are situations where making a
ranking is desirable. For example, in feature selection, a ranking of relevant
features could be helpful. Also, in classifier comparison, a ranking of
classifiers based on their estimated accuracy can help decide which do
perform best. Sometimes, a number of rankings are made by different
rating methods, and a ranking aggregation technique should be used. The
Borda’s count method is a simple yet effective ranking aggregation technique
originally devised for dealing with elections. This method assigns a weight
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to each candidate. Several alternatives exist for computing such weight. For
the k-th candidate, its weight w(k) can defined as:

w(k) =
R∑
i=1

n− ri(k), or (2.51)

w(k) =
R∑
i=1

1/ri(k) (Nauru variant) (2.52)

where n is the number of candidates, ri(k) is the position in the i-th ranking
for candidate k, and R is the number of rankings to aggregate.

Once the weights are computed, a new ranking where candidates are
ordered by their weight in descending order, or simply the candidate with
greater weight is declared as winner.

2.8.4 Evaluation materials

Both symbolic and audio music corpora used in this thesis are described here.
Some of them were built by the author’s research group, where indicated.
Tables 2.2 and 2.3 show a summary of both kinds of datasets. In the case of
symbolic corpora, the number of non-empty tracks is reported.

Corpus files tracks genres tags remarks

JvC1 110 439 2 genre (*)

JvC2 42 139 2 genre (*)

9GDB 856 4143 3/9 genre, melody 2-level hierarchy (*)

CL200 200 688 Classical melody (*)

JZ200 200 795 Jazz melody (*)

KR200 200 1657 Popular melody (*)

CLA 511 2258 Classical melody (*)

JAZ 856 4370 Jazz melody (*)

KAR 1360 13119 Popular melody (*)

RWC-G 48 311 18 genre, melody
RWC-P 75 801 Popular melody Western/Japanese pop

(*) developed by the author’s research group.

Table 2.2: Symbolic (MIDI) corpora.

Symbolic music corpora

JvC1 and JvC2 These are two-class corpora made up of MIDI files from
Classical and Jazz genres, used for music genre classification evaluation. In

72



2.8. PERFORMANCE EVALUATION

Corpus files length format classes references

GTZAN 1000 30 sec. mp3 10 genres (Tzanetakis, 2002)
ISMIRgenre 1458 full 6 genres (Cano et al., 2006)
ISMIRrhythm 698 30 sec. WAV 8 dances (Cano et al., 2006)
LMD 3225 full mp3 10 genres (Silla Jr. et al., 2008)
Africa 1024 full var. (Cornelis et al., 2005)
MIREX2007genre 7000 30 sec. WAV 10 genres (MIREX, 2007a)
MIREX2007artist 3150 30 sec. WAV 105 artists (MIREX, 2007a)
MIREX2007classical 2772 30 sec. WAV 11 composers (MIREX, 2007a)
MIREX2007mood 600 30 sec. WAV 5 clusters (MIREX, 2007a)

Table 2.3: Audio music corpora.

some setups, JvC1 is used as a training dataset, and JvC2 as a validation
test. In other setups, they are merged to form the JvC1+2 corpus. Table 2.4
presents a summary of these corpora. A characteristic of the corpora is
that each file has just one monophonic melody track in it. Classical music
was chosen from works by Mozart, Bach, Schubert, Chopin, Grieg, Vivaldi,
Schumann, Brahms, Beethoven, Dvorak, Haendel, Pagannini, Mendhelson,
Wagner, and Listz. Jazz music consist of jazz standard tunes from a variety
of authors like Charlie Parker, Duke Ellington, Bill Evans, Miles Davis, etc.
This dataset is available for research purposes upon request to the author.

JvC1 JvC2 JvC1+2

files 65 21 86
Jazz tracks 237 147 384

melodies 65 21 86

files 45 21 66
Classical tracks 202 162 364

melodies 45 21 66

Table 2.4: JvC1 and JvC2 MIDI file corpora summary.

9GDB/AJP 9GDB is a MIDI file collection developed within my research
group at the University of Alicante. It was fully described in (Pérez-
Sancho, 2009b) (as Perez-9-genres). It consists of 856 full length songs
in MIDI file format, organized as a two-level genre taxonomy, as shown
in Figure 2.18. For experiments on information fusion from the audio
and symbolic domains (sec. 4.5), the corpus was synthesized to WAV for
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extracting audio descriptors, and then re-transcribed to monotimbral MIDI
sequences to obtain symbolic features from the resulting transcription.

Academic Jazz Popular

Baroque

Classical

Romanticism Pre-bop

Bop

Bossanova Blues

Pop

Celtic

Figure 2.18: 9GDB dataset taxonomy.

A variant of this dataset, called AJP, where individual tracks are tagged
as melody or accompaniment, is used for melody track selection research.
It consists of the same three top level genres, and the same leaf genres
for academic and jazz music, but the popular top level genre has only two
subgenres: country and pop-rock. It is made up of 762 full length songs.

RWC-G and RWC-P These two datasets are part of the RWC (Real
World Computing) Music Database (Goto, 2004). This was originally an
audio music database, but latter the authors provided MIDI versions of the
recorded pieces. The RWC database is divided in several corpora. The Music
Genre Database (Goto et al., 2003), which is one of these corpora, consists
of 100 musical pieces in all with three pieces prepared for each of 33 genres
and one for a cappella. The database is divided into 10 main categories of
genres (popular, rock, dance, jazz, latin, classical, marches, world, vocals, and
traditional Japanese music) and 33 subcategories. All 100 pieces are original
recordings with 73 being original compositions and 27 being existing public-
domain pieces. The RWC-G corpus is a subset of this database, consisting
only of MIDI files containing at least a melody track and an accompaniment
track. This corpus has both a genre tag per file and a melody tag per track.

The RWC-P corpus is a subset of the Popular Music Database (Goto
et al., 2002), which consists of 100 songs: 20 songs with English lyrics
performed in the style of popular music typical of songs on the American
hit charts in the 1980s, and 80 songs with Japanese lyrics performed in the
style of modern Japanese popular music typical of songs on the Japanese
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hit charts in the 1990s. All 100 songs with vocals were originally produced
(composed, arranged, performed, and recorded). Again, only MIDI files with
at least one melody track and one accompaniment track were included in
RWC-P. This corpus has each track tagged as melody or non-melody.

Melody tagged corpora Six corpora (named JZ200, CL200, KR200,
JAZ, CLA, and KAR, in Table 2.2) were constructed for evaluating melody
identification approaches discussed in Chapter 3. A detailed discussion about
them can be found in section 3.1.6.

Audio music corpora

ISMIRgenre and ISMIRrhythm The ISMIRgenre and ISMIRryhthm
collections were compiled for the genre and rhythm classification tasks,
respectively, of the ISMIR 2004 Audio Description contest (Cano et al., 2006)
and used frequently thereafter by Music IR researchers. ISMIRgenre consists
of the train and development datasets of the genre clasificationn task. They
are made up of 6 popular music genres: Classical, Electronic, Jazz/Blues,
Metal/Punk, Rock/Pop, and World. All the songs were courtesy from the
Magnatune3 website where they are available under a Creative Commons4

license for ‘non-commercial use’.

The ISMIRryhthm dataset comprises 8 Latin and Ballroom dances. It is
made up of the train and test datasets of the Rhythm Classification contest,
whose goal was to compare algorithms for automatic classification of rhythm
classes (Samba, Slow Waltz, Viennese Waltz, Tango, Cha Cha, Rumba, Jive,
Quickstep) from audio data. Music files are 30-s instances of raw audio at
44100 Hz, 16 bits, mono.

MIREX2007genre This is the dataset used in the MIREX 2007 edition
of the audio genre classification and audio similarity contests. Collection
statistics: 7000 30-second audio clips in 22,050 Hz mono wav format drawn
from 10 genres (700 clips from each genre). Genres are organized in a two
level taxonomy, shown in figure 2.19.

MIREX 2007: Audio artist identification dataset Collection statis-
tics: 3150 30-second 22,050 Hz mono wav audio clips drawn from 105 artists
(30 clips per artist drawn from 3 albums).

3http://magnatune.com
4http://creativecommons.org
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Jazz
Blues

Jazz Blues

Country
Western

General
Classical

Electronica HipHop
General
Rock

Baroque

Classical

Romantic Rock
HardRock
Metal

Figure 2.19: MIREX2007 audio genre dataset taxonomy.

MIREX 2007: Audio classical composer identification dataset
2772 30-second 22,050 Hz mono wav clips organised into 11 “classical”
composers (252 clips per composer). The database contains tracks for Bach,
Beethoven, Brahms, Chopin, Dvorak, Handel, Haydn, Mendelssohn, Mozart,
Schubert, and Vivaldi.

30 second clips, 22,050 Hz, mono, 16bit, WAV files.

MIREX 2007: Audio mood classification dataset The ground-truth
data set consisted of 600 30-second 22,050 Hz, mono, 16 bit, WAV files evenly
divided into 5 mood clusters, according to metadata provided by APM5. It
covers a variety of genres: each category covers about 7 major genres and
a few minor genres. The assignment of moods to files was done by human
evaluators with a file accepted as a representative of a given mood when at
least 2 out of 3 graders concurred in the assignment. To make the problem
more interesting, the distribution among major genres within each category
is made as even as possible. Table 2.5 shows the mood tags in each cluster.

Latin Music Database The Latin Music Database (Silla Jr. et al., 2008)
was used for the first time in the MIREX 2008 audio genre classification task.
It has 3,227 audio files from 10 latin music genres: Axá, Bachata, Bolero,
Forró, Gaúcha, Merengue, Pagode, Sertaneja, and Tango. Contrary to
popular Western music genres, each of these genres has a very specific cultural
background and is associated with a different region and/or ethnic and/or
social group. Nevertheless, it is important to note that in some aspects the
Latin Music Database is musically similar to Western music databases as it

5http://www.apmmusic.com
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Cluster mood tags

A passionate, rousing, confident, boisterous, rowdy
B rollicking, cheerful, fun, sweet, amiable/good natured
C literate, poignant, wistful, bittersweet, autumnal, brooding
D humorous, silly, campy, quirky, whimsical, witty, wry
E aggressive, fiery, tense/anxious, intense, volatile, visceral

Table 2.5: MIREX 2007 Audio mood classification clusters.

makes use of modern recording and post-processing techniques. By contrast
to the MIREX 2007 audio genre collection, it contains at least 300 songs per
music genre, which allows for balanced experiments.

GTZAN The GTZAN Genre Collection was used for the well known paper
in genre classification (Tzanetakis and Cook, 2002a). After the author,

Unfortunately the database was collected gradually and very
early on in my research so I have no titles (and obviously no
copyright permission, etc.). The files were collected in 2000-
2001 from a variety of sources including personal CDs, radio,
microphone recordings, in order to represent a variety of recording
conditions. Nevertheless I have been providing it to researchers
upon request mainly for comparison purposes, etc.

The dataset consists of 1000 audio tracks each 30 seconds long. It contains
10 genres, each represented by 100 tracks. The tracks are all 22,050 Hz Mono
16 bit audio files in WAV format.

Africa The African collection is a subset of 1024 instances of the audio
archive of the Royal Museum of Central-Africain Belgium, digi- tized in the
course of the DEKKMMA project (Cornelis et al., 2005). Various metadata
categories are available for this set, including 27 different functions, 11 dif-
ferent instrument families, 11 different countries and 40 ethnic groups (Lidy
et al., 2010b). The number of files varies according to number of meta-data
available in each category.

77





3
Melody part selection

“We all do ‘do, re, mi,’ but you have got
to find the other notes yourself.”

Louis Armstrong

The goal in this chapter is to pose the general question What is a melody?
under a statistical approach.

3.1 Melody characterization in multi-part music
files

As stated in chapter 1, melody characterization, as approached in this
research, refers to the task of deciding which of the tracks in a multi-part
music file contains the main melody. For this, we need to assume that the
melody is indeed contained in a single voice or track. This assumption is also
taken by others authors (Friberg and Ahlbäck, 2008; Madsen and Widmer,
2007b; Tang et al., 2000), as there is empirical evidence that it is the case for
much of today’s symbolically encoded western music. An equally important
side goal is to obtain objective but human understandable characterization of
melodies. The objectivity of such a characterization comes from the fact that
these melody descriptions are automatically extracted from sample melodies.
This is achieved applying a classical machine learning and pattern recognition
methodology to the input data, using minimum apriori knowledge. The only
such knowledge that is introduced in the system is the discourse universe,
that is, the input domain definition, used in building melody representations.

There are some features in a melody part that, at first sight, seem
to be valid enough for identifying it, like the presence of relatively higher
pitches, as suggested by some results in (Uitdenbogerd and Zobel, 1999), or
being monophonic (Uitdenbogerd and Zobel, 1998). Unfortunately, empirical
analysis will show that these hypotheses do not hold in general, as discussed
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in Section 3.1.3, and more sophisticated criteria need to be devised in order
to take accurate decisions.

Another strategy, based on metadata information found in multi-part
music formats like MIDI files could also be used. For example, a dictio-
nary based-classifier could be built gathering track names from MIDI file
collections, associating some of them with the class melody and the rest
with the class non-melody. Then the classifier would output the class of
the dictionary track name closer to a given track’s name, using some string
distance metric. Unfortunately, there is no standard naming procedure for
MIDI tracks. Also, the language used by MIDI file authors for naming
tracks is another issue. It is unlikely that the training corpus would contain
examples from all possible languages. Therefore, this method would only
perform reliably in a controlled environment. Another drawback of the text
metadata approach for melody track discovery is that such a method would
obviously tell us nothing about the content of melody tracks. Hence, the
metadata approach was not considered here, being one of the goals in this
research to provide some objective empirical insights on the nature of the
melody concept. However, it was used to do some automatic pre-tagging in
the first stages of building the corpora used for evaluation purposes. See
section 3.1.6 for a discussion on some findings.

3.1.1 Melody characterization system overview

To overcome the aforementioned problems, machine learning and pattern
recognition tools like decision trees, rule inference algorithms, and fuzzy
logic are used in this research to obtain melody characterizations. Low-
level statistics are used for voice/track content description. The models
obtained by training such classifiers on the proposed track descriptions are
used to assign a probability of being a melody to each candidate track 1.
Furthermore, the models are processed in order to obtain compact human-
friendly melody characterizations.

In a first approach, the random forest classifier (RF, see section 2.2.5) –an
ensemble of decision trees– was chosen to model melody parts, due to its good
overall classification performance, a built-in feature selection method, and the
fact that it produces a human-readable model. In order to obtain a compact
characterization for melodies, the decision trees obtained in the training
process were converted to rules. These rules were simplified and ranked
in order to select a small number of compact rules much more manageable

1A modified version of the WEKA (Hall et al., 2009) toolkit was used for the feature
extraction and classification phases.
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for human understanding. In section 3.1.6 classification results using the RF
classifier are discussed. Section 3.2 presents a method for extracting compact
melody characterization rule sets from RF models.

As an alternative approach, the RIPPER rule inference algorithm
(section 2.2.5) is used as a tool for melody track classification and char-
acterization. The training process focus on underrepresented classes to infer
rules. It is well-suited to this problem, as melody tracks are far less abundant
in multi-part music files than other track types. Melody representations
produced by RIPPER are quite compact and can be compared to those
obtained by the first approach. Once a rule set for characterization of
melodies is obtained, they are converted to a natural language-like definition,
namely a fuzzy rule system. This is achieved by a process of fuzzification of
crisp rule systems. A genetic fuzzy system (Cordón and Herrera, 1995) is
used to automate the conversion. The resulting fuzzy description of melody
tracks is, to our knowledge, the first of its kind in the MIR field. Section 3.3
discuss melody track classification results using RIPPER, and presents a
method for fuzzifying such rule sets.

Moreover, under the same approach, any other kind of track could be
learnt. For example, we can infer a set of rules to identify the bass track, or
piano tracks, etc. Work in this line is being undertaken within our research
group. The characterization of bass tracks in MIDI files is being investigated
using the same methodology described here for melody tracks.

The classification method proposed here can be used as a tool for
extracting the melody track in conjunction with a system for music genre
recognition presented in the next chapter. This system is a melody-based
genre recognition system. This way, multi-part music files need not to be
preprocessed by an expert in order to identify the melody track.

3.1.2 MIDI track description

The multi-part music file format chosen for evaluating the proposed method
is the Standard MIDI file format. It is a widely available symbolic music
format, compatible with most platforms and music software, making it easier
to build MIDI file corpora from several sources (private or public collections,
web sites, etc.) for evaluation purposes. However, with no loss of generality,
the proposed method could be applied to any other symbolic music multi-part
encoding format.
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Empty tracks and tracks playing on the percussion channel2 are filtered
out in this approach. A track is considered an empty track if it contains less
than ε notes. This value has been set to ε = 3, the minimum number of values
necessary to produce non-trivial statistics. Also, it is unlikely that a melody
is played on the MIDI percussion channel, as most modern MIDI equipment
is configured by default to use this channel for playing so-called percussion
or drum banks, mapping different pitch values to different instruments.

Each remaining track in a MIDI file is described by a vector of statistics
that summarize track content information. A set of such descriptors has
been defined based on several categories of features that assess melodic and
rhythmic properties of a music sequence, as well as track related properties.
This set is presented in Table 3.1. The first column indicates the category
being analyzed, and the second one shows the kind of statistics describing
properties from that category. The third column indicates the range of the
descriptor. This kind of statistical content description is sometimes referred
to as shallow structural description (Pickens, 2001; Ponce de León et al.,
2004).

Some features were designed to describe the track as a whole while others
describe particular aspects of its content. Let us denote T as the set of
non-empty tracks ti in a MIDI file. Four track information descriptors were
proposed for track ti, namely its normalized duration, Di, in MIDI ticks, the
number of notes in the track, Ni, its occupation rate, ORi, i.e., the proportion
of the track length occupied by notes, and its polyphony rate, PRi, defined
as the ratio between the number of ticks in the track where two or more notes
are active simultaneously and the number of ticks occupied by notes:

Di =
|ti|

maxj |tj|
(3.1)

ORi = Oi/Di (3.2)

PRi = Pi/Oi (3.3)

where Oi is the amount of ticks in ti where at least one note is active, and Pi
is the amount of ticks in ti where two or more notes are active simultaneously.
|ti| is the length of the track in ticks. Figure 3.1 shows an example of
occupation rate and polyphony rate computation for an 1-bar sample.

Track content-related descriptors, both normalized and non-normalized
versions, were devised. Normalized descriptors are computed using the
expression (v−min)/(max−min), where v is the descriptor to be normalized

2MIDI channel number 10 is the channel for percussion/drums instrument kits, as
specified in the General MIDI standard.
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Table 3.1: MIDI track descriptors

Category Descriptors Domain3

Track info. Normalized duration [0, 1]
Number of notes [0 ..+∞[
Occupation rate [0, 1]
Polyphony rate [0, 1]

Note pitch Highest [0 .. 127]
Lowest [0 .. 127]
Mean [0, 127]
Standard deviation [0,+∞[

Pitch intervals Number of distinct intv. [0 .. 127]
Largest [0 .. 127]
Smallest [0 .. 127]
Mean [0, 127]
Mode [0 .. 127]
Standard deviation [0,+∞[

Note durations Longest [0,+∞[
Shortest [0,+∞[
Mean [0,+∞[
Standard deviation [0,+∞[

Syncopation No. of syncopated notes [0 ..+∞[

Class IsMelody {true, false}

corresponding to a particular track, and min and max are, respectively, the
minimum and maximum values for this descriptor for all tracks in the target
MIDI file. This allows to know these properties in relation to other tracks in
the same file. This way, a total number of 4 + 15 × 2 = 34 descriptors are
initially computed for each track. The class label IsMelody is a boolean tag
where a true value indicates that the sample corresponds to a melody track.
This label will obviously be missing for new input files. The labeling process
of tracks is explained in section 3.1.6.
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Figure 3.1: Occupation and polyphony rates examples.
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Note pitch is measured using MIDI pitch values. The maximum possible
MIDI pitch is 127 (note G9), and the minimum is 0 (note C−1), being 60
the value of middle C (C4). The interval descriptors summarize information
about the difference in pitch between consecutive notes4. Absolute pitch
interval values are computed. This means that regardless the interval is an
ascending or descending one, its value is always positive.Note duration values
are computed as beats, so they are independent from the MIDI file resolution.
Finally, the number of syncopations found in a track is computed. A note
which starts in a given range around the middle of a beat and continues
sounding over the next is considered a syncopation. This range is set to a
sixteenth note around the middle of the beat.

3.1.3 Feature selection

The descriptors listed above are an initial set of computed features, but any
pattern recognition system needs to explore which are those features that are
actually able to discriminate between target classes.

Some descriptors show evidence of statistically significant differences
when comparing their distributions for melody and non-melody tracks,
while other descriptors do not. This property is implicitly observed by the
classification techniques utilized (see Section 2.2.5 and 2.2.5), that perform
a selection of features in order to build decision trees or induce rules.

A look at the plots in Figure 3.2 provides some hints on how a melody
track could look like. This way, melody tracks seem to have less notes than
other non-melody tracks, an average mean pitch, they do not contain the
longest notes in the song and tend to be near-monophonic. When this sort
of hints are combined by the classifier, a decision about the track “melodicity”
is taken.

Some attempts were made to use single descriptors to characterize
melodies. However, results showed that no descriptor among the ones
presented here was able by itself to characterize melody against other type of
tracks. For example, using the polyphony rate descriptor with the Bayes rule
yielded a classifier that always predicted the majority class (IsMelody=false).
Similar results were obtained using a nearest-neighbour rule.

Other authors (Madsen and Widmer, 2007b) report more successful
results on the same task when using entropy-based single descriptors on pop
and rock hits. However, best results for whole tracks were still obtained
using an interval and inter-onset-interval (IOI) joint entropy. This suggests

4consecutive notes are notes whose MIDI onset events are consecutive in the MIDI
track content stream.
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Figure 3.2: Distribution of values for some descriptors (left-to-right, top-to-
bottom: number of notes, average pitch, mean normalized note duration,
and track polyphony rate.

that the combination of information from different musical dimensions
(pitch and duration, in this case) can improve on results obtained using
single dimension descriptors. Interestingly, when classifying short track
fragments using entropy measures (so called entropy-based local prediction by
the authors), best results where obtained by single dimensional, IOI-based
entropy descriptors.

3.1.4 Classification methods

One of the objectives of this research is to produce an human-friendly charac-
terization of melody tracks. Decision trees and rule inference algorithms are
two of the machine learning techniques that can build such models learning
from data. As explained in section 3.1.1, the random forest classifier and the
RIPPER rule inference algorithm were selected as classification methods for
the experiments presented in this chapter.

In what follows, let’s denote class IsMelody=true as M , and class
IsMelody=false as M̄ . The membership probability for M is denoted as
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CHAPTER 3. MELODY PART SELECTION

p(M |ti), and interpreted as the probability that track ti contains a melodic
line. On the other hand, p(M̄ |ti) denotes the probability that track ti is not
a melody. Obviously, it holds that p(M |ti) + p(M̄ |ti) = 1.

3.1.5 Melody track categorization and melody part
selection

Considering tracks separately, so each track is a input sample, melody track
categorization is the problem of deciding whether a given track contains a
melody or not. In experiments performed in this research, a track ti is tagged
as a melody if p(M |ti) > 0.5.

On the other hand, a general problem that arise when dealing with digital
scores, in particular MIDI files, is to decide which track sections play the
melody in any given instant. This is often called melody line extraction from
polyphonic data, and has been addressed by several authors (Ozcan et al.,
2005; Shan and Kuo, 2003; Uitdenbogerd and Zobel, 1998). Given the ability
of a system to categorize entire tracks as melodies, a simpler formulation of
the problem is, given a MIDI file, to identify which of its tracks most probably
contains the melody. Let us call this a melody part selection problem. The
question arise whether the answer should be a single track or a list of tracks.
From what can be learned by examining the corpora at hand, it has been
found that most songs in MIDI format contain just one tagged melody track
(see Table 3.3). Thus, the system presented here outputs only the most
probable track per song.

The underlying model training phase uses the track as the sampling unit,
like in the melody track categorization problem. As a file can have zero, one
or more melody tracks, a model prediction is considered correct if:

1. At least one track in the file is tagged as melody and the predicted
track is one of them.

2. There are no melody tracks and the classifier predicts no melody track.

Subsequently, models may produce three different classification error
scenarios:

• Type 1 error: Wrong melody track. Actually, there is a melody track,
but it is not the one predicted.

• Type 2 error: No melody expected, but a melody track was predicted.

• Type 3 error: A melody track exists but no one was predicted.
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Note that, in the corpora used in the experiments, songs with zero or
more than one melody track are much less frequent than single melody songs.
Thus, type 1 errors are expected to occur more often.

A classification method like RF, that is able to assign a membership
probability p(M |ti) to an input instance ti, is well suited for this task. This
property also decreases the possibility of ties that would arise from classifiers
that issue a single class answer.

Given an input file with a set of tracks T , the predicted melody track
index is

î =

{
arg maxi p(M |ti) p(M |ti) ≥ pε, i = 1..|T |
0 otherwise

(3.4)

where pε is a probability threshold for a track to be considered as a melody
track candidate. A prediction î = 0 means that the system predicts no track
in the given file containing a melody.

3.1.6 Experiments and results

Datasets and tools

Six corpora (see Table 3.2) were constructed for evaluating the melody
identification approaches presented above. The files were downloaded from
a number of freely accessible Internet sites. First, three corpora (named
JZ200, CL200, and KR200) were created to set up the system and tune the
parameter values. JZ200 contains jazz music files, CL200 has classical music
pieces, and KR200 contains popular music songs with a part to be sung5.
All of them are made up of 200 files. Three other corpora (named JAZ,
CLA, and KAR) from the same music genres were compiled from a number
of different sources to validate our method.

The main difficulty for building the data sets was to label the tracks in
the MIDI files. Text tagging of MIDI tracks based on metadata such as the
track name, is unreliable, due to reasons explained in section 3.1.

Thus, a manual labeling approach was carried out. Several musicians
listened to each one of the MIDI files playing all tracks simultaneously. For
each file, tracks containing the perceived melody were identified and tagged
as melody. The rest of tracks in the same file were tagged as non-melody.
In particular, introduction passages, second voices or instrumental solo parts
were tagged as non-melody. During this process, the melody concept revealed
itself as ambiguous, and definitively loosely related to the track concept.

5these are actually files in karaoke (.kar) format
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Corpus ID Genre Files Tracks Tracks Melody Non-melody
per file tracks ratio

CL200 Classical 200 688 3.4 205 2.4
JZ200 Jazz 200 759 3.8 200 2.8
KR200 Popular 200 1657 8.3 204 7.1
CLA Classical 511 2258 4.4 607 2.9
JAZ Jazz 856 4370 5.1 877 4.0
KAR Popular 1360 13119 9.6 1318 8.6

Table 3.2: Corpora used in the evaluation, with identifier, music genre,
number of files, number of non-empty tracks, number of melody tracks, and
ratio of non-melody tracks per melody track.

Roving and compound melodies where specially hard to identify and tag. So,
the key question the tagging musicians posed themselves was

Do the track contain (possibly a significant part of) the melody?

This means any track containing significative portions of the perceived
melody, possibly containing accompaniment parts, either in sequence or
simultaneous to the melody, were tagged as melody tracks. So, the relation
between the concepts melody and track is understood as an inclusion, rather
than a equivalence relation. The extent to which a melody part in a track
is considered significative in a given piece was left to the musician criterion.
As a matter of fact, a track containing roughly at least 50% of the perceived
melody was always considered a melody track. Table 3.3 shows a summary
of tagged tracks.

Corpus ID no melody one melody more than one

CL200 0 199 1
JZ200 0 200 0
KR200 9 182 9
CLA 70 353 88
JAZ 4 845 7
KAR 90 1234 36

Table 3.3: Summary of number of tagged melody tracks per song.

Some songs turned out to have no tracks tagged as melody because either
it was absent, or the song contained some kind of melody-less accompaniment
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with a lyrics track. These kind of tracks can be found in karaoke MIDI files.
Most of them contain text meta events and no note events. However some of
these tracks contain also melody note events, but with the velocity (volume)
value set to a minimum (inaudible) level. In this latter case, lyrics tracks
were tagged as melody.

Other songs contained more than one melody track (e.g. duplicates, often
with a different timbre) and all those tracks were tagged as melody as well.

The WEKA package was used to carry out the experiments described
here. It was extended to compute the proposed track descriptors directly
from MIDI files.

Four experiments have been carried out, as listed below:

• Melody vs. non-melody classification (Melody track categorization)

• Melody track selection

• Genre specificity on melody part selection

• Training set specificity on melody part selection (generalization capa-
bility)

The first one tries to assess the ability of the classifier to classify melodic
and non-melody tracks properly. In the second experiment, the aim is to
evaluate how accurate the system is for identifying the melody track in a
MIDI file. Finally, the specificity of the system with respect to both the
music genre and the corpora utilized is tested.

Melody vs. non-melody (Melody track categorization)

Given a set of tracks, this experiment classifies them either as melody or
non-melody. As a proof of concept, three independent sub-experiments were
carried out, using the 200-file corpora (CL200, JZ200, and KR200), and
the RF classifier with default Weka parameters. A 10-fold cross-validation
scheme was used to estimate the accuracy of the method. The results are
shown in Table 3.4 and Figure 3.3, along with the baseline ratio when
considering a dumb classifier that always outputs the most frequent class
(non-melody for all datasets). The remarkable success percentages show that
track content statistics in combination with decision tree based learning can
produce good results on the task at hand. Also, precision (P), recall (R) and
F-measure (F) are shown for melody tracks.
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Corpus Success Std. dev. Baseline P R F
CL200 99.1% 0.7 70.2% 0.981 0.99 0.985
JZ200 98.3% 1.4 73.6% 0.984 0.95 0.967
KR200 95.9% 1.8 87.7% 0.926 0.728 0.815

Table 3.4: Melody versus non-melody classification results.
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Figure 3.3: Melody vs. non-melody classification success and baseline

These results have been obtained using K = 10 trees and F = 5 randomly
selected features for the RF classifier. The same parameters have been used
in the rest of experiments using RF presented in the next sections. The
results are very good, in general. A summary of classification errors is shown
in table 3.5. Tables 3.6, 3.7, and 3.8 show examples of false positives and false
negatives for each corpus. Almost in every error case there is evidence that
could explain the misclassification (see the remarks column on the tables).

Corpus size FP FN (due to draws)

CL200 688 4 4 (1)
JZ200 759 3 10 (4)
KR200 1657 12 56 (12)

Table 3.5: Melody track categorization error summary.
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Song : Track p(M |ti) Remarks

False Negatives
Canon in D major : Tenor/Violin II .2 Song: melody

change track at
4-bar boundaries.

Track: 32/114 bars
of actual melody.

Remaining bars are
accompaniment.

Prelude #1 in CM (Bach) : Melody .5 Equal probability.

Melody 16ths
arpeggio like, steady

rhythm.

Prelude in C minor (Chopin) : Melody .4 2-track song. piano

right-hand-like track.
Polyphonic rate

higher than
accompaniment

track.

False Positives
Eine Kleine Nachtmusik (Mozart) : Strings .9 String quartet like

sequence. Track
plays melody seldom.
Low polyphonic rate.
Cloned track (so two

errors reported).

Nabucco. Va, Pensiero (Verdi) : Right Hand .6 Mimics melody for a

significant part of
the song, first in

mono, then adding
voicings, then
switching to

accompaniment.

Prelude in C minor (unknown) : Strings .7 String ensemble

track with
monophonic parts
backing melody.

Table 3.6: CL200 classification error examples
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Song : Track p(M |ti) Remarks

False Negatives
Peace : Melody .4

2-voice melody track.

Freedom Jazz Dance : Melody .2 Instrumental melody,

two octave range.

False Positives
Limehouse Blues : Soloist 1.0 Monophonic instrument

track.

Ay, Arriba! : Strings .6 Polyphonic String
ensemble track with

large monophonic parts.

Table 3.7: JZ200 classification error examples
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Song : Track p(M |ti) Remarks

False Negatives
This Kiss : Melody 0 Melody in octaves, scatter

4-voice polyphony.

He is your brother : Melody 0 Up to 3-4 voice polyphony.
Top voice is the melody.

45% polyphonic rate.

False Positives
Cenizas : Flute 1 Plays intro and melody

response parts. Occupation
rate about 50%

Solamente una vez : Trumpet .7 Plays melody counterparts

throughout the song.

Table 3.8: KR200 classification error examples
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The experiment on the CL200 corpus reported 8 misclassified tracks from
6 different songs. Take the Prelude #1 in C Major melody, from Bach,
for example. This arpeggiato-like melody has served as accompaniment in
another context, the Ave Maria song by Charles Gounod6. Also, as in the
two first false positives examples in Table 3.6, it is not uncommon to find
accompaniment parts in classical music where melody parts are mimicked in
certain sections. It seems difficult, for models built on global statistics like
the ones in this work, to adequately capture such track traits.

The KR200 dataset proved to be the more challenging one for the RF
classifier. In particular, recall on melody tracks is low; 56 out of 206 melody
tracks were not correctly classified. From these, 12 errors were due to
draws, where RF assigned equal probabilities to each class, choosing the
most frequent one (IsMelody = false) as the default option.

An informal musical analysis of the traits of misclassified tracks leads to
the following general findings:

False negatives Most tracks contain some form of polyphony; either
melody in octaves, or two-voice melodies or even coral-like parts. Also,
some tracks were found where accompaniment-like sections are played.

False positives The most common finding were tracks mimicking the actual
melody, or tracks having significant monophonic melody-like sections,
like melody response, backing voices or melody counterparts.

Melody part selection experiment

In this second experiment, the goal was to test whether the method selected
the proper melody track from a MIDI file. The system was trained the same
way as in the previous one, but now a test sample is not a single track but a
MIDI file. Due to the limited number of songs available (200 per corpus), this
experiment was performed using a leave-one-song-out scheme at the MIDI
file level to estimate the classification accuracy. The RF classifier has been
chosen for this task. pε was set empirically to 0.25 (see next section for a
discussion on the pε parameter). Results are shown in Table 3.9.

Note the high quality of the results for CL200 and JZ200. However, a
lower success rate has been obtained for the karaoke files. This is partially

6http://en.wikipedia.org/wiki/Ave_Maria_(Gounod)
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Corpus Success Type 1 Type 2 Type 3
CL200 99.0% 2 0 0
JZ200 99.0% 1 0 1
KR200 84.5% 14 4 13

Table 3.9: Melody track selection success and errors (leave-one-song-out,
pε = 0.25).

due to the higher non-melody track ratio in these files (see Table 3.2). Let us
briefly analyze errors in KR200. Table 3.10 shows an example from KR200
for each kind of error. Interestingly, in all songs reporting a type 1 error,
the actual melody tracks got p(M |ti) > 0, although not always above pε.
The model produced type 2 errors in 4 out of 9 songs without melody. In
all cases, p(M |ti) < 0.5. Type 3 errors (all tracks in a song with melody
got p(M |ti) < pε) are somewhat too many, especially compared to the other
corpora. In order to investigate which value is appropriate for pε, results
using different values for this threshold are presented in the next section.
However, it will remain an open question in this work whether pε should be
adapted in a per corpus basis.

Genre specificity

It is interesting to know how specific the classifier’s inferred model are with
respect to the music genre of files considered for training. For it, two
melody part selection sub-experiments were performed: in the first one,
the classifier was trained with a 200-file corpus of a given music genre, and
tested against all validation corpora (see Table 3.11). This experiment was
performed thrice, with different values for the pε threshold. For the second
sub-experiment, the classifier was trained using data from two genres and
then tested with files from the third genre validation dataset. (see Tables 3.13
and 3.14).

Let’s first discuss the pε parameter. As shown in Table 3.11, a near-
zero value (0.01) yielded the best results in general. Table 3.12 breaks down
the error patterns in each dataset for each threshold value. As expected,
setting a high value for pε increases the number of Type 3 errors. It also
lowers the amount of Type 1 errors, but not enough to compensate for the,
sometimes huge, Type 3 error rise. It is worth to note that Type 2 errors made
by the CL200 model are almost independent of the threshold. This means
that this model assigns p(M |ti) ≥ 0.5 to at least one track per file more
frequently than the other trained models, for melody-less files particularly!
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Song : Track p(M |ti) Remarks

Type 1 error
Solamente una vez : Trumpet .7 Trumpet: monophonic

track. Plays melody
counterparts

throughout the song.

Solamente una vez : Melody .3

Type 2 error
Les murs de poussiere : (lyrics track) .3 Track contains lyrics

metaevents and their
corresponding melody

notes with a fixed pitch.

Type 3 error
Venus : Melody .2 Track contains melody

plus lyrics. p(M |ti) is
just below pε (0.25)

Table 3.10: KR200 melody part selection error examples (leave-one-song-out
estimation).
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Avg. diff.
Train. pε CLA JAZ KAR genres

CL200 64.9% 71.8 % 42.7 % 57.3%
JZ200 0.01 61.8% 97.2% 51.8% 56.8%
KR200 64.7% 87.1% 88.2% 75.9%

CL200 57.4% 71.1% 42.3% 56.7%
JZ200 0.25 62.2% 96.5% 51.8% 57.0%
KR200 57.2% 70.1% 85.4% 63.6%

CL200 50.4% 66.7 % 41.2 % 54.0%
JZ200 0.5 56.4% 94.8% 51.0% 53.7%
KR200 44.2% 50.0% 76.8% 47.1%

Table 3.11: Genre specific melody part selection accuracy results. Last
column shows the average success for genres different from the trained
model’s genre.

Recall that a Type 2 error is produced when a melody track is predicted,
but no melody is expected. This means that, in the process of tagging such
files, the listener didn’t consider any track to contain a significant amount of
melodic material. It could be that in some cases, however, some tracks would
actually fit as melody, as predicted by the model. The inherent subjectivity
in the ground-truth building process, though, prevents us from drawing some
clear conclusions on this issue.

Focusing on results for pε = 0.01 from herein, Table 3.11 shows that the
performance of the system degrades when more complex files are tested. The
200-file corpora are datasets that include MIDI files that were selected among
many others for having an ‘easily’ (for a human) identifiable melody track.
This holds also for the JAZ corpus, as most jazz music MIDI files have a
lead voice (or instrument) track plus some accompaniment tracks like piano,
bass, and drums. In fact, each trained model performed at its best on this
corpus, regardless the genre it was trained on.

This does not hold in general for the other two corpora. Classical music
MIDI files (CLA corpus) come in very different structural layouts, due to
both the way that the original score is organized and the idiosyncrasy of
the MIDI file authors. This makes this corpus the most difficult dataset for
models to tag correctly. Even the classical model was able to perform better
on the jazz corpus than on the classical one. This trend is also evidenced
for the KAR corpus. Moreover, karaoke files tend to make intensive use of
duplicate voices and dense pop arrangements with lots of tracks containing
many ornamentation motifs. In addition, we have verified the presence of
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Test Model pε Type 1 Type 2 Type 3

CLA

CL200 103 70 2
JZ200 0.01 116 68 6
KR200 88 61 27
CL200 80 68 64
JZ200 0.25 112 55 21
KR200 64 26 123
CL200 57 68 122
JZ200 0.5 99 33 85
KR200 43 16 219

JAZ

CL200 239 2 0
JZ200 0.01 19 2 3
KR200 42 2 66
CL200 233 2 12
JZ200 0.25 17 2 11
KR200 9 1 245
CL200 206 2 76
JZ200 0.5 13 1 30
KR200 5 1 421

KAR

CL200 703 75 0
JZ200 0.01 580 75 0
KR200 80 71 9
CL200 698 75 11
JZ200 0.25 579 74 1
KR200 52 49 97
CL200 680 70 48
JZ200 0.5 570 70 25
KR200 33 35 247

Table 3.12: Number of classification errors for melody part selection
experiments.
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very short sequences for the CLA corpus, causing less quality in the statistics
that also degrades the classification results.

Better results were expected when training on the same genre as the
validation dataset. However, the CLA and KAR corpora are definitively
harder to deal with, as it became clear in the second experiment presented
next in this section. So, it can be said that the difficulty of the task resides
more on the particular internal organization of tracks in the MIDI files than
on the file music genre, despite that the results in Table 3.11 seem to point
out that genre makes a difference.

The KR200 model evidences better generalization capabilities than the
other two, as indicated by its average success in other genres (last column of
Table 3.11).

Train. Test Success
KAR200+JAZ200 CLA 66.2%
CLA200+KAR200 JAZ 89.2%
CLA200+JAZ200 KAR 51.9%

Table 3.13: Melody track selection across genres (pε = 0.01).

Model Test Type 1 Type 2 Type 3

JAZ200+KAR200 CLA 89 65 14
CLA200+KAR200 JAZ 78 2 12
CLA200+JAZ200 KAR 578 75 0

Table 3.14: Number of classification errors for melody part selection across
genres (pε = 0.01).

Results from the second sub-experiment, melody part selection across
genres, shown in Tables 3.13 and 3.14, indicate that performance is poorer
(with respect to the first experiment) when no data from the test genre were
used for training. This does not happen in classical music, probably due to
effects related to the problems expressed above.

Training set specificity

To see how conditioned these results are by the particular training sets
utilized, a generalization study was carried out building a new training set
merging the three 200-files corpora (named ALL200 ), and then using the
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other corpora for test. The problem to solve is again the one discussed in
section 3.1.6: selecting the proper melody track from a MIDI file. The results
are detailed in Tables 3.15 and 3.16.

They show that, when using a multi-genre dataset, the performance of
the system is improved, specially for the KAR dataset. Now the training
set contains samples from the same genre as the test dataset. Note that
Type 3 errors have dropped in general, while the number of Type 1 errors
has decreased for the JAZ and KAR datasets. Also, the presence or absence
of the test genre in the training dataset has no influence on Type 2 errors.

Training Test Success
ALL200 CLA 64.5%
ALL200 JAZ 97.8%
ALL200 KAR 83.8%

Table 3.15: Melody track selection by genres when training with data from
all genres (pε = 0.01).

Model Test Type 1 Type 2 Type 3

ALL200 CLA 102 69 6
ALL200 JAZ 12 2 5
ALL200 KAR 144 75 1

Table 3.16: Number of classification errors for melody part selection training
with all genres (pε = 0.01).

When combining all results from Table 3.15, taking into account the
different cardinalities of the test sets, the average successful melody track
selection percentage is 84.6%.

Conclusions on melody part selection experiments

Figure 3.4 shows a summary of the results from all melody part selection
experiments. The obvious conclusion is that the classification method
performs better for a given genre when samples of this genre are used for
training the underlying model, except for the CLA dataset. It reveals itself
as the hardest dataset to deal with, no matter which training data are
used. Comparing results shown in Tables 3.9 and 3.12 for the CL200 model,
it can be concluded that it does not generalize well. It seems that this
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approach based on global statistical descriptors does not work well enough
for MIDI-encoded classical music. The task is probably better undertaken
applying some kind of melody extraction technique (Isikhan and Ozcan, 2008;
Uitdenbogerd and Zobel, 1998).
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Figure 3.4: Melody track selection results. Accuracy comparison according
to genre inclusion in training set (pε = 0.01).

The JAZ dataset was definitively the easiest to process. The presence of
jazz samples in the training data has proven to improve the results, up to
a 97.8% success ratio. However, even without those training samples, the
system was able to achieve reasonably good performance.

Selecting melody tracks from files in the KAR corpus is particularly
sensitive to the presence of similar samples in the training set. A dramatic
improvement (up to 36%) was seen when such samples are used in the training
phase, compared to using samples from a priori different genres.

In summary, in the experiments presented here, using a model built
exclusively on the genre of test data has proven to be a good and simple
approach for melody part selection. In the case of classical music, however,
comparable performance is achieved using genres different from classical but,
as discussed above, a melody extraction approach could reveal to be better
suited for this music genre.
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3.1.7 A graphical interface for melody part selection

The RF melody track classifier has been used as the base model for a
graphical interface for melody part selection. This application can be used
to train and test the classifier. In ‘test’ mode, a list of MIDI files are opened,
statistical features describing the content of their tracks are extracted and
used to feed the classifier. Results from the classifier are gathered and
melody part selection results are displayed in a graphical way. A snapshot
of the interface is shown in Figure 3.5. A more detailed description of such
application can be found in appendix A.2.
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3.2 Towards a human-friendly model for melody
part selection

Random forest trees built for melody track characterization have hundreds
of leaves each. For this reason, the melody model they provide, although
explicit, is complex and nearly incomprehensible, and so it makes difficult
to draw conclusions about their performance. In practice, they are working
like a black box. Therefore, it would be interesting to extract a simpler
model from the RF trees without significant loose of performance. This more
compact model will be more suitable for further analysis and comparison with
other rule-based models. It will be also more useful for the potential user
of a melody characterization system, since a compact representation of the
characterization can be presented to her in order to understand the decision
taken by the system.

The answer is given as sets of rules that are both automatically learnt
from score corpora and human-readable. This would allow us to end up
with an objective description of what a melody should be. This could be of
interest for musicologists or helpful in applications such as melody matching,
motif extraction, melody extraction (ringtones), etc.

The rest of the section presents the methodology applied to extract a
compact rule system representation from RF decision trees. Then, the data
used and the experiments designed to test the method are discussed.

3.2.1 Methodology

The steps performed to obtain sets of rules from decision trees that
characterize melody tracks can be outlined in these main steps:

Rule extraction Extract rules from decision tree branches.

Rule simplification Prune rule antecedents.

Rule selection Select best rules by ranking.

The rule extraction step is performed on the decision trees built by the
Random Forest algorithm. The rules are simplified by pruning non useful
antecedents and then, for each rule set, rules are ranked according to a
scoring function. The objective here is to obtain a compact rule system
with performance comparable to that of the original decision trees they are
derived from.

Expressing a concept by rules has the advantage of being a human-
readable description of the characterization process. The simplification and
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ranking steps focus on obtaining a small, manageable rule system. A side
goal has been to test whether a small number of selected rules can perform
comparably to an ensemble of decision trees, typically containing hundreds
of nodes per tree.

Rule extraction from decision trees

In section 3.1, Random Forest classifiers were used to learn an ensemble
of K decision trees capable of discriminating melody tracks in a MIDI file.
The leaves of the decision trees are tagged with a boolean IsMelody value,
indicating whether the leaf characterizes a melody track or a non-melody
one. So there are positive leaves, the ones with a true tag, and negative
leaves. For each tree, a rule set is extracted following positive branches from
the root (the ones leading to a positive leaf). Negative branches are ignored.
From each positive branch a rule is obtained of the form:

(X i
1(s) ∧X i

2(s) ∧ ... ∧X i
ni

(s)) =⇒ IsMelody = true

where X i
j(s) are the tests found in each tree node traversed following a

positive branch. Such tests, applied on a sample s = (s1, s2, ..., sd, ..., sn) ∈
Rn, have the general form (sd R v) that represents an inequality test involving
only one descriptor sd and one value v. As all rules have the same consequent,
we will drop it from herein, thus leaving us with the following definition of
ri(s):

ri(s) =

ni∧
j=1

X i
j(s)

which is not properly a rule, but a boolean function definition. However, I
will use the term rule throughout the text when referring to ri.

A rule set Rk is defined as a logical disjunction of all rules rik extracted
from tree Tk:

Rk(s) =

|Rk|∨
i=1

rik(s)

Track characterization by rule set ensemble When such a rule set
is applied to a sample, firing at least one rule suffices for that sample to
be tagged as a melody track. A rule set R is thus a function R : S −→
{0, 1} applied on the domain S of MIDI track samples. A model built as an
ensemble of such rule sets is a conditional probability function defined as
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p(M |s) =

∑K
j=1Rj(s)

K
As in section 3.1.4, p(M |s) represents the probability for a MIDI track,

represented here by s, to be a melody track.

Rule simplification by antecedent pruning

The number of conditions in the antecedent part of a rule can be too large
to be easily understood. Moreover, complex rules are often very specific,
overfitting the training set. A rule can be generalized by dropping some of
the conditions from its antecedent. This technique is known as antecedent
pruning.

The method for pruning rule antecedents performs a test for consequent’s
independence from each condition Xi for each rule (Quinlan, 1999). In
particular, a χ2 test with a 95% confidence interval is performed here,
considering condition relevance as independent from other conditions in the
same rule. This makes the test to be very conservative, dropping only
conditions that do not satisfy the hypothesis for all validation samples. A
validation dataset different from the initial training set is used to test rule
conditions.

For each condition Xi in a rule, a contingency table is built, like in
Table 3.17.

Melody Not Melody
Xi = true oi11 oi12

Xi = false oi21 oi22

Table 3.17: Contingency table for a condition Xi. Rows indicate whether the
condition is true or not. Columns indicate whether the samples are melodies
or not. oijk are the number of samples meeting the criteria.

Once the oijk values from the table are known for a given condition Xi,
proceed as follows:

1. Compute expected frequencies eijk for each contingency table cell:

eijk = (RT ij × CT ik)/T i (3.5)

where
RT ij =

∑
k=1,2

oijk, CT ik =
∑
j=1,2

oijk, T i =
∑
j,k

oijk
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2. Perform a χ2 test to determine if the conclusions are independent from
the antecedent at the 95% level of significance (χ2

α=0.05 = 3.841)7

χ2 =
∑
j

∑
k

(oijk − eijk)2/eijk (3.6)

3. If χ2 > χ2
α=0.05 then keep antecedent else prune antecedent

Pruning rule antecedents considering condition relevance dependent from
other ones in the same rule has not been considered, due to performance
reasons. The order in which conditions are tested is important, as the
relevance of a condition can be determined by another one which is in turn
not relevant. With the lack of a priori information about which antecedents
are more likely to be relevant, a straight forward approach would be to test
antecedents in all possible orderings, keeping the solution with less relevant
conditions. This has time complexity O(n!) on the number of antecedents
of a rule. Also, a criteria would be needed to resolve ties between equally
sized solutions. Another approach would be to use an instance of the OPUS
algorithm for unordered search (Webb, 1995), that often produce searches
with polynomial time complexity in the average case.

Rule selection

Decision trees learnt by the RF classifier from large training sets are usually
big, leading also to huge rule sets8. In order to get a compact model,
it is desirable to remove rules that do not characterize a lot of samples.
Furthermore, some rules could be redundant, as they fire together with
other rules for most input samples, thus making their presence in the set
unnecessary. The method used here to reduce the size of a rule set consists
of ranking rules according to a measure based on how many samples from
a validation dataset fire them. The more samples fire a rule, the better the
rule. After the ranking is made, the best rules are selected from each rule
set in order to classify new samples, discarding the rest.

The procedure used here to rank the rules in a rule set R using a validation
dataset D is as follows:

1. Sort rules in R decreasingly, according to the number of samples in the
training set firing each rule.

7for one degree of freedom
8In our experiments, trees with more than five hundred leaves (and thousands of nodes)

have been obtained.
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2. For each rule ri in R:9

(a) ris = s(ri, D)

(b) D = D − ri⊕ − ri	

3. Sort R according to rs, in decreasing order.

4. Select the first N rules of R and discard the rest.

Sorting R in the first step of the procedure results in a priori ‘best’ rules
to be evaluated first. The number of samples in the training set that fire a rule
is provided by the RF model representation, so there is no need to compute
this values again. This is a greedy approach we have found to produce
similar results than finding the best rule with respect to the validation set
at each iteration, but at a less computational cost. The greedy approach
has O(|R|(log|R|+ |D|)) time complexity, and the second one has O(|R|2|D|)
complexity.

In this work, two scoring functions have been tested:

• s1(ri, D) = ri⊕

• s2(ri, D) = ri⊕/(r
i
⊕ + ri	)

Additionally, a variant of the ranking procedure that does not remove
samples from D (step 2b) has been tested along with the s1 function. We
denote this variant as s0.

The same validation dataset is used for all rule sets in the rule system
derived from the decision trees.

3.2.2 Experiments and results

For the experiments, the rule systems have been derived from an ensemble
of decision trees built using a RF classifier with F = 5 features and K = 10
trees. Therefore, rule systems consist of ten rule sets. There is one rule
system per training corpus.

9ri⊕ is the number of positive samples (melody tracks) in D that fire rule ri and ri	 is
the number of negative samples (non-melody tracks) in D that fire rule ri.
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Datasets

Five corpora have been used: ALL200, LARGE, RWC-G, RWC-P and AJP.
The corpus ALL200 is described in section 3.1.6. The LARGE corpus is the
union of the CLA, JAZ and KAR corpora described in section 3.1.6. These
two corpora have been used to train and validate the system. The RWC
corpora, used to test the system, are described in section 2.8.4.

The AJP corpora is a two level multi-genre corpus. At the first, coarse
level, there are three genres: classical, jazz and popular music. At the second
level there are eight sub-genres: baroque, classicism, romanticism, pre-bop,
bop, bossa-nova, country and pop-rock. Tracks in all corpora (see detail
in table 3.18) have been manually tagged as melody or non-melody tracks,
following the guidelines discussed in section 3.1.6.

Corpus Files Tracks Tracks Melodies Non-melody Validation
per file ratio set

Train
ALL200 600 2775 4.6 554 5.2 LARGE
LARGE 2513 15168 4.9 2337 5.7 ALL200

RWC-G 48 311 7.5 44 6.1 –
Test RWC-P 75 801 11 74 10 –

AJP 762 3732 5.9 760 5.2 –

Table 3.18: Corpora for rule-based melody track selection.

Antecedent pruning results

Once rules are extracted from positive branches of the RF decision trees,
non-significant antecedents are pruned using the method discussed in sec-
tion 3.2.1. The rule systems obtained from the decision trees are named after
the dataset used for training the corresponding RF classifier. The validation
sets used for antecedent pruning are the ones specified in Table 3.18. The
results of the antecedent pruning process are summarized in Table 3.19.
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Rule system ALL200 LARGE

Unique conditions 779 (816) 1878 (2297)
% pruned unique conds. 4.5% 18.2%

Conditions 4370 (4692) 22481 (25581)
Avg. condition/rule 8.3 (9) 10.8 (12.3)
% pruned conditions 6.9% 12.1%

Table 3.19: Rule antecedent pruning results. Numbers in parentheses
indicate number of conditions in the rule antecedents before pruning.

As the figures in that table are not that impressive, recall from sec-
tion 3.2.1 that the testing procedure is very conservative, removing only
conditions that are not relevant for the whole validation dataset.

For the experiments that follow, the resulting pruned rule systems are
used.

Rule ranking results

Table 3.20 summarizes rule set coverage of the validation dataset when
considering all rules in a rule set. Rule coverage percentages are a rough
estimation of a rule system accuracy. In this case, both rule systems perform
comparably on their respective validation datasets, with more than 85%
of the melody tracks firing at least one rule in a rule set. However, the
coverage of non-melody tracks is somewhat high, especially for the LARGE
rule system.

Rule system ALL200 LARGE

melody tracks 86% (3) 87% (4)
non-melody tracks 17% (7) 32% (21)

zero scoring 23% 67%

Table 3.20: Rule coverage summary. Figures in the second and third
rows are average coverage of the validation dataset by a rule set from the
corresponding rule system. Numbers in parenthesis are standard deviations.

The last row shows the percentage of rules in a rule set, in average,
that scored zero, i.e. rules not fired by any melody track in the validation
set. These rules are dropped from the rule sets, thus reducing their size
proportionally. This is a great reduction for the LARGE rule system, as it
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shrinks to one third of its original size. This means keeping about 70 rules
out of more than 200 for each rule set, in average.

Figure 3.6 shows the average rule set coverage percentages when selecting
the N best rules from each rule set in a rule system. Note that when N is
small, the s1 function gives a better coverage ratio for melodies. On the other
hand, the s2 function gives better coverage ratios for large N . In particular,
the LARGE rule system achieves more than 75% melody track coverage in
average while maintaining the non-melody track coverage very low (about
3%).

A hint on what combination of scoring function and N value is the best
can be seen on Figure 3.7. This is much like a ROC curve, with false positive
rate on x-axis and true positives on the y-axis, so the perfect model is the
one at point (0, 1). The closer to that point, the better the rule system. The
arc of circumference with origin at (0, 1) intersects the curve for rule systems
derived from the ALL200 dataset at (0.09, 0.84) for N = 32 with scoring
function s2. Recall that the plot presents average coverage from each rule
set in that rule system. The standard deviation for both TP and FP rates is
0.03. However, as the goal is to obtain a compact model for melodies, this
N value is still too large. This ‘best’ model is used for comparison purposes
on the classification experiments presented in the next section.

Track selection experiments

Two experiments are presented in this section. The first one is a melody track
categorization experiment, while the other one is a melody part selection
experiment (see section 3.1.6 for recalling experiment definitions). For each
experiment, results from several combinations of scoring function and number
of selected rules are discussed. These rule system results are compared to
those obtained by the RF model from which the rules are derived.

Melody track categorization results The RWC-G, RWC-P and AJP
datasets have been used as test sets. The rule systems have three free
parameters: the number of best rules N to be selected from each rule set,
the minimum number θ of rule sets that must agree to tag a track as a
melody, and the scoring function s used to rank the rules. Each combination
(N, θ, s) results in a distinct rule system classifier. Recall that there are 10
rule sets in a rule system. The range of values used in these experiments is
N ∈ [1, 20], θ ∈ [1, 10], and s ∈ {s0, s1, s2}. A summary of the best results
obtained applying these classifiers to test datasets is shown in tables 3.21,
3.22, and 3.23. The rule system success (%OK), precision, recall, and F -
measure are shown. The F -measure is used as the performance value to
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Figure 3.6: Average rule set coverage when the number of rules selected (N) varies
from 1 to 40, for both rule systems and score functions s1 (top) and s2 (bottom).
Solid lines indicate coverage for ALL200 and (+) indicate coverage for LARGE.
Plots over 20% are for melody tracks. Plots under 20% are for non-melody tracks.
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Figure 3.7: TP/FP ratio for average rule coverage.

select the best combinations. The table shows the results for parameter
combination with best trade-off between low N values and F -measure for
each scoring function. Note that θ = 6 for the RF results, indicating that a
sample is assigned the class IsMelody=true if the RF assigns a probability
greater than 0.5 to this class. The last row in every table shows results
obtained when using the best rule system according to Figure 3.7.

Some interesting results on melody track categorization are shown in
Table 3.24. This table shows the best results for all test datasets when
N = 1. As shown, the ALL200 model with score s0 performs best when
N = 1. Table 3.26 shows the first rules in rule sets from rule system ALL200,
according to score s0. When it comes for the user to better understand what
kind of tracks do the rules in that table characterize, it is not obvious what
the actual numerical values mean. An attempt at making such rule systems
more human-readable is described in section 3.3.

Melody part selection results Now, the goal is to know how many times
the method selects the correct melody track among those in a file. See
section 3.2.2 for details on this problem definition.

Rule systems ALL200 and LARGE were used. The task is approached
by fixing the θ parameter to 1. The track in a file that fires most rule sets is
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Model s N θ %OK Prec Rec F

ALL200 0 2 2 91.3 0.67 0.75 0.71
(rules) 1 2 2 90.4 0.64 0.73 0.68

2 10 4 89.4 0.60 0.80 0.68

ALL200(RF) – – 6 90.4 0.65 0.68 0.67

LARGE 0 17 4 89.1 0.60 0.66 0.63
(rules) 1 11 4 90.7 0.67 0.65 0.67

2 8 3 92.3 0.76 0.66 0.71

LARGE(RF) – – 6 92.0 0.71 0.72 0.72

ALL200 (Best) 2 32 5 86.2 0.51 0.84 0.63

Table 3.21: Melody track categorization. Best results for the RWC-G
dataset. (RF = Random Forest)

s N θ %OK Prec Rec F

ALL200 0 1 3 98.1 0.89 0.91 0.90
(rules) 1 5 6 98.1 0.90 0.89 0.90

2 2 2 98.4 0.88 0.96 0.91

ALL200(RF) – – 6 97.8 0.84 0.93 0.89

LARGE 0 3 3 98.6 0.91 0.95 0.93
(rules) 1 9 4 98.8 0.90 0.97 0.94

2 5 2 98.8 0.90 0.97 0.94

LARGE(RF) – – 6 98.6 0.90 0.97 0.94

ALL200 (Best) 2 32 7 97.8 0.84 0.93 0.89

Table 3.22: Melody track categorization. Best results for the RWC-P
dataset.

selected as the melody. Note that this is equivalent to applying Eq. 3.4 with
pε = 0.1, as p(M |ti) is computed here as the ratio of fired rule sets in the rule
system. In case of draws, the track that activates the larger total number of
rules wins the tie. If a draw still exists after comparing the number of rules
fired by each track, one of them is chosen randomly as the melody track.

Table 3.25 shows the best rule system results and those obtained using
RF classifiers. The results for the RWC-P dataset show a hint that rule
systems with a few tens of rules can perform comparably to an ensemble of
decision trees with hundreds of leaves.
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s N θ %OK Prec Rec F
ALL200 0 17 3 95.3 0.86 0.92 0.89
(rules) 1 15 4 95.6 0.88 0.91 0.89

2 12 2 94.6 0.86 0.88 0.87
ALL200(RF) – – 6 95.9 0.90 0.89 0.90

LARGE 0 13 2 95.1 0.88 0.89 0.88
(rules) 1 17 3 95.6 0.88 0.90 0.89

2 11 1 95.3 0.88 0.89 0.89
LARGE(RF) – – 6 94.0 0.92 0.77 0.84

ALL200 (Best) 2 32 5 95.6 0.88 0.91 0.89

Table 3.23: Melody track categorization. Best results for the AJP dataset.

Dataset Rule sys. s θ %OK Prec Rec F
RWC-G ALL200 0 2 91.0 0.69 0.66 0.67
RWC-P ALL200 0 3 98.1 0.89 0.91 0.90

AJP ALL200 0 1 93.2 0.81 0.87 0.84

Table 3.24: Melody track categorization. Best results with N = 1.

RWC-G RWC-P AJP
s N %OK s N %OK s N %OK

ALL200 1 3 70.5 0 2 97.3 1 10 91.5
ALL200 (RF) – – 75.0 – – 94.7 – – 98.6

LARGE 1 5 68.2 0 6 97.3 0 7 86.3
LARGE (RF) – – 72.9 – – 96.0 – – 97.5

Table 3.25: Best melody part selection results for test datasets.
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3.3. A FUZZY APPROACH

3.3 A fuzzy approach

The rule systems built so far are more compact melody models and can
perform comparably to RF on some datasets. However, as it can be seen in
table 3.26, they are still hard to understand, as the meaning of numerical
values is not always easily readable. For example, is a LowestPitch value of
53.5 high or low? Moreover, taking the first rule in the table to characterize
a sample track, it would not fire if the track has a LowestPitch value
equal to 53, no matter whether the track meets the rest of conditions in
the rule antecedent. These two problems can be circumvented by the use
of fuzzy rules. Preliminary work on automatic human-readable melody
characterization by fuzzy rules is presented in this section. A method to
convert a crisp classification rule system for melody track characterization
into a fuzzy rule system is laid out. The method applies a genetic algorithm
(GA) to generate fuzzy membership functions for rule attributes. These fuzzy
models should achieve good performance in discriminating melody tracks
when compared to the crisp models they are derived from.

The rest of the section is organized as follows: first, the methodology used
is discussed. Second, the experimentation framework is outlined. Results
on several datasets for both crisp and fuzzy rule systems are discussed and
compared.

3.3.1 Methodology

The methodology applied to obtain such fuzzy models is outlined in two
steps: first, a crisp rule system that characterize melody tracks is learned
from tagged corpora, like the ones presented in section 3.1.6. This system is
then converted to a fuzzy one applying a fuzzification process to the input
domain. This is discussed in this section.

A rule system for melody characterization

A rule system obtained by the RIPPER algorithm (Sec. 2.2.5) is used as
the basis to induce a fuzzy rule system. The ALL200 dataset (Sec. 3.1.6) is
used for training, so it is called the RIPPER-ALL200 crisp rule system from
herein. The parameters used for the algorithm setup are shown in table 3.27.
Table 3.28 shows the RIPPER-ALL200 rule system. Note that only 13 out
of 34 in the initial set of statistical descriptors have been selected by the
algorithm to characterize melody tracks. Figures about this rule system
performance will be presented in section 3.3.3.
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Number of folds for training/pruning 3
Minimum per-class rule antecedent coverage10 2

Number of optimization runs 2

Table 3.27: RIPPER setup parameters

From crisp to fuzzy rule systems

Although informative, RIPPER-ALL200 is not easily understandable at a
first sight, at least for musicians or musicologists. Also, being melody such a
vague concept, a fuzzy description of melody would be more sensible in the
imprecise domain of music characterization. In order to produce such a fuzzy
description, a fuzzification process is applied to the crisp rule system. Such
process is performed in two steps. First, the data representation must be
fuzzified. That is, numerical input and output attributes must be converted
to fuzzy variables. Second, the rules must be translated into fuzzy rules,
substituting linguistic terms for numerical boundaries.

Attribute fuzzification

The procedure to fuzzify a crisp attribute is outlined as follows:

1. Define crisp attribute domain.

2. Define linguistic terms (such as low, average, or high) for every domain.

3. Select the shape of the fuzzy membership function (or fuzzy set, for
short) associated with each linguistic term.

4. Set the value of each fuzzy set parameter within the attribute domain.

Crisp attribute domain definition As stated above, a MIDI track is
described by a set of statistical descriptors (called attributes from herein).
As seen in Table 3.1, most attributes have a finite domain. For practical
application of the fuzzification method, infinite domains should be converted
to finite domains, defining appropriate bounds for them. As all attribute
ranges are in the positive domain, only the upper bound for infinite domains
is defined as the value 999, 999.0.

10In the Weka toolkit implementation, this is expressed in terms of instance weights.
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3.3. A FUZZY APPROACH

Name Rule

R1 (TrackOccupationRate ≥ 0.51) ∧ (TrackNumNotes ≥ 253)
∧(AvgPitch ≥ 65.0)
∧(AvgAbsInterval ≤ 3.64)
=⇒ IsMelody = true

R2 (TrackOccupationRate ≥ 0.42) ∧ (TrackPolyphonyRate ≤ 0.21)
∧(AvgPitch ≥ 62.6)
∧(NormalizedDistinctIntervals ≥ 1)
=⇒ IsMelody = true

R3 (TrackNumNotes ≥ 284)
∧(AvgPitch ≥ 65.4)
∧(NormalizedDistinctIntervals ≥ 1)
∧(ShortestNormalizedDuration ≤ 0.001) ∧ (ShortestDuration ≥ 0.02)
=⇒ IsMelody = true

R4 (TrackOccupationRate ≥ 0.42) ∧ (TrackSyncopation ≥ 16)
∧(AvgPitch ≥ 60.5) ∧ (StdDeviationPitch ≤ 5.0)
∧(AvgAbsInterval ≤ 2.72)
=⇒ IsMelody = true

R5 (TrackNormalizedDuration ≥ 0.95) ∧ (TrackSyncopation ≥ 24)
∧(LowestNormalizedPitch ≥ 0.14)
∧(DistinctIntervals ≥ 25) ∧ (AvgAbsInterval ≤ 3.87)
=⇒ IsMelody = true

R6 (TrackOccupationRate ≥ 0.31) ∧ (TrackPolyphonyRate ≤ 0.001)
∧(TrackNumNotes ≥ 130)
∧(AvgPitch ≥ 55.2)
∧(AvgAbsInterval ≤ 2.44)
=⇒ IsMelody = true

Table 3.28: RIPPER-ALL200 (crisp) rules.
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Linguistic term definitions In order to select the number of linguistic
terms per attribute, an attribute frequency analysis has been performed on
RIPPER-ALL200 and the RF-derived rule systems learned from the ALL200
dataset (Sec. 3.2.2). The presence of each attribute in those systems has been
accounted for. Three RF-derived rule systems, using each of the scoring
functions presented in section 3.2.1 have been learned. Only the first rule
in each rule set (as the ones in Table 3.26) has been utilized, along with
the RIPPER-ALL200 system. Altogether, there are 36 rules being analised.
Table 3.29 presents the number of times, in average, an attribute appears in
a rule system. Five linguistic terms were assigned to the four most frequent
attributes, and three to the rest of attributes present in RIPPER-ALL200,
as shown in Table 3.30.

Fuzzy set shape selection Given an attribute x on a domain X, every
linguistic term T i defined on X has a fuzzy set or membership function µi

associated to it:

µi : X −→ [0, 1] (3.7)

such that

µi(x) = P (T i|x),∀x ∈ X (3.8)

represents the probability for the attribute value x to be named T i. Figure 3.8
shows a 3-term fuzzy set example.
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m
b
e
rs
h
ip

TrackNormalizedDuration

shortest average longest

.1 .2 .3 .4 .5 .6 .7 .8 .9

Figure 3.8: Fuzzy set example for attribute TrackNormalizedDuration

For efficiency reasons, the shape for a fuzzy set in this work is restricted
to be either trapezoidal or triangular, being the latter a special case of the
former. Figure 3.9 depicts such fuzzy set shapes.
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Attribute avg. frequency

TrackOccupationRate 8
LowestPitch 6.25
TrackPolyphonyRate 6
AvgAbsInterval 5.25

TrackNormalizedSyncopation 4
AvgPitch 3.75
TrackNumNotes 3.25
AvgNormalizedAbsInterval 2.5
AvgDuration 2.25
TrackSyncopation 2
TrackNormalizedDuration 2
StdDesviationPitch 2
StdDesviationAbsInterval 2
NormalizedStdDesviationPitch 2
NormalizedStdDesviationDuration 1.75
HighestNormalizedDuration 1.75
NormalizedStdDesviationAbsInterval 1.25
HighestNormalizedPitch 1.25
AvgNormalizedPitch 1.25
LowestNormalizedPitch 1
HighestPitch 1
HighestAbsInterval 1
DistinctIntervals 1
ShortestDuration 0.75
NormalizedDistinctIntervals 0.75
MostRepeatedInterval 0.75
HighestNormalizedAbsInterval 0.75
AvgNormalizedDuration 0.75
LowestNormalizedDuration 0.5
LowestAbsInterval 0.5
StdDesviationDuration 0.25
NormalizedMostRepeatedInterval 0.25
LowestNormalizedAbsInterval 0
LongestDuration 0

Table 3.29: Average attribute presence frequency in crisp rule systems.
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Attribute Linguistic terms

TrackNormalizedDuration shortest, average, largest
TrackNumNotes low, average, high
TrackOccupationRate void, low, average, high, full
TrackPolyphonyRate none, low, average, high, all

LowestNormalizedPitch low, average, high
AvgPitch veryLow, low, average, high, veryHigh
StdDeviationPitch low, average, high

DistinctIntervals few, average, alot
NormalizedDistinctIntv. lowest, average, highest
AvgAbsInterval veryShort, short, average, large, veryLarge

ShortestDuration low, average, high
ShortestNormalizedDur. shortest, average, longest

TrackSyncopation few, average, alot

Table 3.30: Fuzzy linguistic terms

Fuzzy set parameter setup Each fuzzy set is modeled by four para-
meters, corresponding to the extreme points of the core (or prototype) and
support of a fuzzy set. The support is the range of the input domain where
µi(x) > 0. Given the following attribute domain definition,

X = [Xmin, Xmax] (3.9)

the fuzzy set parameters (xiL, x
i
LC , x

i
LR, x

i
R) (Fig. 3.9) are such that

Xmin ≤ xiL ≤ xiLC ≤ xiLR ≤ xiR ≤ Xmax , (3.10)

and a trapezoidal fuzzy set is defined as

µi(x) = P (T i|x) =



0 if x < xiL ∨ x > xiR
1 if x > xiLC ∧ x < xiRC
x− xiL
xiLC − xiL

if x ≥ xiL ∧ x ≤ xiLC

x− xiR
xiRC − xiR

if x ≥ xiRC ∧ x ≤ xiR

, (3.11)

being a triangular fuzzy set a special case where xiLC = xiRC .
The definition of such fuzzy sets on numerical attributes usually involves

the participation of a human expert who provides domain knowledge for
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Trapezoidal fuzzy set Triangular fuzzy set

Figure 3.9: Fuzzy set shapes utilized and their parameters

every attribute. The expert usually takes into consideration the distribution
of values for an attribute in a reference data collection, as well as any other
information available.

Our approach is to replace the human expert by a genetic algorithm
to setup fuzzy set parameters. The GA automatically learns the fuzzy set
parameters, given the linguistic term definitions for each attribute. Such
combination of a fuzzy system with a genetic algorithm is known as a genetic
fuzzy system (GFS) (Cordón and Herrera, 1995), described in section 2.6.1.

The output fuzzy variable IsMelody has been modeled by singleton fuzzy
sets. These are fuzzy sets whose support is a single point in X, with a
membership function value of one, as represented in Figure 3.10.
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.2 .4 .6 .8 10

Figure 3.10: Fuzzy output attribute IsMelody modeled by singleton fuzzy
sets.
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3.3.2 Fuzzy set parameter discovery

The objective for the GFS is to optimize the fuzzy set parameters for every
attribute in a fuzzy rule system. This optimization process is guided by
a fitness function that, given a reference fuzzy rule system, tests potential
solutions against a reference dataset. The combination of the reference rule
system and the fuzzy set candidates is set to work in order to correctly
identify melody and non-melody tracks in the reference dataset. The more
tracks are correctly identified, the fitter the proposed solution is.

Fuzzy set representation scheme

An individual’s chromosome in the GA encodes all attributes of the fuzzy
rule system. The representation scheme used here is similar to the one
in (Makrehchi et al., 2003). In order to have an uniform GA representation
for every attribute, their domains are normalized to range [0, 1], using the
limits explained in section 3.3.1.

The support is considered the most important part of a fuzzy set, while
its shape is considered a subjective and application-dependent issue (Lee,
1990). The core is defined here as a function of its support. So, the only
parameters that need to be optimized are the support points of each fuzzy
set for every attribute. Figure 3.11 shows how an attribute domain, X, is
partitioned in overlapping fuzzy partitions, each corresponding to a fuzzy set.
A fuzzy partition of X is defined as

X i =
[
xiL, x

i
R

]
, X i ⊂ X, 1 ≤ i ≤M (3.12)

where xiL and xiR are the left and right support points of the fuzzy set i,
respectively; M is the number of fuzzy sets for the attribute. Partitions are
defined so that ∀i, 1 ≤ i < M :

xiL ≤ xi+1
L ∧ xiR ≤ xi+1

R (3.13)

and

X =
⋃
i

X i, (3.14)

that is, every input value belong to at least one partition. It follows from
(3.13) and (3.14) that x1

L = 0, so we can drop it from the representation. We
also force adjacent partitions to overlap:

Zi,i+1 = X i
⋂

X i+1 =
[
xi+1
L , xiR

]
6= ∅ (3.15)

124



3.3. A FUZZY APPROACH

Then the set of parameters to optimize for a given attribute is

Θ =
{
x2
L, x

1
R, x

3
L, x

2
R, · · · , xML , xM−1

R , xMR
}

(3.16)

where they have been set in increasing value order. For the sake of simplicity,
let express Θ as

Θ =
{
p1, p2, · · · , p2M−1

}
(3.17)

In order to make Θ suitable for crossover and mutation operations, a
relative parameter representation scheme is used in the GA. Such scheme is
defined as follows

θ =
{
p1, r2, r3, · · · , r2M−1

}
(3.18)

where ri = pi − pi−1. Clearly, from (3.15) it follows that ri > 0. Figure 3.12
shows this representation scheme. Note that

|Zi,i+1| = r2i, 1 6 i < M (3.19)

Xi

0

1

Xi+1 . . .

xL
i xL

i+1 xR
i+1xR

i . . .

|Zi,i+1|

Figure 3.11: Overlapping fuzzy set partitions.

X1

0

1

X2
. . .

p0=xL
1=0 p1=xL

2

r2

XM

r3 r
4

r
2M-2

r
2M-1. . .

p2M-1=xR
M=1

Figure 3.12: Representation scheme of fuzzy sets.
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A chromosome of a GA individual (its genotype) is made up of one
representation scheme per fuzzy attribute,

Ω = {θ1, θ2, · · · , θN} (3.20)

where N is the number of attributes in the system.
The chromosome Ω encodes only support points. Once they are known,

core points are obtained by setting left and right boundaries (Fig. 3.13) for
each fuzzy set. These boundaries are restricted to lie inside the overlapping
section of their corresponding partition:

Bi
L ⊂ Zi−1,i, 1 < i ≤ m (3.21)

Bi
R ⊂ Zi,i+1, 1 ≤ i < m (3.22)

so they are randomly set to be

|Bi
L| ≤ |Zi−1,i| = r2i−2, 1 < i ≤ m (3.23)

|Bi
R| ≤ |Zi,i+1| = r2i, 1 ≤ i < m (3.24)

Two particular cases are the left boundary of X1 and the right boundary
of XM .

|B1
L| ≤ p1 = x2

L, and (3.25)

|BM
R | ≤ r2M−1 (3.26)

0

1

Xi

BL
i BR

i

Figure 3.13: Boundaries of a fuzzy set.

These restrictions ensure that the core of a fuzzy set is always equal
or greater than zero. The points characterizing all fuzzy sets for a given
attribute are set up as
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x1
L = 0 (3.27)

xiL = p2i−3, 1 < i ≤M (3.28)

xiR = p2i, 1 ≤ i < M (3.29)

xMR = 1 (3.30)

xiLC = xiL + |Bi
L|, 1 ≤ i ≤M (3.31)

xiRC = xiR − |Bi
R|, 1 ≤ i ≤M (3.32)

Remember these points are in the range [0, 1]. Before the individual is
tested by the fitness function, a de-normalization step is performed for each
fuzzy set, using again the limits in Table 3.1.

Fitness function

The fitness function for the GA uses a Fuzzy Inference System (FIS) to
test candidate solutions. A FIS, or fuzzy rule-based system, it is a method
of inference that uses fuzzy rules, a database (or dictionary) of fuzzy sets,
and a fuzzy reasoning mechanism to infer conclusions from input data. The
fuzzy set definitions coded in an individual’s chromosome are converted to
fuzzy sets, which are used as the database of the FIS. The fuzzy rule system
discussed below is used by the fitness function to test the FIS database on
a reference dataset (see section 3.3.3). The better the performance, the
better the individual’s score. Several metrics can be used to measure the
performance of the FIS. In this work, two different metrics have been tested:
1) number of hits (i.e., number of melody tracks identified by the FIS), and 2)
F -measure (harmonic mean of precision and recall of class IsMelody=true).

Crisp rule system fuzzification

In order to fuzzify a crisp rule system, antecedents of the form (x= v)11 are
translated into one or more antecedents of the form (x IS T ), where T is a
linguistic term defined for attribute x. The value v partitions the attribute
domain in two subsets, and the direction of the inequality guides the selection
of the fuzzy terms to be included in fuzzy antecedents.

For a quick depiction of the method see the example in figure 3.14.
Suppose four linguistic terms A, B, C and D have been defined for attribute
x, along with their respective fuzzy sets. Suppose also that these linguistic
terms are ordered in the attribute domain. In this example, A < B < C < D.

11= is any of >, ≥, <, ≤ inequality operators
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Suppose the antecedent is (x > v). The value v from the crisp antecedent
split x’s domain in two partitions. We obtain v’s membership for each fuzzy
set defined on x, then select the linguistic term Ti with higher membership
value and convert (x > v) in a disjunction of antecedents of the form (x IS T ),
where T is a linguistic variable equal or greater than Ti. In our example, the
fuzzified antecedent equivalent to (x > v) is ((x IS C) ∨ (x IS D)). It is
trivial to define the method for antecedents with other inequality operators.

A B C D

vx

0

1

Figure 3.14: fuzzifing a crisp boundary.

The crisp RIPPER-ALL200 rule system (section 3.3.1) has been fuzzified
in order to present a proof of concept of the applied methodology. A
disjunctive fuzzy rule set is then obtained. Table 3.31 shows fuzzy rules
corresponding to the crisp ones shown in Table 3.28. In this method, the
fuzzy sets needed to fuzzify the rule system should be the ones provided by
GA individuals. The crisp rule fuzzification algorithm should be executed
each time an individual’s fitness is to be computed. This is a very time
consuming task. The time complexity for the algorithm is O(RCL), where R
is the number of rules in the crisp rule system, C is the number of conditions
per rule, and L is the number of linguistic terms (fuzzy sets) defined for
the attribute being used in the condition to fuzzify. This algorithm should
be executed G × P times, being G the number of generations of the GA
optimization process, and P the number of individuals in the GA population.
With parameters from section 3.3.3, this is ten thousand to one million times
per optimization experiment. Therefore, for efficiency reasons, the work
presented here uses predefined fuzzy sets, defined by hand. This way, the
crisp rule fuzzification algorithm is executed only once at the start of the
optimization process. These fuzzy sets are shown in appendix B.
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CHAPTER 3. MELODY PART SELECTION

3.3.3 Experiments and results

Datasets

Datasets used to test the fuzzy rule systems obtained by the GA optimization
process are discussed in section 3.2.2. The ALL200 reference dataset has
been used to obtain the crisp rule system from which fuzzy rule systems are
derived. It is also the dataset used in the GA fitness function to test the
performance of potential solutions. The other datasets are used for testing
the system. Recall these are multi-genre datasets.

FIS optimization experiment setup

The GFS has six free parameters that provide for different experiment
setups. Table 3.32 shows these parameters and the values chosen to build a
set of experiments. They have been restricted to at most three different values
per parameter. The selection strategy parameter values mean to keep the
best individual, 10% or 20% of population for next generation, respectively.
The outcome of a rule must be greater than the defuzzification threshold to
consider it was fired.

The restricted number of values per parameter allows the use of an
orthogonal array (Sec. 2.7.1) to explore the free parameter space. An
OA(18, 6, 3, 2) of strength 2 and 18 runs has been used to setup experiments.
As each parameter is supposed to have exactly three values, the F-measure
fitness metric value is used twice. The FIS optimization experiments
resulting from applying the OA to the FIS parameters are summarized in
table 3.33.

The FIS engine used in this work is the jFuzzyLogic framework (Cin-
golani, 2008). The GA optimization engine has been implemented using
JGAP (Meffert et al., 2008). Please see appendix A for a brief introduction
to these frameworks.

Experiment parameter Values

GA population size 100, 500, 1000
GA no. of generations 100, 500, 1000
GA mutation ratio none, 0.05, 0.1
GA selection strategy Best one, Best 10%, Best 20%
GA fitness metric Hit count, F-measure
Defuzzification threshold 0.5, 0.6, 0.7

Table 3.32: FIS optimization setup parameters
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3.3. A FUZZY APPROACH

FISO Population Generations Fitness Mutation Selection Defuzz.
thrs.

0 100 100 Hits – Best 0.5
1 500 500 F-measure .1 Best 10% 0.6
2 1000 1000 F-measure .05 Best 20% 0.7
3 100 100 F-measure .05 Best 10% 0.7
4 500 500 F-measure – Best 20% 0.5
5 1000 1000 Hits .1 Best 0.6
6 100 500 Hits .05 Best 20% 0.6
7 500 1000 F-measure – Best 0.7
8 1000 100 F-measure .1 Best 10% 0.5
9 100 1000 F-measure – Best 10% 0.6
10 500 100 Hits .1 Best 20% 0.7
11 1000 500 F-measure .05 Best 0.5
12 100 500 F-measure .1 Best 0.7
13 500 1000 Hits .05 Best 10% 0.5
14 1000 100 F-measure – Best 20% 0.6
15 100 1000 F-measure .1 Best 20% 0.5
16 500 100 F-measure .05 Best 0.6
17 1000 500 Hits – Best 10% 0.7

Table 3.33: FIS optimization (FISO) experiments

FIS optimization results

Table 3.34 shows the performance on melody track categorization on the
ALL200 dataset. Both evolved FIS and RIPPER-ALL200 crisp rule system
performances are shown. Average results from the eighteen optimization
experiments are presented. Precision, recall and F-measure are computed
for the class ’IsMelody’. Also, the best performance of evolved FIS is
presented. This has been obtained using the parameter combination number
1 in table 3.33. Note that the best evolved FIS performance is very close
to that from the crisp rule system. The definition of fuzzy sets for the best
evolved FIS is presented in Figure 3.15. Note that overlapped fuzzy set cores
(e.g. fuzzy sets low and average for attribute TrackNumNotes) are valid. It
means that, for any input value x in the overlapping range, both linguistic
terms would have µi(x) = 1.

Figure 3.16 presents the fitness evolution for each experiment. Beyond
three hundred generations there is little improvement in fitness with both
measures. In average, FIS evolved with a F -measure based fitness function
performed better than using hit-based fitness. There are some experiments
that reached the 0.82 best F -measure mark on the ALL200 dataset. Notably,
experiment 3 needed only 100 generations to reach this score (against 500
generations needed by experiment 1, chosen as the best in Table 3.34).
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Figure 3.15: Fuzzy set definitions from the best evolved FIS (FISO 1).
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Rule sys. Precision Recall F Error rate

crisp 0.89 0.87 0.88 0.05
Best FIS 0.81 0.83 0.82 0.06

Avg. FIS 0.80 (.03) 0.77 (.09) 0.78 (.05) 0.08 (.01)

Table 3.34: Best and average performance of evolved FIS vs. crisp RIPPER-
ALL200 rule system on the ALL200 dataset. Figures in parenthesis are
standard deviations.
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Figure 3.15: Fuzzy set definitions from the best evolved FIS (cont.).
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Figure 3.16: (top) GA fitness by hits. (bottom) GA fitness by F -measure
(1000 generations).
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135



CHAPTER 3. MELODY PART SELECTION

Results on test datasets.

Table 3.35 presents a summary of results for the best solution from each
FIS optimization experiments on test datasets. Relying on the F -measure as
the measure of performance, rather than error rate, no single combination of
parameters performed better than others in more than one dataset. However,
results are very close between several parameter combinations on the same
test dataset. Analysing optimization process parameters one at a time, it
seems that setting the population to a value larger than 500 does not make
any significant improvement. Neither does selecting 20% of the population
for survival to the next generation. This is in accordance with conclusions
drawn from inspecting fitness curves in figure 3.16.

For comparison purposes, table 3.36 presents results from applying both
the crisp rule system and the best evolved FIS to test datasets. For the FIS
system, a track is classified as a melody track if it fires at least one rule
with probability greater than 0.5. Otherwise, the track is classified as non-
melody. As the results show, the fuzzified rule system performances are lower
than the original crisp rule system performance, except maybe for the AJP
dataset. This is, by the way, the most realistic scenario among the considered
databases. The biggest differences are observed in the smaller data sets, i.e.
RWC-P and RWC-G, with a limited set of examples (e.g. RWC-G contains
only 44 melody examples). Analyzing the errors made by the fuzzy rule
systems, it follows that most errors are false positives, that is, some non-
melody tracks are classified as melody tracks. It is important to remind
here that the goal of the fuzzification process is not to improve classification
accuracy, but to obtain a human-readable comprehensible characterization
of melodies within MIDI tracks. However, a comparable performance would
be desirable, which was not the case, in general. One of the causes for this
could be the use of predefined fuzzy sets (section B) for crisp rule fuzzification,
leading to a predefined, fixed fuzzy rule system in the fitness function.

Some attempts were made trying to improve fuzzy rule systems. The
output fuzzy attribute IsMelody membership functions were set to non-
singleton shapes, like the example in Figure 3.17. This way the output of
the system is either true or false with a probability between 0.5 and 1.
With this setup, where the crossover points of both fuzzy sets is 0.5, results
were identical to those obtained using the singleton-based setup. Changing
the crossover point produced only worse results. In particular, results on the
recall metric got dramatically worse when this value was set slightly above
0.5.

Also, the AvgAbsInterval firing in rules has been investigated. Only
the term veryShort gets membership probability greater than zero for every
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ALL200 LARGE RWC-G RWC-P AJP
F Err. F Err. F Err. F Err. F Err.

0 0.75 0.08 0.69 0.09 0.41 0.15 0.58 0.08 0.83 0.06
1 0.82 0.06 0.72 0.09 0.43 0.16 0.57 0.09 0.85 0.06
2 0.78 0.08 0.69 0.10 0.44 0.15 0.59 0.09 0.85 0.06
3 0.78 0.07 0.69 0.09 0.43 0.15 0.59 0.08 0.84 0.06
4 0.82 0.07 0.72 0.09 0.44 0.16 0.56 0.09 0.86 0.06
5 0.79 0.07 0.71 0.09 0.40 0.15 0.56 0.08 0.84 0.06
6 0.75 0.08 0.71 0.08 0.37 0.15 0.48 0.08 0.84 0.06
7 0.81 0.07 0.72 0.09 0.45 0.15 0.60 0.09 0.86 0.06
8 0.77 0.09 0.68 0.11 0.40 0.18 0.55 0.10 0.80 0.08
9 0.81 0.07 0.72 0.09 0.45 0.16 0.56 0.09 0.85 0.06
10 0.69 0.09 0.71 0.08 0.28 0.15 0.51 0.07 0.82 0.07
11 0.81 0.07 0.71 0.09 0.45 0.15 0.58 0.08 0.85 0.06
12 0.80 0.07 0.72 0.09 0.53 0.14 0.59 0.09 0.86 0.06
13 0.80 0.07 0.72 0.08 0.37 0.16 0.50 0.09 0.84 0.06
14 0.79 0.07 0.70 0.09 0.41 0.15 0.50 0.10 0.86 0.06
15 0.81 0.07 0.71 0.10 0.44 0.16 0.55 0.10 0.84 0.07
16 0.80 0.07 0.71 0.10 0.49 0.16 0.59 0.09 0.86 0.05
17 0.63 0.11 0.51 0.12 0.26 0.15 0.52 0.08 0.67 0.11

Table 3.35: Summary of evolved FIS results on test datasets.

Dataset Precision Recall F Error rate

LARGE (crisp) 0.79 0.80 0.80 0.06
LARGE (fuzzy) 0.75 0.68 0.72 0.08

RWC-G (crisp) 0.54 0.77 0.64 0.13
RWC-G (fuzzy) 0.49 0.57 0.53 0.14

RWC-P (crisp) 0.95 0.80 0.87 0.02
RWC-P (fuzzy) 0.52 0.72 0.60 0.09

AJP (crisp) 0.88 0.89 0.88 0.05
AJP (fuzzy) 0.90 0.83 0.86 0.05

Table 3.36: Melody track categorization results.
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test sample. For this attribute, values in the ALL200 dataset are in the
range [0, 19], so this was somewhat expected. None of the FISO experiments
achieved to capture the distribution of fitness test data on this attribute
(see, for example, Fig. 3.15). As the attribute domain can not be restricted
to the values found in a particular dataset, a straight forward approach is
to set some attributes to have predefined fuzzy sets, so they parameters
are not part of the FIS chromosome setup. An experiment was performed
using the FISO 1 evolved fuzzy sets, except for the attribute AvgAbsInterval
whose fuzzy sets were fixed ad hoc to those shown in Figure 3.18. As
shown in Table 3.37, results obtained this way are better on one dataset
(RWC-P), while worse or comparable on the others. Anyway, this suggests
that incorporating expert knowledge on some particularly ‘hard to evolve’
attributes makes a difference. Further investigation would be needed in order
to know under what circumstances predefined fuzzy sets give better results
than evolved ones.

An alternative method of fuzzy set fitness evaluation would be desirable to
improve results in such cases where the domain is oversized. One approach
would be to measure how well the fuzzy sets adapt to the distribution of
values in a dataset. This can be achieved using information theory metrics,
as in (Makrehchi et al., 2003). However, it would be desirable to measure
this fitness on several data distributions, to prevent overfitting a particular
dataset.

1

0

M
e
m
b
e
rs
h
ip

IsMelody

false true

.2 .4 .6 .8 10

Figure 3.17: Alternative setup for the fuzzy output variable IsMelody.
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Figure 3.18: Predefined fuzzy sets for attribute AvgAbsInterval.

Dataset Precision Recall F Error rate

LARGE (evolved) 0.75 0.68 0.72 0.08
LARGE (fixed) 0.82 0.65 0.72 0.08

RWC-G (evolved) 0.49 0.57 0.53 0.14
RWC-G (fixed) 0.44 0.40 0.42 0.16

RWC-P (evolved) 0.52 0.72 0.60 0.09
RWC-P (fixed) 0.78 0.63 0.70 0.05

AJP (evolved) 0.90 0.83 0.86 0.05
AJP (fixed) 0.91 0.66 0.77 0.08

Table 3.37: Melody track categorization. Evolved vs. fixed AvgAbsInterval
attribute fuzzy sets.

3.3.4 Comparison of crisp and fuzzy systems on some
examples

This section discuss several melody characterization examples. The example
excerpts are shown in Tables 3.38 and 3.39. The words ’Crisp’ and ’Fuzzy’
under the music systems indicate which rules from the crisp and fuzzy systems
were fired, respectively. The fuzzy rule system used for comparison was
the best evolved FIS on the ALL200 dataset (Fig. 3.15), using the rules in
Table 3.31. For the crisp rules, please see Table 3.28.

The first two tracks are melody tracks that were correctly identified by
the fuzzy rule system. The fuzzy rules fired by these examples are shown in
Table 3.40 for convenience. Note how similar these two rules are. In terms
of average pitch, track occupation rate, and average pitch interval they are
almost identical. Both of them get activated by tracks with rather high
average pitch, small average pitch interval values, and with a moderate to
large portion of the track occupied by notes. In addition, rule FR4 expects
tracks with some amount of syncopation, and moderate pitch standard
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deviation values. Finally, FR6 would see its activation level increased by
monophonic tracks with a significant amount of notes in it.

Crisp rules failed at characterizing the first example. This first track
almost fulfills rule R2, except that it has not the largest pitch interval variety
(its NormalizedDistinctIntervals value is 0.85), as the last condition of the
rule imposes. The next two tracks in Table 3.38 are non-melody tracks
correctly categorized by both rule systems (no track fired any rule). The
last two examples (Table 3.39) are tracks were both rule systems disagree.
The melody track from Satin Doll is unusual in the sense that it is supposed
to be played by a vibraphone (a polyphonic instrument), has one chorus
of improvisation, and the melody reprise (which is the part shown in the
example) is played in a polyphonic closed chord style. The last example is
a piano accompaniment part, played in arpeggiato style, that the fuzzy rules
incorrectly identified as a melody track. This track almost fired crisp rule R6,
except for the second condition of the rule, because its TrackPolyphonyRate
= 0.097. This is a clear example of why a fuzzy version of a crisp rule fires
while the crisp rule doesn’t. The value is accepted by the fuzzy rule as the
linguistic term none for the TrackPolyphonyRate attribute. This is because
it lies into the support of the fuzzy set corresponding to that term.

3.4 Conclusions on melody part selection

The method proposed here identifies the voice containing the melody in a
multitrack digital score. It has been applied to standard MIDI files in which
music is stored in several tracks, so the system determines whether each track
is a melodic line or not. The track with the highest probability among the
melodic tracks is eventually labeled as the one containing the melody of that
song.

The decisions are taken by a pattern recognition algorithm based on
statistical descriptors (pitches, intervals, durations, and lengths), extracted
from each track of the target file. The classifier used for the experiments was
a decision tree ensemble classifier named random forest. It was trained using
MIDI tracks with the melody track previously labeled by a human expert.

The experiments yielded promising results using databases from different
music genres, like jazz, classical, and popular music. Unfortunately, the
results could not be compared to other systems because of the lack of similar
works and benchmark datasets.

The results show that enough training data of each genre are needed in
order to successfully characterize the melody track, due to the specificities
of melody and accompaniment in each genre. Classical music is particularly
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True positive examples
Air In F, Watermusic, Handel (Baroque)
Melody

4

Crisp: –
Fuzzy: FR6
There Is No Greater Love, I. Jones (pre-Bop Jazz )
Melody

Crisp: R2, R5
Fuzzy: FR4, FR6

True negative examples
Air In F, Watermusic, Handel (Baroque)
Bass

Crisp: –
Fuzzy: –
There Is No Greater Love, I. Jones (pre-Bop Jazz )
Piano (accompaniment)

Crisp: –
Fuzzy: –

Table 3.38: Track samples correctly classified by the fuzzy system.
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False negative example
Satin Doll, D. Ellington (pre-Bop Jazz )
Melody

3 33

34 3 3

Crisp: R2
Fuzzy: –

False positive example
Sonata no. 3 K545, 2nd Mov., W.A. Mozart (Classicism)
Piano (accompaniment)

3 333 3
333 3

4
3

33
4 3

3 33 3 3 33

Crisp: –
Fuzzy: FR6

Table 3.39: Track samples incorrectly classified by the fuzzy system.

FR4 FR6
((AvgPitch IS high) (AvgPitch IS NOT veryLow)
∨ (AvgPitch IS veryHigh)) ∧ (AvgPitch IS NOT low)
∧ (TrackOccupationRate IS NOT void) ∧ (TrackOccupationRate IS NOT void)
∧ (TrackOccupationRate IS NOT low) ∧ (TrackOccupationRate IS NOT low)
∧ (AvgAbsInterval IS NOT third) ∧ (AvgAbsInterval IS NOT third)
∧ (AvgAbsInterval IS NOT fourth) ∧ (AvgAbsInterval IS NOT fourth)
∧ (AvgAbsInterval IS NOT high) ∧ (AvgAbsInterval IS NOT high)
∧ (TrackSyncopation IS NOT few) ∧ (TrackPolyphonyRate IS none)
∧ (StdDeviationPitch IS NOT high) ∧ (TrackNumNotes IS NOT low)
−→ IsMelody IS true −→ IsMelody IS true

Table 3.40: Fuzzy rules fired by examples in Table 3.38 and 3.39.
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hard for this task, because the melody is not confined to a single track in some
files. There, melody moves from one track to another, as different instruments
take the lead role. To overcome this problem, more sophisticated schemes
oriented to melodic segmentation are needed.

Being able to automatically obtain melody characterization rules that
are easily understandable by humans could be of interest for musicologists
and would help building better tools for searching and indexing symbolically
encoded music. The extraction of human-readable rules from the trees in the
random forest that help characterize melody tracks has been another topic
of research. Several rule systems, including fuzzy rule systems, have been
obtained (Ponce de León et al., 2007; Ponce de León et al., 2008). A method
to obtain reduced rule systems from previously learnt random forests that
characterize melody tracks has been exposed. Such rule systems perform
comparably to the original decision tree ensembles. The study of these rules
can lead also to the description of other track categories, such as solo or
chorus tracks.

In order to obtain a better description (in term of readability) of the rule
models obtained, they are automatically transformed into fuzzy rule systems
by applying a genetic algorithm to generate the membership functions for
the rule attributes. The classification accuracy of the resulting fuzzy rule
system is lower than the original crisp rule system, but comprehensibility
of the rules is improved. Most errors detected were false positives. This
is probably due to the fact that all rules are ’melody rules’, i.e., there are
not rules for characterizing non-melody tracks, so the fuzzy inference system
answers a track is a melody if at least one rule activates with probability
0.5 or greater. Adding rules to characterize non-melody tracks could help
identify false positives correctly.

3.5 Contributions in this chapter

As far as the author knows, the first work to address the problem of melody
part selection in MIDI files is (Tang et al., 2000). The authors apply heuristics
on some statistical properties of MIDI tracks to rank or classify them as
melody tracks. The work presented in this chapter is the first in the field, to
the best of our knowledge, to address the problem of melody part selection
from a machine learning point of view. Some of the reviewers of the first
papers (Rizo et al., 2006c,d) published on the subject also agreed on that.
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The following are the main contributions of this research:

• A supervised learning system for discriminating between melody and
non-melody MIDI tracks. The system is based on global statistical
descriptions of track content, including descriptors that relate such
content to what is found in other tracks.

• A collection of MIDI file corpora, differentiated by genre (classical
music, jazz, and karaoke-like music), and devised for training and
testing melody part selection methods. Melody tracks are tagged by
adding a special tag to the track name inside the original MIDI file.

• A study on genre specificity for melody part selection problems, which
shows that using a model built exclusively on the genre of the music
piece under test is a good and simple approach, at least with genres
used in this work.

• Human-readable (fuzzy) rule systems for melody track categorization.
As far as the author knows, these rule systems are the first descriptions
of the melody concept automatically extracted from symbolic music
examples, at least inside the MIR community. Moreover, such
description is human-friendly, at least in its fuzzy form, so it can serve
as a basis for further musicological analysis of the melody concept.

• A greedy crisp rule ranking method for two-class problems.

• A genetic fuzzy system for learning membership functions from melody-
tagged data.

As helper applications for this research, a graphical user interface for
melody part selection in MIDI files, and a MIDI feature extraction plugin
for the WEKA toolkit were developed. The GUI application is trainable,
and can play whole songs or any combination of tracks to verify the solution
proposed by the underlying model. The WEKA plugin allows to select MIDI
file folders as input data, without the need to first generate ARFF files.
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4
Music genre recognition

“A name doesn’t make the music.
It’s just called that to differentiate it

from other types of music.”
Art Blakey

The music genre recognition task has been approached by applying
the general feature extraction methodology presented in sec. 1.3, which
has been used thoroughly in this research about music genre recognition.
The framework devised to apply such methodology comprises two main
techniques:

The sliding window The extraction of useful information from a music
fragment content will go thru the use of a sliding window. This window
moves over the music sequence and takes snapshots of its content of a
given length and at given sampling intervals, with both parameters
usually expressed in terms of beats or bars. This is pretty much the
same concept as the sampling unit concept used in statistics, which
refers to the set of elements considered for selection in some stage of
sampling, except for the fact that two windows can overlap, i. e., the
end beats of a window can be the first ones of the next, given that the
sampling interval is smaller than the window length.

Global statistical information A set of low-level or mid-level statistical
descriptors are computed from the content of a given window. This
way, an entire music sequence is described by one or more samples
as vectors of numeric data. If the music sequence has been assigned
any tag to describe its genre, all samples derived from this particular
sequence will be assigned this same tag. This is called global statistics
information to differentiate it from other approaches that use local
statistics information based, for example, on n-grams (Doraisamy,
2004; Pérez-Sancho, 2009a). In these works statistical information
is extracted from short sequences of musical events (the n-grams),
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that usually elapses a few beats, as opposed to the present approach,
where statistical information summarizes the content of several bars
long music segments, typically made up of larger and more complex
sequences of musical events. This kind of statistical description of
musical content is sometimes referred to as shallow structure description
(Pickens, 2001). It is similar to histogram-based descriptions, like
the one found in (Toiviainen and Eerola, 2001), that tries to model
the distribution of musical events in a musical fragment. Computing
the minimum, maximum, mean and standard deviation from the
distribution of musical features like pitches, durations, intervals, and
non-diatonic notes we reduce the number of features needed (each
histogram may be made up of tens of features), while assuming the
distributions for the mentioned features to be normal within a melodic
fragment. Other authors have also used some of the descriptors
presented here to classify music (Blackburn, 2000; McKay, 2010).

Therefore the focus in these research will be put on

• assessing that the feature extraction methodology proposed above is
valid for music genre classification purposes, that is, the hypothesis
that melodies from the same genre are closer to each other, in the
description space, than melodies from different genres, hold.

• build a set of music content statistical descriptors based on several
properties of a music stream.

4.1 Feature space exploration by self-organising
maps

Self-organising maps, or SOM, for short (c.f. 2.1.2), are an interesting tool for
data exploration and visualization purposes. Other authors (Dopler et al.,
2008; Lidy and Rauber, 2008; Pampalk, 2006), have used SOMs successfully
for classifying, visualizing, and browsing music genres. They have been used
here to explore and visualize the JvC1 dataset, using as data representation
for melody tracks some of the statistical features described in section 4.3.1.
A premise for the work discussed here is that monophonic melody tracks in
JvC1 MIDI files are properly identified a priori.

Once a SOM is tagged, it can be used to classify new samples, and
are particularly helpful to visualize the result of this classification process,
specially when the samples are consecutive fragments of a sequence, as is the
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case with melody track samples in this research. I take advantage of this
capabilities to reinforce some results. As a side effect, several experimental
tests are contributed as a proof of concept for the idea that a statistical
description of a monophonic melody fragment contains enough information to
recognize, in most cases, its musical genre in absence of timbral information.

4.1.1 Methodology

Some previous surveys revealed that melodies from a same musical genre
share some common features that make it possible for a experienced listener
to assign a musical genre to them (c.f. 4.2). In that study, melody fragments
from 3 to 16 bars-long were proposed to the listeners. In order to have
more restricted data, fragments of 8 bars length (32 beats) are used here
(enough to get a good sense of the melodic phrase in the context of a 4/4
signature). For this, each melody sequence has been cut into fragments of
such duration. The description model proposed in section 4.3.1 is used to
represent these melody segments. SOMs are first unsupervisedly trained with
this data representation, and then calibrated (tagged) with labeled training
samples. From that point, they can be used to visualize the structure of
the data, or to classify new samples. Fig. 4.1 presents an ilustration of the
methodology. The melody is a fragment of the jazz piece ”Dexterity”.

The SOM provides several visualization capabilities (c.f. 2.1.2). The main
method for visualizing the structure of a SOM is the U-map representation,
as in Fig 4.2-a. The map in this example has been calibrated (i.e., tagged)
after training, with symbols to represent different classes. So, the left area
of the map clearly corresponds to samples of class ’O’, while the right
area corresponds to class ’X’. Some descriptor values for the weight vectors
correlate better than others with the label distribution in the map. It is
reasonable to consider that these descriptors contribute more to achieve a
good separation between classes. The SOMPAK toolkit used in this work
allows to visualize this weight vector ‘planes’, as shown in Fig. 4.2-b and
4.2-c.

4.1.2 Visualization of random vs. real melodies

The first exploration experiment conceived has been to train a SOM with
random (i.e., fake) and real melodies. 400 random, 8-bar-long monophonic
melodies were generated using different proportions of notes and silences.
430 real melody samples were chosen among jazz songs in the JvC1 corpus.
Two different bidimensional SOM geometries have been tested: 16 × 8
and 30 × 12 maps. An hexagonal geometry for unit connections and a
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51.0  52.0  
65.0  77.0  70.8   3.0  
 2.0  10.0   4.8   2.3  
 1.0  21.0   2.7   3.8  
 0.0   9.0   2.9   2.0  
 6.0   2.2   1.6

FEATURE EXTRACTORFEATURE
VECTOR

Overall descriptors
Pitches

Note durations
Silence durations

Intervals
Accidentals

MAP  INPUT

SOM

Figure 4.1: Depiction of the exploration methodology: musical descriptors
are computed from a segment 8-bar wide and provided to the SOM.
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Figure 4.2: Contribution to classification: (top) callibrated map (’X’ and ’O’
are labels for two classes); (bottom:left) weight space plane for a feature that
correlates with the classes (avg. interval); (bottom:right) plane for a feature
that does not correlate (num. of notes).

bubble neighbourhood for training have been selected. The value for this
neighbourhood parameter is constant for all the units in it and decreases as
a function of time.

The training has been done in two phases, a coarse one of 1000 iterations
with wide neighbourhoods (12 units) and a high learning rate (0.1) and then
a fine one of 10,000 iterations with smaller neighbourhood ratio (4 units) and
learning rate (0.05). These training parameters have been applied to the rest
of experiments with little variations. Table 4.1 shows these parameters. The
metrics used to compute distance between samples is the Euclidean distance.
The ‘Q error’ gives us an idea of how well the SOM has adjusted its weight
vectors to training data. Several training runs are performed, with random
initial weight vector values, and the map with lower Q error is selected.

Figure 4.3 shows the Sammon projection of the trained SOM. Nodes
correspond to map units. Note that there exists a clear gap between two
zones in the projection. The small cluster on the right in the Sammon
projection corresponds to the real melodies and that of the left to the random
melodies. This map has been obtained with random melodies with no pitch
range restriction, i.e., valid pitches are in the range [0, 127]. However, as
stated before in section 4.1.1, real melodies use to have a much smaller pitch
range. So, in this attempt, the pitch range (described by the minimum
and maximum pitch descriptors) is responsible for the clear separation of
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Geometry 16x8, hexa., bubble
Trials 20

Phase I Phase II
Iterations 1 000 10 000
α(0) 0.1 0.05
r(0) 12 4

Q. Error 10.5

Table 4.1: Training parameters for Random vs. Jazz experiment.

both type of melodies. Also, the figure shows evidence that real melodies
are somewhat confined to a much smaller region in the feature space than
random melodies.1

In figures 4.3 and 4.5 the Sammon projection and the SOM map are
displayed after training the SOM with restricted pitch range random melodies
and real melodies. Nodes labeled with numbers correspond to different
distributions of notes in random melodies. There still exists a clear gap
between two zones in the map. The small cluster on the upper part of
the Sammon projection corresponds to real melodies, while the bottom part
corresponds to random melodies. On the map in Figure 4.5 the same gap can
be observed: random samples lie on the right and real samples on the left of
the map. The dark strip represents the separation between both zones. The
SOM has been labelled using the training samples themselves. The “REAL”
cluster has less extension than that of random samples, because the latter
have more variability. There was an almost total lack of overlapping (units
labelled with both genres) between the zones. Figure 4.6 shows the map
labeled with random melodies only. Only two units from the right part of
the map, corresponding to the real melodies’ cluster, are activated by random
melodies. Still these two units were activated mostly by real melodies when
the map was calibrated. Figure 4.7 shows how real melodies are constrained
to the right side of the map, with no units in the left side being activated by
them.

The descriptors that contribute more to that separation are those having
a higher correlation among the samples in each of the zones. The planes
in the weight space (see Fig. 4.8) corresponding to each descriptor provide
information about this. An analysis of the most contributive features is an
indication about how the discrimination has been carried out. For example:

1This author firmly believes that only the hazard has made this Sammon figure to take
the form of a brass instrument device called ’sordina’ (mute).
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Figure 4.3: Sammon projection of a 16 × 8 SOM map trained with
unrestricted pitch range random melodies vs. jazz melodies.

• Pitch range. In the random melodies, extreme note pitches appear
more often than in real melodies.

• Standard deviation of the pitches. Is clearly larger for random melodies,
due to the lack of a ’tonal centre’ that usually acts like an attractor for
the melodic line.

• Average interval. Much higher in random samples. Intervals higher
than an octave are seldom present in real melodies. The average interval
is usually between 2 and 3 for real melodies and higher than 10 for
random ones.

The planes in weight space of the SOM for lesser correlated descriptors
are shown in figure 4.9.

Jazz versus classical music

In another visualization experiment, melodies from classical samples in JvC1
have been substituted for the random samples. 522 classical music melody
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Figure 4.4: Sammon projection of the 16 × 8 map of figure 4.5: restricted
pitch range random melodies versus real melodies.

fragments eight bars long were extracted from MIDI files for training, along
with the previous 430 jazz samples. SOM training parameters are shown in
table 4.2. The SOM obtained is shown in Figure 4.10.

When analysing the map it is observed that the left side is more “jazzy”
and the right one is more classical, but there are a lot of mixed labels, making
it harder to determine zones that could be assigned clearly to each genre.
However, the overlapping in the map, that is, the ratio of units activated
by samples from both genres, is relatively low (7.22%). This facts are fairly
evident in figure 4.11. The overlapping probably evidences that there are
some jazz melodies quite similar to classical music and vice versa, at least in
terms of the description model used.
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Figure 4.5: SOM map for the same weights as in figure 4.4.

Figure 4.6: 16x8 SOM calibrated with random melodies only.

Figure 4.7: 16x8 SOM calibrated with real melodies only.

Geometry 30x12, hexa., bubble
Trials 20

Phase I Phase II
Iterations 10,000 100,000
α(0) 0.1 0.05
r(0) 20 6

Q. Error –

Table 4.2: SOM parameters for Jazz vs. classical music training.
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No. of silences Interval range

Pitch range Average interval

Std. deviation of pitch Note duration range

Figure 4.8: Weight planes of most contributive descriptors for the map in
Fig. 4.5.

Number of notes Average pitch

Average silence duration Average note duration

Std. dev. of silence duration Std. dev. of note duration

Figure 4.9: Descriptors with lesser influence on the configuration of the map
in Fig. 4.5.
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Figure 4.10: SOM after training using two music genres: (top) units activated
by jazz samples and (bottom) units activated by classical music.
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4.1. FEATURE SPACE EXPLORATION BY SOM

In the Sammon projection of figure 4.14 a knot separates two zones in
the map. The zone at the left of the knot has a majority presence of units
labelled with the jazz label and the zone at the right is mainly classical.

4.1.3 Visualizing temporal structure

While SOMs can certainly be used for classification, and in this case to
classify music, as other authors successfully did, this section places emphasis
on their visualization capabilities.

As an example, Figures 4.12 and 4.13 show how an entire melody is
located in a SOM map. One melody of each genre is shown. The first figure
displays three choruses of the standard jazz tune Yesterdays, and the second
is a section of the Allegro movement from the Divertimento in D by Mozart.
The grey area in each map corresponds to the genre the melody belongs to.
The first map picture for each melody shows the map unit activated by the
first fragment of the melody. The next pictures show the map unit activated
by the next fragment of that melody. Consecutively activated units are linked
by a straight line, displaying the path followed by the melody in the map.

This kind of visualization has great potential for being integrated in
graphical applications that deal with music genre, like the one described in
appendix A.3. The images can be presented in sequence to the user, creating
a pseudo-animated picture, while she is listening to the music or browsing
its different parts.

Figure 4.12: Trajectory of the winning units for the jazz standard Yesterdays.
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Figure 4.13: Trajectory of the winning units for the Divertimento in D
(Mozart).

Figure 4.14: Sammon projection of the SOM map in figure 4.11.
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4.2 Human music genre recognition

A number of computer systems have been published that are able in some
degree to categorize music data both from audio (Soltau et al., 1998;
Tzanetakis and Cook, 2002b; Zhu et al., 2004) or scores (Cruz-Alcázar
et al., 2003; McKay and Fujinaga, 2004; Pérez-Sancho et al., 2005) in digital
formats. Recently, papers have appeared trying to combine the best of
both worlds (Cataltepe et al., 2007; Lidy et al., 2010a; Pérez-Sancho et al.,
2010). Some authors claim for the need of having ground truth studies on
music genre recognition, in order to compare results with them and lead to
sound conclusions when analyzing software performances (Craft et al., 2007;
Lippens et al., 2004).

When dealing with digital scores in any format (MIDI, MusicXML,...),
timbral information is not always available or trustworthy because it depends
on good sequencing practices. Furthermore, this thesis tries to study the
extent to which genre information is conveyed by symbolically encoded
melodies. So, in this context, the use of information about timbre has been
avoided in computer models discussed in this manuscript, focusing only on
the information coded by the notes in the melody. Under these conditions,
some important questions arise: is a particular success rate in automatic
genre classification good or bad? what is the human ability for recognizing
the music genre of a melody just from the notes in the score? what remains
of genre when no timbral information is provided?

Genre classification is of a hierarchical nature, so experiments should be
placed in a given level of the hierarchy. It is non sense to classify between the
whole classical music domain and a particular sub-genre like, for example,
hip-hop. On the other hand, genre labels are inherently subjective and
influenced by a number of cultural, art, and market trends, therefore perfect
results can not be expected (Lippens et al., 2004; McKay and Fujinaga, 2008).

In (Lippens et al., 2004), the authors design a set of experiments for
compare the results obtained by automatic computer models and by humans.
For that, they utilized fragments of 30 seconds of 160 commercial recordings
from classical, dance, pop, rap, rock, and ‘other’ (none of the previous
labels). Those fragments were classified by a number of pattern recognition
algorithms using different features extracted from audio. They were also
presented to a set of 27 human listeners that were asked to choose a musical
genre out of the 6 possibilities given above. In summary, the results reported
a 65% of correct classification by the computer against a 88% for the human
listeners. These results show that there is still a gap with human abilities
when dealing with the audio data, where all the musical information (melody,

159



CHAPTER 4. MUSIC GENRE RECOGNITION

harmony, rhythm, timbre, etc.) is present. This is no surprise, since the data
were presented in the way humans use to enjoy music, so our abilities to
perform this task (in spite of subjectivity and other considerations) have
been trained for years and we have a huge background knowledge compared
to the training set used by the machine. Thus we are in a clear dominant
position when competing against those artificial intelligence models.

The main goal of the study presented here is to compete with a
machine model in equal conditions. For this, a survey has been carried
out, presenting humans the same information available for the computer
counterpart: fragments of melodies without accompaniment and timbral
information. This way, a ground-truth reference on the human ability for
recognizing music genres in absence of timbre is obtained, that can be used
to assess comparatively the performance of computer models for this task.
The survey has been designed around two well-stablished genres in the music
literature, like classical and jazz music.

4.2.1 Method

Subjects

The melodic fragments were presented to 149 subjects (109 male and 40
female) classified into 3 groups: A) professional musicians (performers and
teachers), B) amateurs (both musicians and music lovers), and C) a control
group composed of people with no particular relation to music practice.
Table 4.3 shows the statistics on the subjects to whom the test was applied.

Group Number Male Female Age
Profess. 29 18 11 28.3± 8.0

Amateurs 57 46 11 27.2± 6.3
Control 63 42 21 29.3± 6.2

Table 4.3: Statistical profile of the people subjected to the test.

Sex Despite the uneven distribution of people by sex (106 male, 43 female),
no bias was detected in the answers according to this variable.

Age The minimum age was 9 years old and the maximum was 60. The
overall average was of 28.1 years with a standard deviation of ±9.
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Level of studies Two criteria were adopted: classification under their
general studies and their specific music studies. Different categories were
established:

General studies (number of subjects):

• 1: Elementary education (6)

• 2: Secondary education (75)

• 3: Graduate studies (12)

• 4: Master (43)

• 5: Doctorate (13)

Music studies (number of subjects):

• 0: No studies (43)

• 1: Self-trained (48)

• 2: Not-finished conservatory (12)

• 3: Conservatory elementary degree (9)

• 4: Conservatory intermediate degree (19)

• 5: Conservatory high degree (8)

• 6: Musicology (10)

Melodies

Concerning to the music data, a set of 40 melody fragments (20 of
classical music and 20 jazz pieces), were synthesized using sinusoidal waves
(just a fundamental frequency without timbral relation among spectral
components). They were cut from the respective MIDI sequences by an
expert. The durations were in average 19.4 ± 4.2 seconds in a range [12,30]
(33 ± 32 [12,62] beats, 8.4 ± 8.0 [3,16] bars). In terms of number of notes,
the range was [17,171] averaging 46.

The classical fragments covered a wide range of periods from Baroque
(Haendel, Bach, Vivaldi,...) to Classical (Mozart, Paganini, Beethoven,...)
and Romantic (Schumann, Schubert, Mendelssohn, Brahms,...). Jazz
fragments were standards from a variety of genres like Pre-Bop, Bop, Bossa-
nova, or fusion (Charlie Parker, Thelonious Monk, Antonio Carlos Jobim,
Wayne Shorter,...).

All the fragments were pre-classified by an expert according to their
a priori difficulty for being classified. For that, melodic, harmonic, and
rhythmic aspects of the melodies were taken into account. Also their general
public popularity was considered for assigning a difficulty degree for each
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fragment. For jazz, 5 were considered ‘easy’, 8 ‘intermediate’, and 7 ‘difficult’,
and for classical, it was 11, 6, and 3 respectively.

When presented to the subject (just once) he or she must identify whether
the melody belongs to a classical or jazz piece. The fragments were randomly
ordered for presentation, using always the same ordering.

4.2.2 Results

A number of analyses in terms of age, group, education, and music studies
have been performed. Also, the difficulty level of the fragments, according
to the a priori classification explained above, have been taken into account.
The results (see Table 4.4) show that, on average, the error rate was 16.2%,
although it ranged from 5.9% for the professionals to 19.2% for the control
group. Note that there were no significant differences between amateurs and
control. Only professional musicians performed much better than the other
groups, showing much higher classification skills.

control amateurs professionals
Error % 19.2 18.0 5.9

Table 4.4: Error percentages in terms of group of people.

The a priori difficulty of the fragments was clearly reflected in the ability
for recognizing the genre (see Table 4.5) increasing from a 3.5% average error
rate for the easy ones to 23.2% for those considered difficult. Note that the
error rate for difficult fragments is more than twice that for the intermediate
ones (10.8%).

This fact can also be seen in the distribution of errors for fragments (see
Figure 4.15). All subjects gave the correct answer (zero errors) for Haendel’s
“Fireworks - La Rejouissance” (an ‘easy’ fragment). For Jazz, just one error
was committed for Telonious Monk’s “Well You Needn’t” (an ‘easy’ fragment
too). In contrast, the maximum number of errors (102, a 68.5% of the total
number of tests) were made for “Young and Foolish”, a jazz tune by Horwitt
and Hague, while in classical music Schubert’s Symphony no. 4 in C minor
“Tragic” received 61 misclassifications (40.9% of the tests).

The number of answers that classified the fragments as classical was 56.4%
(43.6% for jazz). This bias is due to the fact that, in general, people is more
familiar with classical tunes and tend to think that an unknown fragment
is classical, in the actual case of absence of timbre, only because they are
usually more exposed to this genre.

162



4.2. HUMAN MUSIC GENRE RECOGNITION

Figure 4.15: Number of errors as a function of the difficulty of the fragments.

(%) easy interm. difficult
Jazz 3.5 14.3 27.8

Classical 3.5 9.3 21.0
Average 3.5 10.8 23.2

Table 4.5: Error percentages in terms of the difficulty levels assigned.

A negative correlation with age and general studies (r = −0.28)
was observed (see figure 4.16). This suggests that people’s experience is
important in this ability. This is not surprising because through their
lives people hear music and, even if they are not experts, they accumulate
arguments in order to decide which kind of music they are hearing.

The evolution of the error as a function of study levels is also an important
issue (see figure 4.17). Note that the error percentages are lower for higher
levels of general studies (dark columns in the graph). More interesting and
significant is to see what happens for different music studies (light columns).
The higher the music studies the lower the error rate, and this tendency is
neat in the graph. But there is the remarkable exception of musicologists,
that performed clearly poorer than the average, showing a professional bias.
We can consider (speaking in terms of a classification system) that they are
‘overtrained’. Their high level of musical knowledge leads them to match
fragments with some theme in their knowledge.
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Figure 4.16: Number of errors as a function of the age.

Most of the professionals were involved in works related to classical music,
so they bias their decisions in this direction. Control subjects answered
classical in 55% of the queries, 56% for amateurs, while professionals did it
58% of times.

4.2.3 Conclusions

The results show that people are able to distinguish quite well between
classical and jazz melodies when a timbre-less fragment is presented (roughly
4 out of 5 fragments were correctly classified). In other, less structured,
experiments no one have had difficulties when these same fragments were
presented with the timbral information (utilizing a synthesizer and the whole
MIDI sequences). This suggests that something about music genre remains in
just the melody notes without timbre, at least between well stablished genres
like classical and jazz music. This is more doubtful if we need to distinguish
between closer genres where timbre is a key feature, like for example pop and
rock.

For use in computer music information retrieval experiments as a base
line, a 16% of error shows the performance level to be improved if authors
claim to report good results for this task without using timbral information.

The next section discusses research on automatic music genre recognition
by machine learning methods, in the absence of timbre. Due to the
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Figure 4.17: Number of errors as a function of both the general and musical
level of studies.

methodology used in that research, based on fixed sliding window lengths,
it is not possible to compare results with those obtained here directly, as
the melodic fragments used in this survey are of variable length. However,
given that these fragments range from 3 to 16 bars long, averaged results over
this range can be informally compared to the 16% error (84% success) base
line suggested above. The automatic genre recognition experiments were
carried out with a variety of machine learning methods and feature sets. The
classifiers used were Quadratic Bayes, SOM, 1-NN, Multi-Layer Perceptron
(MLP), and Support Vector Machine (SVM). Four different statistical feature
sets, of size 6, 10, 12, and 28, were utilized. Table 4.6 presents averaged
error rates over sliding window lengths from 3 to 16, for every classifier /
feature set combination. Both MLP and SVM achieve error rate below the
human judgment base line, with almost every feature set, for the range of
bars considered. 1-NN error rates are a few points above the base line. The
other classification methods give not so good results at the fragment lengths
considered, but they do much better when trained (and tested) on larger
fragment sizes (see section 4.3.3). While these comparative results must be
taken with caution, they suggest that MLP and SVM classifiers are better
suited than the other classifiers to deal with melodic fragments in the size
range considered.
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Feat. set size
Classifier 28 12 10 6

Q. Bayes 49.8 14.5 17.9 21.0
SOM 23.9 21.1 20.8 17.0
1-NN 18.9 18.7 18.3 19.0
MLP 11.8 12.9 16.2 14.9
SVM 12.4 11.4 12.5 13.2

Table 4.6: Averaged error rates (%) over sliding window lengths from 3 to
16, for several classifier / feature set combination.

4.3 Supervised music genre recognition

One of the problems to solve in MIR is the modeling of music genre from
tagged corpora. The computer could be trained to recognise the main
features that characterise music genres in order to look for that kind of
music over large musical databases. The same scheme is suitable to learn
stylistic features of composers or even model a musical taste for users. Other
application of such a system can be its use in cooperation with automatic
composition algorithms to guide this process according to a given stylistic
profile.

A number of papers explore the capabilities of machine learning methods
to recognise music genre. (Pampalk, 2006) use self-organising maps (SOM)
to pose the problem of organising music digital libraries according to
sound features of musical themes, in such a way that similar themes are
clustered, performing a content-based classification of the sounds. Whitman
et al. (Whitman et al., 2001) present a system based on neural networks and
support vector machines able to classify an audio fragment into a given list of
sources or artists. Also in (Soltau et al., 1998) a neural system to recognise
music types from sound inputs is described. An emergent approach to genre
classification is used in (Pachet et al., 2001), where a classification emerges
from the data without any a priori given set of genres. The authors use co-
occurrence techniques to automatically extract musical similarity between
titles or artists. The sources used for classification are radio programs and
databases of compilation CDs. In (Lidy et al., 2010b) the authors analyze
the performance of a range of automatic audio description algorithms on
three music databases with distinct characteristics, specifically a Western
music collection used previously in research benchmarks, a collection of Latin
American music with roots in Latin American culture, but following Western
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tonality principles, as well as a collection of field recordings of ethnic African
music.

Other works use music data in symbolic form (most MIDI data) to
perform genre recognition. One of the seminal works in this domain is
(Dannenberg et al., 1997), where the authors use a naive Bayes classifier, a
linear classifier and neural networks to recognize up to eight moods (genres)
of music, such as lyrical, frantic, etc. Thirteen statistical features derived
from MIDI data are used for this genre discrimination. In (Tzanetakis
et al., 2003), pitch features are extracted both from MIDI data and audio
data and used separately to classify music from five genres. Pitch histograms
regarding to the tonal pitch are used in (Thom, 2000) to describe blues
fragments of the saxophonist Charlie Parker. Also pitch histograms and
SOM are used in (Toiviainen and Eerola, 2001) for musicological analysis
of folk songs. Other researchers use sequence processing techniques like
Hidden Markov Models (Chai and Vercoe, 2001) and universal compression
algorithms (Dubnov and Assayag, 2002) to classify musical sequences.

Stamatatos and Widmer (Stamatatos and Widmer, 2002) use stylistic
performance features and the discriminant analysis technique to obtain an
ensemble of simple classifiers that work together to recognize the most likely
music performer of a piece given a set of skilled candidate pianists. The input
data are obtained from a computer-monitored piano, capable of measuring
every key and pedal movement with high precision.

Compositions from five well known eighteenth-century composers are
classified in (van Kranenburg and Backer, 2004) using several supervised
learning methods and twenty genre features, most of them being counterpoint
characteristics. This work offers some conclusions about the differences
between composers discovered by the different learning methods.

In other work (Cruz-Alcázar et al., 2003), the authors show the ability of
grammatical inference methods for modeling musical genre. A stochastic
grammar for each musical genre is inferred from examples, and those
grammars are used to parse and classify new melodies. The authors also
discuss about the encoding schemes that can be used to achieve the best
recognition result. Other approaches like multi-layer feed-forward neural
networks (Buzzanca, 2002) have been used to classify musical genre from
symbolic sources.

(Perez-Sancho et al., 2009; Pérez-Sancho, 2009b) approach the symbolic
music genre recognition through the use of stochastic language models.
Genres are modeled as languages, using techniques successfully applied to
language modeling in text information retrieval problems. n-grams and n-
words extracted from note or chord sequences are used as positives examples
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of their respective genres, and subsequently used to build language models
capable of predicting the genre of new music instances.

McKay and Fujinaga (McKay, 2010; McKay and Fujinaga, 2004, 2007a)
use low and mid-level statistics of MIDI file content to perform music
genre recognition by means of genetic algorithms and pattern recognition
techniques. They have developed several tools for feature extraction from
music symbolic sources (particularly MIDI files) or web sites ((McKay and
Fujinaga, 2006a, 2007b)). In (McKay and Fujinaga, 2006b), the authors
provide some insight on why is it worth continuing research in automatic
music genre recognition, despite the fact that the ground-truth information
available for research is often not too reliable, subject to market forces,
subjective tagging, or being culture-dependent. Most of the classification
problems detected seem to be related to the lack of reliable ground-truth,
from the definition of realistic and diverse genre labels, to the need of
combining features of different nature, like cultural, high- and low-level
features. They also identify, in particular, the need for being able to label
different sections of a music piece with different tags.

The system presented in this section share some characteristics with the
one developed by McKay, as the use of low level statistics and pattern
recognition techniques but, while McKay extract features from the MIDI
file as a whole, our system focus on melody tracks, using a sliding window
technique to obtain melody segments that become instances to feed the
pattern recognition tools. This allows to obtain partial decisions for a melody
track that can offer the users sensible information for different parts of a music
work. Also, this decisions can be combined to output a classification decision
for a music piece. Another difference to point out is the fact that no timbre
related features are used in this thesis, which were identified as an important
source of information related to genre in (McKay and Fujinaga, 2005).

4.3.1 Supervised music genre classification of melodic
fragments

In this section a framework for experimenting on automatic music genre
recognition from symbolic representation of melodies (digital scores) is
presented. It is based on shallow structural features of melodic content, like
melodic, harmonic, and rhythmic statistical descriptors. This framework
involves all the usual stages in a pattern recognition system, like feature
extraction, feature selection, and classification stages, in such a way that new
features and corpora from different musical genres can be easily incorporated
and tested.
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The working hypothesis is that melodies from a same musical genre
may share some common low-level features, permitting a suitable pattern
recognition system, based on statistical descriptors, to assign the proper
musical genre to them.

Two well-defined music genres, like jazz and classical, have been initially
chosen as a workbench for this research. The first results were encouraging
(Ponce de León and Iñesta, 2003) but the method performance for different
classification algorithms, descriptor models, and parameter values needed to
be thoroughly tested. This way, a framework for musical genre recognition
needed to be set up, where new features and new musical genres could be
easily incorporated and tested.

This section presents the proposed methodology, describing the musical
data, the descriptors, and the classifiers used. The initial set of descriptors
will be analyzed to test their contribution to the musical genre separability.
These procedures will permit us to build reduced models, discarding not
useful descriptors. Then, the classification results obtained with each
classifier and an analysis of them with respect to the different description
parameters will be presented.

Musical data

The JvC1 corpus (sec. 2.8.4), has been used for this research. Its length
is around 10,000 bars (more than 6 hours of music). Table 4.7 summarizes
the distribution of bars per song from each genre. This corpus has been
manually checked for the presence and correctness of key, tempo, and meter
meta-events, as well as the presence of a monophonic melody track. The
original conditions under which the MIDI files were created are uncontrolled;
They may be human performed tracks or sequenced tracks (i.e. generated
from scores) or even something of both worlds. Nevertheless, most of the
MIDI files seem to fit a rather common scheme: a human-performed melody
track with several sequenced accompaniment tracks.

Min. Max. Avg. Total

JAZZ 16 203 73 4734
CLAS 44 297 116 5227

Table 4.7: Distribution of melody length in bars

The monophonic melodies consist of a sequence of musical events that
can be either notes or silences. The pitch of each note can take a value from
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0 to 127, encoded together with the MIDI note onset event. Each of these
events at time t has a corresponding note off event at time t+ d, being d the
note duration measured in ticks2. Time gaps between a note off event and
the next note onset event are silences.

Description scheme

Each sample is a vector of statistical descriptors computed from each melody
segment available (See section 4.3.1 for a discussion about how these segments
are obtained). Each vector is labeled with the genre of the melody which
the segment belongs to. A set of descriptors has been defined, based on a
number of feature categories that assess the melodic, harmonic and rhythmic
properties of a musical segment, much as has been done in chapter 3 for
melody part selection.

This description model is made up of 28 descriptors summarized in
table 4.8. Regarding silence descriptors, the adjective significant stands for
silences explicitly written in the underlying score of the melody. In MIDI
files, short gaps between consecutive notes may appear due to interpretation
nuances like stacatto. These gaps (interpretation silences) are not considered
significant silences since they should not appear in the score. To make a
distinction between types of silence is not possible from the MIDI file, since
silences are not explicitly encoded. They are distinguished based on the
definition of a silence duration threshold. This value has been empirically
set to a duration of a sixteenth note. All silences with longer or equal duration
than this threshold are considered significant.

Note duration, silence duration and IOI3 descriptors are measured in ticks
and computed using a time resolution of Q = 48 ticks per bar4. Interval
descriptors are computed as the difference in absolute value between the
pitches of two consecutive notes. Descriptors designed to identify harmonic
traits in genre are the following:

• Number of non diatonic notes. An indication of frequent excursions
outside the song key (a metaevent that must be present in the MIDI
file5) or modulations.

2 A tick is the basic unit of time in a MIDI file and is defined by the resolution of the
file, measured in ticks per beat.

3Inter Onset Interval. It is the distance, in ticks, between the onsets of two consecutive
notes. Two notes are considered consecutive even in the presence of a silence between
them.

4 This is called quantisation. Q = 48 means that when a bar is composed of 4 beats,
each beat can be divided, at most, into 12 ticks.

5 If no key metaevent is present, a tonality guessing method like (Rizo et al., 2006b).
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• Average degree of non diatonic notes. Describes the kind of excursions.
This degree is a number between 0 and 4 that indexes the non diatonic
notes of the diatonic scale of the tune key, that can be major or minor
key6

• Standard deviation of degrees of non diatonic notes. Indicates variety
in the non diatonic notes.

Normality descriptors are computed using the D’Agostino statistic for
assessing the distribution normality of the n values vi in the segment for
pitches, durations, intervals, etc. The test is performed using this equation:

D =

∑
i(i−

n+1
2

)vi√
n3(
∑

i v
2
i − 1

n
(
∑

i vi)
2)

(4.1)

For pitch and interval properties, the range descriptors are computed as
maximum minus minimum values, and the average descriptors are computed
as the average value minus the minimum value (only considering the notes
in the segment). This make them invariant to transposition. For durations
(note duration, silence duration, and IOI descriptors) the range descriptors
are computed as the ratio between the maximum and minimum values,
and the average-relative descriptors are computed as the ratio between the
average value and the minimum value.

This descriptive statistics is similar to histogram-based descriptions used
by other authors (Thom, 2000; Toiviainen and Eerola, 2001) that also try
to model the distribution of musical events in a music fragment. Assuming
normality in the distribution of musical properties, and computing the range,
mean, and standard deviation from it, the number of features needed are
reduced (each histogram may be made up of tens of features).

Free parameter space

Given a melody track, the statistical descriptors presented above are
computed from equal length segments extracted from the track, by defining
a window of size ω measures. Once the descriptors of a segment have been
extracted, the window is shifted δ measures forward to obtain the next
segment to be described. Given a melody with m > 0 measures, the number
of segments s of size ω > 0 obtained from that melody is

6 Non diatonic degrees are: 0: [II, 1: [III (\III for minor key), 2: [V, 3: [VI, 4: [VII.
The key is encoded at the beginning of the melody track. It has been manually checked
for correctness in our data.
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Category Descriptors

Overall Number of notes
Number of significant silences
Number of non-significant silences

Pitch Pitch range
Average pitch
Dev. pitch

Note duration Note duration range
Avg. note duration
Dev. note duration

Silence duration Silence duration range
Avg. silence duration
Dev. silence duration

Inter Onset Interval IOI range
Avg. IOI
Dev. IOI

Pitch interval Interval range
Avg. interval
Dev. interval

Non-diatonic notes Num. non-diatonic notes
Avg. non-diatonic degrees
Dev. non-diatonic degrees

Syncopation Number of syncopes
Normality Pitch distrib. normality

Note duration distrib. normality
Silence duration distrib. normality
IOI distrib. normality
Interval distrib. normality
Non-diatonic degree distrib. normality

Table 4.8: Statistical musical descriptors considered.

s =

{
1 if ω ≥ m

1 +
⌈
m−ω
δ

⌉
otherwise

(4.2)

showing that at least one segment is extracted in any case (ω and s are
positive integers; m and δ are positive fractional numbers).

Taking ω and δ as free parameters in our methodology, different datasets
of segments have been derived from a number of values for those parameters.
The goal is to investigate how the combination of these parameters influences
the segment classification results. The exploration space for this parameters
will be referred to as ωδ-space. A point in this space is denoted as 〈ω, δ〉.

ω is the most important parameter in this framework, as it determines
the amount of information available for the descriptor computations. Small
values for ω would produce windows containing few notes, providing less
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reliable statistical descriptors. Large values for ω would lead to merge
–probably different– parts of a melody into a single window and they also
produce datasets with fewer samples for training the classifiers (see Eq. 4.2).
The value of δ would affect mainly to the number of samples in a dataset. A
small δ value combined with quite large values for ω may produce datasets
with a large number of samples (see also Eq. 4.2). The details about the
values used for these parameters can be found in section 4.3.2.

Feature analysis and selection

The features described above have been designed according to those used
in musicological studies, but there is no theoretical support for their genre
classification capability. It should be of interest to check how each feature
does perform on its own on the problem at hand. An analysis of their
distribution and independent discrimination potential on the music genre
recognition task has been performed. This analysis results are presented in
section 4.3.2.

Following the previous analysis, the selection procedure described in
sec 2.5.1 has been applied in order to keep those descriptors that better
contribute to the classification. When this test is performed on a number of
different ωδ-point datasets, a threshold on the number of passed tests can
be set as a criterion to select descriptors. This threshold is expressed as
a minimum percentage of tests passed. Once the descriptors are selected, a
second criterion for grouping them permits to build several descriptor models
incrementally. First, selected descriptors are ranked according to their z
value averaged over all tests. Second, descriptors with similar z values in the
ranking are grouped together. This way, several descriptor groups are formed,
and new descriptor models can be formed by incrementally combining these
groups. See the section 4.3.2 for the models that have been obtained.

Classifier implementation and tuning

Two different supervised classification methods are used here for automatic
genre identification: The bayesian classifier and the kNN classifier, described
in section 2.2. For the Bayesian classifier, it must be assumes that individual
descriptor probability distributions for each genre are normal, with means
and variances estimated from the training data. This classifier computes the
squared Mahalanobis distance from test samples to the mean vector of each
genre in order to obtain a classification criterion. The kNN classifier uses an
euclidean metrics to compute distance between samples. A number of odd
values for k, ranging from 1 to 25, have been tested.
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4.3.2 Experiments and results on feature selection

Analysis of independent feature performance

A series of classification experiments using only one feature at a time have
been performed. The 1R classifier has been used for this purpose. The
experiments were performed for delta = 1 and ω = 1..100, using ten-fold
crossvalidation at the MIDI file level (this partitioning scheme is discussed in
section 4.3.3). Average success results are displayed in figure 4.18. Features
are grouped by categories in the graphs, in order to make them visually
comparable within each category.

Some interesting remarks are worth to be discussed. First, some of the
descriptors seem to perform fairly well. Except for the note duration, and
non-diatonic notes categories, the rest have at least one descriptor with an
average success beyond 80% for some ω. Table 4.9 presents a summary of
the best descriptor performances.

Last, there are some descriptors that present a more regular behaviour
in terms of average success than others, as the pitch range or pitch interval
range. However, they also suffer from the lack of robustness, as evidenced
by high accuracy deviation values (Figure 4.19). The accuracy standard
deviation tend to increase with ω, but this is due to the fewer number
of samples available for training and testing as ω increases. This trend is
inherent to the sliding window method, and is present in all the classification
experiments performed in this work.

Find below some comments on several descriptors.

Descriptor ω Accuracy Std. dev.

Number of notes 100 86% ±11
Std. deviation of interval 98 86% ±13

Interval range 83 84% ±13
Avg. relative pitch 52 83% ±9

Std. dev. of silence duration 100 82% ±15
Std. dev. of IOI 80 82% ±9

Syncopations 23 81% ±12

Table 4.9: Best descriptor performances with 1R classifier.
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Number of notes Above 70% for ω ≥ 6, and above 80% for ω ≥ 94

Average pitch Over 70% for ω ≥ 13.

Note duration descriptors Below 70% for almost every ω.

Silence duration descriptors Below 70% for almost every ω. Std. dev.
of silence duration raises above 70% from ω ≥ 82.

Std. dev. IOI Between 70% for and 80% for ω ≥ 7.

Pitch Interval range Above 70% for ω ≥ 13. Quite stable around 80% for
ω ≥ 46.

Std. dev. pitch interval Increases more or less lineally with ω.

Non-diatonic descriptors Below 70% for every ω.

Num. syncopations Between 70% and 80% for every ω. Slightly better
accuracy for small ω values.

It seems like some pitch related descriptors (average pitch, pitch interval
range) outperform duration-based descriptors. The ‘number of notes’
descriptor perform surprisingly well at every ω, and gets an accuracy boost
for very large ω values. Some descriptors related to note onsets (IOI range,
num. of syncopations) perform also reasonably well across ω. In the context
of melody matching, (Suyoto and Uitdenbogerd, 2005) have shown that note
duration descriptors do not improve performance based on note pitches, even
when used in combination. On the other hand, the same authors, (Suyoto and
Uitdenbogerd, 2008), found that IOI descriptors did it when combined with
pitch descriptors. Nevertheless, in our context of music genre recognition,
less accurate descriptors should not be discarded for further research, as
they can help in a combined description approach. This is investigated in
the following sections.

Feature selection results

The feature selection test presented in section 4.3.1 has been applied to
datasets corresponding to 100 randomly selected points of the ωδ-space. This
is motivated by the fact that the descriptor computation is different for each
ω and the set of values is different for each δ, so the best descriptors may
be different for different ωδ-points. Thus, by choosing a set of such points,
the sensitivity of the classification to the feature selection procedure can
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descriptor z̄ passed tests models
Number of notes 22.5 100% 6,10,12
Average pitch 22.3 100% 6,10,12
Pitch range 22.2 100% 6,10,12
Interval range 20.3 100% 6,10,12
Syncopation 19.6 100% 6,10,12
Dev. pitch 18.7 100% 6,10,12
number of significant silences 14.2 100% 10,12
Interval distrib. normality 14.2 100% 10,12
Dev. interval 14.0 100% 10,12
Dev. IOI 13.2 97% 10,12
Dev. note duration 9.3 95% 12
Dev. non-diatonic degrees 9.1 100% 12
Dev. silence duration 6.3 94% –
Silence duration range 6.1 87% –
Note duration distrib. normality 6.0 89% –
Avg. note duration 5.6 71% –
Avg. silence duration 5.1 85% –
Avg. non-diatonic degrees 4.9 66% –
IOI range 4.7 53% –
number of non-significant silences 4.5 76% –
Silence duration distrib. normality 4.3 45% –
Avg. IOI 4.2 53% –
Non-diatonic degree distrib. normality 3.5 39% –
Note duration range 3.3 34% –
Pitch distrib. normality 2.6 25% –
Num. non-diatonic notes 2.5 32% –
IOI distrib. normality 2.2 20% –
Avg. interval 1.7 14% –

Table 4.10: Feature selection results

be analysed. Being a random set of points is a good trade-off decision to
minimise the risk of biasing this analysis.

The descriptors were sorted according to the average z value (z̄) computed
for the descriptors in the tests. The list of sorted descriptors is shown in
table 4.10. The z̄ values for all the tests and the percentage of passed tests
for each descriptor are displayed. In order to select descriptors, a threshold on
the number of passed tests has been set to 95%. This way, those descriptors
which failed the separability hypothesis in more than a 5% of the experiments
were discarded from the reduced models. Only 12 descriptors out of 28
were selected. In the rightmost column, the reduced models in which the
descriptors were included are presented. Each model is denoted with the
number of descriptors included in it. Not surprisingly, descriptors that did
best in the feature analysis stage have obtained good scores in the feature
selection test and were selected to become part of reduced models.

Three reduced size models have been chosen, with 6, 10, and 12
descriptors. This models are built according to the z̄ value as displayed
in figure 4.20. The biggest gaps in the z̄ values for the sorted descriptors led
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us to group the descriptors in these three reduced models. Note also that the
values for z̄ show a small deviation, showing that the descriptor separability
is quite stable in the ωδ-space.

Figure 4.20: Values for z̄ for each descriptor as a function of their order
numbers. The relative deviations for z̄ in all the experiments are also
displayed. The biggest gaps for z̄ and the models are outlined.

It is interesting to remark that at least one descriptor from each category
of those defined in section 4.3.1 were selected for a reduced model. The best
represented categories were pitches and intervals, suggesting that the pitches
of the notes and the relation among them are the most influent features for
this problem. From the statistical point of view, standard deviations were
the most important features, since five from six possible ones were selected.

4.3.3 Experiments and results on music genre classifi-
cation

The ωδ-space framework

The melodic segment parameter space has been established as follows:

ω = 1, ..., 100 (4.3)

and, for each ω
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δ =

{
1, ..., ω if ω ≤ 50
1, ..., 20 otherwise

(4.4)

The range for δ when ω > 50 has been limited to 20 due to the very
few number of samples obtained with large δ values for this ω range. This
setup produces a total of 2275 points 〈ω, δ〉 in the ωδ-space. A number
of experiments have been made for each of these points: one with each
classifier (Bayes, NN) for each of the four description models discussed in
section 4.3.2. Therefore, 12 different experiments for each ωδ-point have
been made, denoted by (ω, δ, µ, γ), where µ ∈ {6, 10, 12, 28} is the description
model and γ ∈ {Bayes,NN} the classifier used.

In order to obtain reliable results, a ten-fold crossvalidation scheme has
been carried out for each of the (ω, δ, µ, γ) experiments, making 10 sub-
experiments with about 10% of samples saved for test in each sub-experiment.
The success rate for each (ω, δ, µ, γ) experiment is averaged for the 10 sub-
experiments.

The partitions were made at the MIDI file level, to make sure that training
and test sets do not share segments from any common melody. Also the
partitions were made in such a way that the relative number of measures for
both genres were equal to those for the whole training set. This permits us
to estimate the prior probabilities for both genres once and then use them for
all the sub-experiments. Once the partitions have been made, segments of
ω measures are extracted from the melody tracks, and labeled training and
test datasets containing µ-dimensional descriptor vectors are constructed.

To summarise, 27 300 experiments consisting of 10 sub-experiments each,
have been carried out. The maximum number of segments extracted is s =
9339 for the ωδ-point 〈3, 1〉. The maximum for s is not located at 〈1, 1〉 as
expected, due to the fact that segments not containing at least two notes
are discarded. The minimum is s = 203 for 〈100, 20〉. The average number
of segments in the whole ωδ-space is 906. The average proportion of jazz
segments is 36% of the total number of segments, with a standard deviation
of about 4%. This is a consequence of the classical MIDI files having a greater
length in average than jazz files, although there are less classical files than
jazz files.

Each (ω, δ, µ, γ) experiment has an average success rate, obtained from the
crossvalidation scheme discussed above. The results presented from herein
are based on those rates.
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Bayes classifier

For one sub-experiment in a point in the ωδ-space, all the parameters needed
to train the Bayesian classifier are estimated from the particular training set,
except for the priors of each genre, that are estimated from the whole set, as
explained above.

Figure 4.21 shows the classification results for the Bayesian classifier
over the ωδ-space for the 12-descriptor model. This was one of the best
combination of model and classifier (89.5%of success) in average for all the
experiments. The best results for this classifier were found around 〈58, 1〉,
where a 93.2% average success was achieved.

Figure 4.21: Illustration of the recognition percentage in the ωδ-space for
the Bayesian classifier with the 12-descriptor model. Numbers on top of
level curves indicate the recognition percentage at places on the curve. The
best results (around 93.2%) are found in the lighter area, with large widths
and small displacements.

The best results for genre classification were expected to be found
for moderate ω values, where enough musical events to calculate reliable
statistical descriptors are contained in a segment, while musical events
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located in other parts of the melody are not mixed in a single segment.
But the best results are generally obtained with a combination of large ω
values and small δ. Experiments for ω = ∞ (taking the whole melody as a
single segment) are discussed in section 4.3.3.

The worst results occurred for small ω, due to the few musical events
at hand when extracting a statistical description for such a small segment,
leading to non-reliable descriptors for the training samples.

All the three reduced models outperformed the 28-descriptor model (see
Fig. 4.22 for a comparison between models for δ = 1), except for ω ∈ [20, 30],
where the 28-descriptor model obtains similar results for small values of δ.
For some reason, still unknown, the particular combination of ω and δ values
in this range results in a distribution of descriptor values in the training sets
that favours this classifier.

The overall best result (95.5% of average success) for the Bayesian
classifier has been obtained with the 10-descriptor model in the point 〈98, 1〉.
See Table 4.11 for a summary of best results – indices represent the 〈ω, δ〉
values for which the best success rates were obtained. About 5% of the sub-
experiments (4 556 out of 91 000) for all models yielded a 100% classification
success.

Figure 4.22: Bayes recognition results for the different models versus the
window width, with a fixed δ = 1.
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k-NN classifier

Before performing the main experiments for this classifier, a study of the
evolution of the classification as a function of k has been designed, in order to
test the influence of this parameter in the classification task. The results are
displayed in Fig. 4.23. Recognition percentage is averaged for all 〈ω, 1〉 points.
Note that there is almost no variation in the recognition rate as k increases,
except a small improvement for the 6-descriptor model. Thus, the simplest
classifier was selected: k = 1, to avoid unnecessary time consumption due to
the very large number of experiments to be performed.

Figure 4.23: Evolution of k-NN recognition for the different models against
values of k.

Once the classifier has been set, the results for the different models were
obtained and are displayed in Fig. 4.24 for δ = 1. All models performed
comparatively for ω ≤ 35. For ω > 35, the 28-descriptor model begins to
perform better than the reduced models. Its relatively high dimensionality
and a greater dispersion in the samples (the larger the ω, the higher the
probability of different musical parts to be contained in the same segment)
causes larger distances among the samples, making the classification task
easier for the k-NN.

The best results (96.4%) were obtained for the point 〈95, 13〉 with the 28-
descriptor model. The best results for all the models have been consistently
obtained with very large segment lengths (see Table 4.11). The percentage
of perfect (100%) classification sub-experiments amounts to 18.7% (17 060
out of 91 000).
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model Bayes NN

6 93.2〈100,2〉 94.0〈91,16〉
10 95.5〈98,1〉 92.6〈99,19〉
12 93.2〈58,1〉 92.6〈98,19〉
28 89.5〈41,33〉 96.4〈95,13〉

Table 4.11: Best success rates

For the whole ωδ-space, the NN classifier obtained an 89.2% in average
with the 28-descriptor model, while the other models yielded similar rates,
around 87%. The behavior of the 10- and 12-descriptor models was almost
identical over the parameter space (Fig. 4.24) and for the different tested
values for k (Fig. 4.23).

Figure 4.24: NN recognition results for the different models versus the
window width, with a fixed δ = 1.

Whole melody segment classification

The good results obtained for large ω called our attention to the question
of how good would be the results of classifying whole melodies, instead of
fragments, as presented so far. The first problem is the small number of
samples available this way (110 samples for training and test). The results
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model Bayes NN

6 84.2 ± 2.0 87.4 ± 2.9
10 88.5 ± 3.2 86.9 ± 2.5
12 89.5 ± 1.7 87.1 ± 2.5
28 71.1 ± 6.3 89.2 ± 4.5

Table 4.12: Averages and standard deviations of success rates

model Bayesian NN

6 88.0 87.0
10 91.0 88.0
12 91.0 88.0
28 79.0 93.0

Table 4.13: Average success rates for whole melody segment length (ω =∞)

of these experiments are displayed in Table 4.13. The same 10-fold cross-
validation scheme described in section 4.3.3 was used here. The results
are comparable or even better than the average in the ωδ-space for both
classification paradigms.

In spite of this good behavior for Bayes and k-NN, this approach has a
number of disadvantages. Training is always more difficult due to the smaller
number of samples. The classification cannot be performed on-line in a real-
time system, because all the piece is needed in order to take the decision.
There are also improvements to the presented methodology, like cooperative
decisions using different segment classifications that can not be applied to
the complete melody approach.

Results comparison

Bayesian and NN classifier performed comparatively. There were, in general,
lower differences in average recognition percentages between NN models than
those found with the Bayesian classifier (see Table 4.12), probably due to its
non-parametric nature.

An ANOVA test with Bonferroni procedure for multiple comparison
statistics (Hancock and Klockars, 1996) was used to determine which
combination of model and classifier gave the best classification results in
average. According to this test, with the number of experiments performed,
the required difference between any two recognition rates in Table 4.12 must
be at least 0.45123 in order to be considered statistically different at the
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95% confidence level. Thus, it can be stated that Bayes classifier with
12-descriptor model and NN classifier with 28-descriptor model perform
comparatively well, and both outperform the rest of classifier and model
combinations. The Bayes classifier has the advantage of using a reduced size
description model.

In (Pérez-Sancho et al., 2004), the JvC1 dataset was also used to perform
genre recognition from whole melodies, using several text categorization
algorithms. In particular, a naive Bayes classifier with several multivariate
Bernoulli and multinomial models are applied to binary vectors indicating
the presence or absence of n-length words (sequences of n notes) in a melody.
The work reported around 93% of success as the best performance. This is
roughly the same best result reported here for the whole melody, although it
is outperformed by the window classification results.

Results for the ωδ-space are hardly comparable with those by other
authors, due to our use of segments instead of complete melodies, and
mainly due to the different datasets put under study by different authors.
Nevertheless a comparison attempt can be made with the results found
in (Tzanetakis et al., 2003) for pair-wise genre classification. The authors use
information from all the tracks in the MIDI files except tracks playing on the
percussion channel. In that work, a 94% accuracy for Irish Folk music and
Jazz identification is reported as the best result. Unfortunately, they did not
use Classical samples. This accuracy percentage is similar to our results with
whole melody length segments and the NN classifier (93%). A study on the
classification accuracy as a function of the input data length is also reported,
showing a behavior similar to the one reported here: classification accuracy
using statistical information reaches its maximum for larger segment lengths,
as they reported a maximum accuracy for five classes with 4 minute segment
length. Our best results were obtained for ω > 90 bars (see Table 4.11).

4.3.4 A graphical interface for music genre recognition

An experimental graphical user interface has been developed to facilitate
working on the problem of music genre recognition. The main motivation
for such a tool is to allow investigate why classification errors occur. The
interface allows to select a model (ω, δ, µ, γ) for classifying selected tracks
from MIDI files. The classification of each extracted window is shown in a
row and encoded by colors. Each window content can be played individually
and its description visualized. A more detailed description of the interface
can be found in appendix A.3. A snapshot of the application can be seen in
Figure 4.25.
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Figure 4.25: Snapshot of a GUI application for music genre recognition.
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4.4 Classifier ensembles for music genre recognition

Work done so far in genre recognition has taken our research to the use
of classifier ensembles, trying to improve the performance of single models.
First, section 4.4.1 demonstrates the feasibility of a type of ensembles known
as voting methods, described in 2.4.1. This is a late fusion technique
that combine classifier outcomes using several voting strategies in order to
obtain a consensus output. Their performance on a series of classification
benchmarking tasks is shown to be precise and robust, revealing voting
ensembles, and in particular the voting rules proposed in this work, as a
good choice for classification tasks.

Once the classifier ensembles have been thoroughly tested, section 4.4.2
discusses the application of such technique to music genre recognition, to
corroborate that conclusions drawn out in the previous section remain sound
in this application domain. Base classifiers are trained using statistical
description models of melodies, as in previous sections, in order to improve
both the accuracy and robustness of single classifier systems in the genre
recognition task.

4.4.1 Evaluation of voting schemes

In (Moreno-Seco et al., 2006), the performance of several classifier fusion
methods, some of them proposed in the context of this research, is compared.
Results from this benchmarking experiments are presented and discussed in
this section. The voting schemes presented in section 2.4.1 have been tested
on 19 benchmarking data sets from the UCI repository (Blake and Merz,
1998). The performance of the RSWV, BWWV, and QBWWV methods
is assessed, using the PV, SWV, and WMV methods as reference voting
schemes. The ensembles are built using five conceptually different base
classifiers: the näıve Bayesian classifier (NB), support vector machine (SVM),
multi-layer perceptron (MLP), 3-nearest-neighbour classifier (3-NN) and the
C4.5 decision tree. They have been trained using the default parameters
established for them in the WEKA framework.

Two methods have been used to train the classifiers, and the ensembles:
first, for the UCI repository data sets, a total of 50 pairs of train/test sets
were generated, using 10 random seeds for generating 5 cross-validation pairs
(with approximately an 80% of the data for training, and the rest for testing).
The base classifiers have been run 50 times with different train and test sets
from the same data (each data sample has been classified 10 times). The
error rate of the classifier has been estimated by counting the total number
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of errors over the 50 experiments, divided by the total number of samples
classified (that is 10 times the size of the data set).

Once the ensembles have been trained with the UCI project data sets, a
validation experiment has been run, using a new random seed for generating
another 5 pairs of train/test sets. The base classifiers have also been run
with the validation data, in order to obtain a reference.

Table 4.14 presents the error rates of the validation experiments for the
UCI datasets, with the best results for each data set emphasized in boldface.
The result for the best single classifier classifier is showed as a reference.
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To summarize the results, the ensembles perform equal or better than
the best single model in 14 out of 19 data sets. The approaches based on
scaling the weights to a range established by the best and the worst classifiers
(BWWV and QBWWV ) have shown the best classification accuracy on 11
out of 19 datasets from the UCI repository. Note that the QBWWV voting
method has performed the best overall, being 8 times in the set of winner
schemes. Taking only single models, every classification scheme has been at
least twice the winning choice, so no one is consistently superior on these
datasets. No analytic methods exist that are able to decide which is the best
classifier to be used according to the data. On the other hand, the trained
ensemble is essentially the same system on a per corpus basis, where single
model decisions are “averaged”, thus looking like an a priori better choice,
reducing the risk of selecting the wrong classifier for a given problem.

Following the performance results in table 4.14, ensembles are not
consistently better than single models over all datasets. However, note that
the ensemble is made up of only five trained models. In order to improve the
ensemble performance, a greater and more diverse number of models would
be desirable. Work in this direction is presented in section 4.5.4.

4.4.2 Evaluation on music genre recognition

Given the results in the previous section, the question arise whether the
ensemble is a good choice for a symbolic music genre recognition task. This
section presents a set of experiments performed to find evidence in this
direction. The JvC1+27 corpus is used here. Only melody tracks are used
as input data. They are described using the full descriptor model described
in section 4.3.1 (28 features).

From the set of MIDI files two datasets have been built. The first one
composed of 150 samples, one sample per melody track. This is equivalent
to consider a sliding window width ω =∞. The second one is built applying
a 〈50, 1〉 sliding window procedure to the corpus, so each sample describes a
50-bar melody fragment. This second dataset is made up of 7125 samples.

The experiments with the JvC data sets have been carried out using a
train, test, and validation scheme. Random partitions are not advisable since
for the ω = 50 case attention has to be paid to samples belonging to the same
melody do not appear in both training and test or validation. Each data set
has been split into five partitions (keeping in the same partition those samples
belonging to the same MIDI file). Three of them have been used for training,
one for test, and the remaining one for validation. The experiment has been

7It is abbreviated as JvC in what follows.
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repeated five times, rotating the partitions. The results of the validation
presented in table 4.15 are average error rates over the experiments.

Ensemble/classifier Data set

JvC, ω =∞ JvC, 〈50, 1〉
PV 7.33 9.28

SWV 7.33 9.28

RSWV 7.33 9.16

BWWV 6.00 6.31

QBWWV 6.00 8.29

WMV 6.00 9.46

3-NN 6.00 11.80

MLP 8.00 13.30

SVM 10.67 11.08

C4.5 13.33 15.66

NB 16.00 15.56

Table 4.15: Average error rates (in %) of the different ensembles with the
JvC data sets, together with the results of the base classifiers.

The results for ω = ∞ show that even when the base classifiers are not
as good as the best one (the 3-NN classifier), the ensembles still perform
comparably to it. For the ω = 50 data set, the ensembles perform much
better than any base classifier, specially the BWWV, which obtains an
error rate 4.5% below the rate of the best classifier (SVM). The results
shown in table 4.15 confirm that the ensembles’ performance is better in
the general case. This is taken as an evidence that classifier ensembles of
this kind are a good choice for a symbolic music genre recognition task. The
BWWV performed best on the two music genre recognition experiments.

The use of voting ensembles has proven feasible to improve single classifier
results on music genre recognition. In this section, all base models were
trained using the same set of features. However, this is not mandatory.
Each base classifier can be trained on a different set of features describing
the objects in a given corpus. The next section presents some experiments
on this type of information fusion, or multimodal pattern recognition, in
the classification context of music genre recognition. Section 4.5 discusses
an extensive set of experiments on information fusion from the audio and
symbolic domains, again in the context of music genre recognition.
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4.4.3 Fusion of global and local symbolic music information

Experiments on late fusion (sec. 2.3.2) of musical information are presented
in this section. The JvC corpus is used as input data. Two kind of features
are extracted from whole melody tracks (no sliding window segmentation is
applied) in the corpus: global statistical features, as described in section 4.3.1,
and local statistical features (Pérez-Sancho, 2009b). The latter describe
melodic content in terms of strings of symbols corresponding to melody
subsequences or n-words. They are briefly described below.

Given these two set of features, a multiple viewpoint classifier ensemble
is built, whit some base models trained on global features while others are
trained on local ones. It is expected that the diversity of the ensemble will
increase, as models based on different feature sets should, in general, make
their wrong decisions on different objects.

n-word based melody representation and classification

The n-word based models make use of text categorization methods to describe
melodic content. The technique encodes note sequences as character strings,
therefore converting a melody in a text to be categorized. Such a sequence of
n consecutive notes is called an n-word. All possible n-words in a melody are
extracted, except those containing a silence lasting four or more beats. The
encoding for n-words used here has been derived from the method proposed
in (Doraisamy and Rüger, 2003). This method generates n-words by encoding
pitch interval and duration information. For each n-note sequence, all pitch
intervals and duration ratios (inter-onset interval ratio) are calculated using
Eqs. (4.5) and (4.6) respectively:

Ii = Pitchi+1 − Pitchi (i = 1, . . . , n− 1) (4.5)

Ri =
Onseti+2 −Onseti+1

Onseti+1 −Onseti
(i = 1, . . . , n− 2) (4.6)

and each n-word is defined as a string of symbols:

[ I1 R1 . . . In−2 Rn−2 In−1 Rn−1 ] (4.7)

where the pitch intervals and duration ratios have been mapped into
alphanumeric characters (see (Pérez-Sancho et al., 2004) for details).

This method represents a musical piece as a vector xi =
(
xi1, xi2, . . . , xi|V|

)
,

where each component represents the presence of the word wt in the melody,
being |V| the size of the vocabulary, that is, the total number of different
n-words extracted from the corpus.
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A common practice in text classification is to reduce the dimensionality
of those vectors (usually very high) by selecting the words that contribute
most to discriminate the class of a document (a melody here). The average
mutual information measure (AMI) (Cover and Thomas, 1991) is used to
rank the words. This measure gives a high value to those words that appear
often in melodies of one genre and are seldom found in melodies of the
other genres. The n-words are sorted using this value, so only information
about the first N words are provided to the classifiers. The Näıve Bayes
classifier is commonly used with this kind of representation (Domingos and
Pazzani, 1997). The class-conditional probability of a melody is given by the
probability distribution of note sequences (n-words) in a genre.

Two different distribution models have been used. The first one is a
Multivariate Bernoulli (MB) model, where the components of a sample vector
xi are xit ∈ {0, 1}. Each class follows a multivariate Bernoulli distribution
where the parameters to be learned from the training set are the class-
conditional probability of each word in the vocabulary. The second choice
is a Multinomial (MN) model, where components xit ∈ {0, 1, ..., |xi|}, being
|xi| the number of n-words extracted from melody xi. Each component xit
is the number of occurrences of word wt in the melody. The probability that
a melody has been generated from a genre cj is a multivariate multinomial
distribution, where the melody length is assumed to be class-independent.
Both MB and MN distributions have proven to achieve quite good results in
text classification (McCallum and Nigam, 1998).

Results

A set of base classifiers has been built by combining the different description
models and classification paradigms: four k-nearest neighbors, using k = 7,
with the different feature combinations discussed in section 4.3.2, and four
Bayesian classifiers with the same feature combinations, and two näıve Bayes
classifiers using Bernoulli and Multinomial probability distributions. For the
latter, a vocabulary size of 100 and 170 2-words have been used respectively,
according to their AMI values. This makes a total of ten classifiers for
building ensembles. Table 4.16 presents the estimated accuracy of the
individual classifiers, αk, obtained using a leave-one-out validation method
on the training set.

Six voting ensembles have been constructed using the voting methods
from sec. 2.4.1. The decisions of the ensembles are summarised in Table 4.17
(# errors all column), and graphically depicted in Fig. 4.26 against the
best individual classifier score. Ties in the ensemble decisions are considered
as errors. Note that the ensemble’s performance using the WMV strategy
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Classifier Statistical model # features # errors αk

7-NN Global 6 7 0.936
Global 10 12 0.891
Global 12 12 0.891
Global 28 3 0.973

Bayes Global 6 10 0.909
Global 10 9 0.918
Global 12 10 0.909
Global 28 22 0.746

Naive Bayes Bernoulli N = 100 8 0.923
Multinomial N = 170 16 0.855

Table 4.16: Working parameters and accuracy of the different classifiers
selected.

Voting method # errors all % OK # errors all-but-best % OK

PV 6 94.5 9 91.8
SWV 3 97.3 6 94.5

RSWV 3 97.3 6 94.5
BWWV 3 97.3 4 96.4

QBWWV 3 97.3 4 96.4
WMV 2 98.2 6 94.5

Table 4.17: Ensemble’s performance.

improves the behavior of the best of the individual classifiers: just two errors
against the three errors made by 7-nearest neighbour classifier based on the
whole set of global descriptors. Also, it is worth mentioning that for the
PV method, 4 out of 6 errors are due to ties (5 out of 9 when removing
the best classifier), while there are no ties with other voting strategies. The
probability of decision ties in the ensemble is lowered by using weighed voting
rules.

The question arises of how sensitive is the ensemble success to its own
structure. In addition, is it worth to build an ensemble for avoiding just one
error? The answer for both questions could be approached removing from the
ensemble the best of the classifiers and analysing how much the performance
is degraded. Thus, the best base model was dropped from the ensemble, and
the new results were those also shown in Table 4.17 (# errors all-but-best
column).

Note how, although the results are not as good as earlier, some ensembles
maintain a high standard of precision, with just 4 errors. This clearly
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Figure 4.26: Number of errors made by the different ensembles (with the
performance of the best classifier on the left). Bars in black correspond to
the ensemble of all the classifiers and pattern-filled bars to the ensemble of
all but the best.

improves the performance of the current best classifier (7 errors), so the
ensemble seems quite robust and performs well, specially with the best-worst
strategies (BWWV and QBWWV ) proposed in this work.

As this probably has to do with the diversity of the ensemble, the
classifiers’ diversity has been assessed by the inter-rater agreement, or κ
measure (sec. 2.4.2). The goal is to find which are the most ’disagreeing’
classifiers among those in the ensembles. The diversity measure evaluate
classifiers in pairs. The less the κ value of a pair, the more their components
disagree. Given a list of all pairs sorted in ascending κ values, a variant of
the Borda count ranking aggregation method (sec. 2.8.3) is used to obtain a
ranking of single classifiers:

Given D = {D1, . . . , Dj, . . . , DK}, the set of K classifiers in the ensemble,
define

P = {{Di, Dj} | 1 ≤ i, j ≤ K, i 6= j} (4.8)

as a subset of all unordered pairs of classifiers, pl = {Di, Dj} ∈ P , and κ(pl)
as the inter-rater-agreement value of pl. P is a sorted set such that,
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κ(pl) ≤ κ(pm), ∀l < m (4.9)

The Borda count ranking value of a classifier Di, is computed as

ri =

|P |∑
l=1

δ(Di, pl)(|P | − l + 1) (4.10)

where

δ(Di, pl) =

{
1 if Di ∈ pl
0 otherwise

(4.11)

This assigns the greater ranking value to classifiers in p1, and the lower
value to classifiers in p|P |. The results of this ranking procedure are shown
in Table 4.18.

Classification paradigm Feature selection ri

Bayes 28 367
Naive Bayes Multinomial |V| = 170 298

Naive Bayes Bernoulli |V| = 100 207
Bayes 12 195
7-NN 10 193
7-NN 12 185
Bayes 6 181
Bayes 10 167
7-NN 6 154
7-NN 28 123

Table 4.18: Classifiers ranked by diversity.

Interestingly enough, the best classifier (7-NN with 28 features) is the last
one in the ranking. That is, it is the one that less disagrees with the rest of
the ensemble. This could explain the fact that removing it from the ensemble
doesn’t worsen too much its performance, at least with the best-worst scaling
voting methods. Another interesting fact from this ranking is that the two
classifiers based on local features are in top positions. This supports the
fact that training models on different feature spaces provides a more diverse
ensemble of classifiers, which is a premise for a successful performance.
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4.5 Fusion of musical information from audio and
symbolic domains

In 2007 a fruitful research collaboration started between our team and the
Information & Software Engineering Group of the Vienna University of
Technology, led by Andreas Rauber8. This research opened the application
field of symbolic music classification to the domain of audio musical
data through its symbolic representation, obtained by means of automatic
transcription systems. The experiments performed during such collaboration,
and the results they provided (Lidy et al., 2007, 2008, 2009, 2010a; Mayer
et al., 2010) are discussed in this section.

The corpora used in that research was made up of audio recordings.
They are shown in Table 4.19, and discussed more in depth in section 2.8.4.
Given that the symbolic feature extraction application is devised to deal with
symbolic formats only, notably MIDI files, it was necessary to incorporate
an audio music transcription stage. The transcription system presented
in (Pertusa, 2010) was used for this task. It is briefly described in
section 4.5.2.

dataset files genres file length ref.
9GDB 856 9 full (Perez-Sancho et al., 2009)
GTZAN 1000 10 30 sec (Tzanetakis, 2002)
ISMIRgenre 1458 6 full (Cano et al., 2006)
ISMIRrhythm 698 8 30 sec (Cano et al., 2006)
LatinMusic 3225 10 full (Silla Jr. et al., 2008)
Africa 1024 var. full (Cornelis et al., 2005)
MIREX2007 7000 10 30 sec (MIREX, 2007b)

Table 4.19: Audio datasets.

State-of-the art transcription systems have limited capabilities for tran-
scribing multi-part music pieces, as source separation in music signals is still a
largely open problem. Most current transcription systems can do reasonably
good with polyphonic monotimbral recordings, as it is the case of the system
used here. However, the audio music genre recognition task is defined
as to predict the music genre of, in general, polyphonic and multitimbral
recordings. So, the approach is to use a polyphonic, monotimbral transcriptor
to transcribe polyphonic, multitimbral music, assuming that:

8Funding was provided by national state agencies from both countries, for fostering
research on the combination of audio and symbolic music description features for genre
classification.
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• The symbolic transcription will be monotimbral.

• The transcription will contain transcription errors.

The transcription errors are expected to be many, as the result of
different circumstances: mixed timbres playing the same notes, or in the
same pitch range, the presence of percussion (indefinite pitch) instruments,
special effects, post-production artifacts like equalization, reverberation,
compression, etc. It is important to mention that a better transcription
(i.e., one with less such errors), do not necessarily imply better results in
this context. The systematic errors of transcription can be helpful, in some
degree, for such tasks like genre recognition. For instance, when analyzing
a musical excerpt containing a distorted guitar sound, many false positive
notes usually appear due to the strong and unstable harmonic content. This
is an unwanted effect for the evaluation of a transcription system, but many
such notes can also be an indication about the presence of strong timbres or
unpitched content, which are more common in rock than in classical music,
for example. Given that an accurate transcription is not the ultimate goal
here, the assumption made in this research collaboration is the following:

An inaccurate but systematic monotimbral symbolic music transcription
of a multitimbral audio music signal still conveys information
about genre.

The symbolic transcription obtained this way consists of a MIDI file with
a single polyphonic track, containing only note events extracted from the
whole music signal. How much of the genre information conveyed by the
audio has gone into the symbolic transcription is something hard to evaluate,
and definitively out of the scope of this research. For most recordings,
the transcription is barely recognizable for human ears, and definitively not
what one would expect from an accurate multi-part transcriptor. However,
if the assumption above holds, then symbolic descriptors can be extracted
from that track and complement audio descriptors extracted directly from
the audio signal, in order to predict the genre of a music piece. Such
combination of audio and symbolic descriptors extracted from the same
source was expected to improve previous genre classification results by audio
descriptors alone.

Two approaches have been taken to combine the feature sets at hand:
early fusion of features (sec. 4.5.3) and late fusion of predictions in classifier
ensembles (sec. 4.5.4 and 4.5.5). The first one integrates multiple feature
sets in a single feature superset that describe the input signal. Then, a single
classifier is build on this combined feature domain. Rather than combining
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features, the second approach builds an ensemble of classifiers, each of them
on a (possibly) different feature space, and then combines the predictions
from single models to output a consensus decision. See section 2.3 for more
details on these two information fusion techniques.

4.5.1 Audio and symbolic descriptors

Several sets of both audio and symbolic descriptors have been used to describe
audio music. They are shown in Tables 4.20 and 4.21. Symbolic descriptors
are gathered from those used in melody part selection (section 3.1.2) and
previous music genre recognition experiments (section 4.3.1). Some of these
features have been added in late fusion experiments discussed below. They
are the average notes per beat descriptor, and the chord type frequencies
feature set. The former is a polyphony-related descriptor, as it measures
the average number of notes simultaneously active during a beat. In order
to capture more detailed information about the polyphonic structure of the
transcription, chord type frequency features are extracted. A chord sequence
is extracted using the algorithm from (Pardo and Birmingham, 2002), and
subsequently analyzed. Nine different types of chords are detected: major
triad, major 7th, dominant 7th, dominant suspended 7th, dominant 7th
(sharp 5th), dominant 7th (flat 5th), minor 7th, half diminished and fully
diminished chords. The relative frequencies of these chords in a chord
sequence are computed as symbolic features.

Audio Descriptors # feats. Set
A1 A2 A3

Rhythm Pattern (RP) 1440 • • •
Rhythm Histogram (RH) 60 • • •
Statistical Spectrum Descriptors (SSD) 168 • • •
Temporal Rhythm Histogram (TRH) 420 • •
Temporal Statistical Spectrum Descriptors (TSSD) 1176 • •
Modulation Frequency Variance Descriptors (MVD) 420 • •
Onset Descriptors (OD) 11 •
Relative Spectral Energy Matrix (RSEM) 112 •
Template Descriptors (TD) unknown •

Table 4.20: Audio feature sets used in fusion experiments

Audio descriptor sets are briefly explained below.

Rhythm Patterns (RP) This feature set is neither a mere description
of rhythm nor does it represent plain pitch information. Rather, it
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Category Descriptors Set
S1 S2 S3

Overall Number of notes • • •
Number of significant silences • • •
Number of non-significant silences • • •
Track duration • • •
Occupation rate • •
Polyphony rate • •
Avg. notes per beat (*) •

Pitch Highest pitch • • •
Lowest pitch • • •
Pitch range • •
Average pitch • • •
Average relative pitch • • •
Dev. pitch • • •
Pitch Normality • • •

Note duration Largest duration • • •
Smallest duration • • •
Duration range • •
Avg. duration • • •
Avg. relative duration • • •
Dev. duration • • •
Duration normality • • •

Silence duration Largest duration • • •
Smallest duration • • •
Silence duration range • •
Avg. duration • • •
Avg. relative duration • • •
Dev. duration • • •
Duration normality • • •

Inter Onset Interval Num. IOI • • •
Largest IOI • • •
Smallest IOI • • •
IOI duration range • •
Avg. IOI • • •
Avg. relative IOI • • •
Dev. IOI • • •
IOI normality • • •

Pitch interval Num. distinct intervals • • •
Largest Interval • •
Smallest interval • •
Interval range •
Avg. interval • •
Avg. relative interval • •
Dev. interval • •
Interval mode • • •
Interval normality • •

Non-diatonic degrees Num. non-diatonic notes • •
Highest non-diatonic degree • • •
Lowest non-diatonic degree • • •
Avg. non-diatonic degrees • • •
Avg. relative non-diatonic degrees • • •
Dev. non-diatonic degrees • • •
Non-diatonic degrees normaility • • •

Syncopation Number of syncopes • •
Chord type frequencies (*) maj. triad, maj. 7th, dom. 7th, •

dom. sus. 7th, dom. 7th (]5th), •
dom. 7th ([5th), min. 7th, •
half dim., fully dim. •

Total descriptors 37 52 62
(*) descriptors added for fusion classification experiments.

Table 4.21: Symbolic feature sets used in fusion experiments
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describes the modulation of the sensation of loudness for different bands, by
means of a time-invariant frequency representation. They were introduced
in (Rauber and Frühwirth, 2001), and enhanced by incorporating psycho-
acoustic phenomena in (Rauber et al., 2002).

Rhythm Histogram (RH) The magnitudes of each modulation fre-
quency bin of 24 critical bands are summed up, to form a histogram of
“rhythmic energy” per modulation frequency. The histogram contains 60
bins which reflect modulation frequency between 0 and 10 Hz. These features
are descriptors for general rhythmics in an audio document, and were first
introduced in (Lidy and Rauber, 2005).

Statistical Spectrum Descriptors (SSD) According to the occurrence
of beats or other rhythmic variation of energy on a specific band, statistical
measures are able to describe the audio content. The following statistical
moments on the values of 24 critical bands: mean, median, variance,
skewness, kurtosis, min- and max-value. This features were also introduced
in (Lidy and Rauber, 2005),

Temporal features (TRH, TSSD) Feature sets are frequently computed
on a per segment basis and do not incorporate time series aspects. TRH and
TSSD features include a temporal dimension describing variations over time.
For TRH, statistical measures (mean, median, variance, skewness, kurtosis,
min and max) are computed over the individual RH extracted from segments
in a piece of audio. Thus, change and variation of rhythmic aspects in time
are captured. TSSD analogously capture timbral variations and changes
over time in the spectrum on the critical frequency bands. Hence, a change
of rhythmics, instruments, voices, etc. over time is reflected by this feature
set (Lidy et al., 2010b).

Modulation Frequency Variance Descriptors (MVD) This descrip-
tor measures variations in the critical bands for a specific modulation
frequency of the RP matrix, representing the amplitudes of 60 modulation
frequencies on 24 critical bands. The MVD vector is computed by taking the
same statistics as for TRH and TSSD, for each modulation frequency over
the 24 bands (Lidy et al., 2010b).

Onset features An onset detection algorithm described in (Pertusa et al.,
2005) has been used to complement audio features. As a result of the onset
detection, the minimum, maximum, mean, median and standard deviation
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of both onset energies and onset intervals have been extracted. Also, the
average number of onsets per frame is computed.

Relative Spectral Energy Matrix (RSEM) This feature set contains
a coarse binning of the amplitude and the power spectrum at 40, 120, 500,
2000, 6000, 11000 and 22050 Hz respectively, averaged over all frames. In
addition to these simple features, two matrices are formed by dividing each
of the resulting amplitude bins by each of the power bins and vice versa (Lidy
et al., 2009).

Template descriptors An algorithm coming from the blind source sepa-
ration domain, and described in (Grecu, 2008) was adapted for genre
classification and related tasks. In the original setting, each instrument
sound is represented by a frequency spectrum template. The sum of these
templates at their respective onsets will ideally reconstruct the song, though
this is not a perfect reconstruction. These templates are further processed
to result in the template descriptor set. This set contains, for example, the
mean onset amplitude, mean onset distance, mean overlap with the other
templates (matrix), template count, etc.

4.5.2 Transcription system

The transcription system uses a multiple fundamental frequency (f0) es-
timation method to convert the audio files to MIDI files. This is a
joint estimation approach, evaluated in (Pertusa and Iñesta, 2008b), which
experimentally obtained a high accuracy with a low computational cost. It
is presented in great detail in (Pertusa, 2010). The version used here extends
a previous work (Pertusa and Iñesta, 2008a) by adding information about
neighboring frames to get a smooth temporal estimation. It does not separate
instruments, therefore producing single track MIDI files without any timbral
information. Rhythm detection is not considered, only note pitches, onsets,
and durations are extracted.

The system has two main parameters to tune in order to improve its
efficiency for the genre classification task: the maximum polyphony of the
transcription, that is, the maximum number of notes to be transcribed at any
given time, and the minimum duration of a note. The latter has been fixed to
about 140 ms, to avoid very short note detections. The maximum polyphony
parameter P has been investigated by setting up a number of preliminary
late fusion experiments in music genre recognition. The GTZAN corpus
was transcribed to MIDI setting P to values from 1 to 6. For each value, a
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classification experiment has been performed, where an ensemble of classifiers
has been trained and evaluated using a 10-fold crossvalidation scheme. The
individual classifiers in the ensemble are Naive Bayes (NB), 3-NN, RF, SVM,
and C4.5. All of them were trained using the default parameters in their
WEKA 3.6.1 implementation. The S2 feature set from Table 4.21 was used
to describe transcribed music samples.

Table 4.22 shows the estimated accuracy for individual classifiers on the
transcribed GTZAN corpus, while Table 4.23, and Figure 4.27 shows results
for the ensemble, using the voting schemes discussed in section 2.4.1. The
experiments show that results are quite comparable for all values of P ,
except maybe P = 1 for some individual classifiers, and most of the ensemble
voting methods. As a large value for P affects the transcriptor’s performance
negatively, P = 3 was chosen, if not otherwise indicated, as the default
maximum transcription polyphony for music genre classification experiments
discussed below.

P NB 3-NN C4.5 RF SVM
1 35±3 28±5 41±3 47±5 48±7
2 36±3 29±5 48±3 54±4 49±5
3 35±4 34±5 46±5 55±3 49±5
4 36±2 34±4 48±4 55±5 48±4
5 36±3 33±4 49±4 55±4 48±3
6 37±3 32±4 49±3 54±4 48±4

Table 4.22: Transcriptor maximum polyphony (P ) estimation results.
Estimated accuracy percentages for individual classifiers on the transcribed
GTZAN corpus, when using different values for P , and 10-fold
crossvalidation.

P PV SVW RSWV BWWV QBWWV WMV
1 50 ± 7 50 ± 6 50 ± 6 51 ± 6 51 ± 6 51 ± 6
2 54 ± 2 56 ± 2 56 ± 2 56 ± 3 56 ± 3 55 ± 3
3 54 ± 4 56 ± 4 56 ± 4 56 ± 2 55 ± 2 55 ± 3
4 53 ± 4 56 ± 4 55 ± 4 55 ± 4 54 ± 4 54 ± 4
5 54 ± 3 56 ± 4 56 ± 4 57 ± 3 57 ± 4 56 ± 5
6 55 ± 2 56 ± 3 56 ± 3 56 ± 4 55 ± 4 55 ± 5

Table 4.23: Transcriptor maximum polyphony (P ) estimation results.
Estimated accuracy percentages for classifier ensemble on the transcribed
GTZAN corpus, when using different values for P , and 10-fold
crossvalidation.
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Figure 4.27: Genre classification results using the GTZAN dataset changing
the maximum polyphony for the transcription method. The abscissae
represent the maximum polyphony P and the ordinates the success rate for
the different classifier ensembles tested.

4.5.3 Early fusion results

The first early fusion experiments performed within the collaboration
research mentioned above were published in (Lidy et al., 2007). The symbolic
feature set S1 was combined with audio feature set A1 (RP, RH, SSD, and
onset features). The GTZAN, ISMIRrhythm, and ISMIRgenre datasets were
used as evaluation corpora. The evaluation method was to perform 10-fold
stratified crossvalidation. A linear SVM was chosen as the classifier to train,
using the SMO implementation of the WEKA machine learning software
with pairwise classification and default parameters (complexity parameter
C = 1.0). The performance of each feature set was investigated individually,
before deciding which ones to combine. Some combinations were chosen to
make results comparable to those obtained in (Lidy and Rauber, 2005), where
only audio feature sets were combined.

Table 4.24 reports a summary of accuracy results for individual models.
Considering a “dumb classifier” attributing all pieces to the class with the
highest probability (i.e. the largest class), the lower baseline would be 10%
accuracy for the GTZAN data set, 15.9% for the ISMIRrhythm data set and
43.9% for the ISMIRgenre data set. Interestingly, the symbolic descriptors
derived from transcribed audio surpassed in performance the RH features,
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which are computed directly from audio, on the ISMIRgenre data set, and
they also achieved remarkable performance on both other data sets.

Table 4.25 reports accuracy results for SVM trained with combined
feature sets, along with results from (Lidy and Rauber, 2005), where the
SVM was trained with several combinations of audio feature sets. Clearly,
there is a consistent improvement on all corpora when using combined audio
and symbolic feature sets, with respect to both single feature sets and
combinations of audio features only. Although such improvements are not
of substantial magnitude, it seems that the “glass ceiling” in audio music
classification described in (Aucouturier and F., 2004) can be surpassed by
combining features that describe music from different modalities. However,
there is no single feature combination in Table 4.25 that outperforms the
others consistently. This can be seen as a drawback of this early fusion
approach, that could be circumvented using an alternative: the late fusion
approach.

The authors provided some comparisons with similar studies by other
authors. For example, (Li et al., 2003) reported an accuracy of 74.9% in a
10-fold crossvalidation of DWCH features on the GTZAN data set using SVM
with pairwise classification, surpassed by a 76.8% average accuracy reported
here. A 66.9% average accuracy in a 10-fold crossvalidation set up on the
ISMIR rhythm dataset is reported in (Flexer et al., 2006), while (Dixon et al.,
2004) reports achieving 85.7% accuracy on the same corpus. The proposed
approach discussed here obtained 90.4% average accuracy.

Feature set GTZAN ISMIRrhythm ISMIRgenre
Onsets 34.9 48.4 58.0
Symbolic 41.3 51.1 66.0
RH 44.0 82.7 64.4
SSD 72.6 59.6 78.6
RP 64.4 86.5 75.9

Table 4.24: Accuracy percentage results for a SVM trained on different
feature sets (from (Lidy et al., 2007)).

This experimental set up was presented to the MIREX 2007 evalua-
tion contest in several categories: Audio genre classification, audio music
similarity, audio artist identification, classical composer identification, and
audio mood classification. The evaluation was performed using a 3-fold
crossvalidation. In genre classification, artist filtering was used for test and
training splits, i.e. training and test sets contained different artists. In classic
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Feature set GTZAN ISMIRrhythm ISMIRgenre
Onset+Symb. 50.5 61.6 68.0
SSD+Onset 74.5 67.6 79.6
SSD+Symb. 75.7 63.6 81.0
SSD+Onset+Symb. 76.1 69.5 81.4
RH+SSD+Onset+Symb. 76.8 87.1 80.5
RP+SSD+Onset+Symb. 74.3 89.8 80.6
RP+RH+SSD+Onset+Symb. 74.0 90.4 80.9
Best results in 74.9 84.2 80.3
(Lidy and Rauber, 2005)

Table 4.25: Early fusion accuracy results for a SVM trained on combined
feature sets (from (Lidy et al., 2007) and (Lidy and Rauber, 2005)).

composer identification, album filtering was used, i.e. training and test sets
contained tracks from different albums.

The submitted system used the RP+RH+SDD+Onset+Symb combined
feature set. A summary of the different contest results is shown in Table 4.26.
It shows that the system yielded a high success rate for genre classification. In
the music similarity contest, a system variant without symbolic features was
also submitted, but was outperformed by the whole feature set combination.
In the case of audio artist identification and classical composer identification,
the system yielded encouraging results, and for mood classification the results
were satisfactory.

Contest Best (Lidy et al., 2007) Rank
Genre classification 68.29% 66.71% 2/7

Audio music similarity (*) 0.568 0.519 5/12
Audio artist identification 48.14% 38.76% 4/7

Classical composer identification 53.72% 47.26% 5/7
Audio mood classification 61.50% 59.67% 3/9

(*) F-score measures.

Table 4.26: MIREX 2007 average raw accuracy summary. The second column
shows the result of the best system. The third column shows the results of the
system discussed here, and the last one shows its rank, in terms of accuracy,
with respect to the total number of systems submitted.
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Several areas of improvement were identified, notably on the symbolic
descriptors side. A better transcription system is expected to help symbolic
descriptors to improve their performance. Also, the addition of new symbolic
features could provide a better representation of the transcribed signal, as
well as the addition of new audio feature sets.

All these suggestions were investigated, and a new system was presented
to the MIREX 2008 evaluation contest (Lidy et al., 2008). It included the A3
audio feature sets, the S2 symbolic descriptor set, and a tweaked transcription
system that used gaussian smoothness and short context to improve the
transcription. The system was submitted to the audio classification tasks,
which included the genre, artist, and mood classification contests, with the
same evaluation conditions used in MIREX 2007. The corpora used in each
task were the same as in the previous edition. For the genre classification
task, the LMD corpus was used for a new ‘latin music’ genre classification
task, besides the ‘western music’ task defined on the previous edition genre
dataset.

Four variants of the system, using different feature set combinations, were
submitted:

1. RH+SSD,

2. RP+SSD+MVD,

3. RP+SSD+TRH+Symb,

4. RP+RH+SSD+TRH+TSSD+MVD+Symb.

A summary of results is shown in Table 4.27. MIREX 2008 used the
ANOVA significance test with Tukey-Kramer HSD (Honestly Significant
Difference) for multiple comparisons. The performance of the system on
the artist, mood, and ‘western music’ genre was unexpected, as the results
were in general poorer than those obtained in the previous edition on the
same corpora. Also, the trend of the audio and symbolic combined feature
sets outperforming the combination of audio only features was inverted.

Due to the differences in the combinations used in this evaluation contest
with respect to MIREX 2007, and the fact that the evaluation data are not
distributed by the IMIRSEL9, it is hard to draw any conclusion on why the
system performance was not improved as expected. This in part supports
the intuitive claim that early fusion approaches are very sensitive to which
particular feature set combination is used. It is also an evidence in favor

9The International Music Information Retrieval Systems Evaluation Laboratory runs
the MIREX evaluation contests.
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of using alternative approaches, like late fusion methods, to try to improve
results in a more robust way.

Contest Best (Lidy et al., 2008) Rank TK-HSD

Genre classification (western) 66.41% 65.06% (1) 6/13 false
Genre classification (latin) 65.17% 62.23% (2) 4/13 false
Audio artist identification 47.65% 35.42% (1) 5/11 false
Classical composer identif. 53.25% 39.54% (4) 7/11 false
Audio mood classification 63.67% 56.00% (1) 3/13 false

Table 4.27: MIREX 2008 average raw accuracy summary. ‘Best’ column
shows the result of the best system. ‘Ours’ column shows the results of the
best submitted early fusion system variant. The variant number is shown in
parenthesis. The ‘rank’ column shows the system rank, in terms of accuracy,
with respect to the total number of systems submitted. The last column, TK-
HSD, indicates whether the proposed system average accuracy is significantly
different from the best system average accuracy.

4.5.4 Late fusion: the cartesian ensemble

With the availability of multiple feature sets as a source of music description,
and potentially also multiple classifiers, there are several alternatives of
how to design a music multiple classification system. The early fusion
approach taken in the previous section pointed out the need for a more robust
classification scheme. Taking a late fusion approach is a natural step forward
in the attempt to combine multiple feature subspaces that describe the same
musical objects. Moreover, results discussed in section 4.4 provided hints
about the robustness of voting classifier ensembles in music genre recognition.
Also, the diversity of the ensemble has been identified as a key factor for
performance improvement over single classifiers.

Late fusion techniques always involve training several base models, from
which predictions on test objects are later combined. For voting ensembles,
several approaches can be taken to obtained a set of base trained models:

• build a classifier for each class using a one-against-all strategy,

• train a model for each pair of classes in the problem,

• train different learning schemes are trained in the same feature space,
or
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• if several feature spaces are available to describe input objects, build
different models using the same classification method on different
feature sets.

Our approach is to apply the last two strategies simultaneously. It has
been named a cartesian ensemble because the set of models used as base
classifiers is the cartesian product of D feature subspaces and C classification
schemes. A model is built by training a classification scheme ci on a feature
subspace, dj. This produces a total of D × C base models as the ensemble.
The aim of this approach is to obtain a sufficiently diverse ensemble of
models that will guarantee, up to a certain degree, an improvement of
the ensemble accuracy over the best single model trained. Moreover, the
ensemble abstracts from the selection of a particular classifier and feature
set to use for a particular problem. Selecting sufficiently different schemes
(different classification paradigms, methods,...) the ensemble provides results
that are at least comparable to the best single scheme. For selecting the most
diverse models within the ensemble the Pareto-optimal selection strategy is
applied in order to discard models not diverse or not accurate enough.10

When a new music instance is presented to the trained ensemble,
predictions are made by selected models, which are then combined to produce
a single category prediction outcome. A number of decision combination (or
label fusion) rules, can be used for this final prediction, like the ones presented
in section 2.4.1.

The cartesian ensemble system is depicted in Figure 4.28. It is built
on top of the WEKA toolkit. The ensemble is a WEKA classifier itself,
so it can be plugged into any system using this toolkit. Any classification
algorithm available on the toolkit can be used with arbitrary parameters in
the ensemble. Further, an arbitrary number of feature files can be used.
The system provides a number of combination and voting rules, which are
employed to obtain the final prediction of the classifier ensemble. The system
is not limited to MIR applications. With regard to the original motivation
of this thesis, however, let us focus on the scenario of music classification
into genre categories, in order to show the applicability of the system and
the progress in this domain.

Instance alignment

A particular challenge when using a variety of feature sets that were generated
by different feature extractors and written to different file formats is the
correct alignment of instances from different feature subspaces in memory,

10cf. sec. 2.4.2
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Audio
features

Symbolic
features

Classification schemes

Decision 
combination Categ

ory

label

. . .

. . .

FS

FS

FS

FS

( FS : Feature selection )

Figure 4.28: Overview of the cartesian ensemble system

when processing these diverse files. An instance aligner preprocessing
component of the cartesian ensemble takes care of this. It accepts a range of
different feature sets as inputs from different feature files and – based on a
common ID field, which here is the filename of the piece of music – checks for
completeness of instances in all files, aligns the instances to a common order,
and constructs a convenient joint data structure, which is the prerequisite
for all further ensemble classification steps.

The instance aligner takes one of the feature subspace sets as its reference
dataset. This set must be fully tagged and must contain the ID field. Clearly,
only one instance per ID is allowed. Further feature subspace datasets must
also contain the ID field, and instances for the same IDs as in the reference
dataset. However, these datasets can contain additional instances (with other
IDs) and need not to be tagged. Only the tags from the reference dataset will
be used for training and testing purposes. The ID field is obviously removed
for training and testing, and it is used only for keeping instances aligned.

Feature selection

The cartesian ensemble provides the possibility of performing a feature
selection step for each feature subspace at each fold, using outer training
data. The feature selection method used here is a fast correlation-based
filter (FCBF) described in section 2.5.2. FCBF has been shown to efficiently
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achieve a high degree of dimensionality reduction for high-dimensional data,
while enhancing or maintaining predictive accuracy with selected features.

Ensemble evaluation

The classifier ensemble crossvalidation scheme described in section 2.8.2 is
used in the experiments that follow. Recall that this procedure involves
an inner crossvalidation to estimate base model accuracies, needed to set
up model weights, and perform the model selection step. This step is
performed within each outer crossvalidation fold, aimed at estimating the
whole ensemble performance. This means that, for each outer training fold,
each base model,

• is crossvalidated by partitioning the training fold.

• its estimated accuracy is recorded and used to compute its weight in
the ensemble.

• it is trained with the whole outer training fold.

So, for each iteration of the outer crossvalidation process, all base models
are retrained and their respective weights recomputed.

4.5.5 Late fusion results

The first evaluation of the cartesian ensemble was performed at the MIREX
2009 evaluation contest (Lidy et al., 2009). The A2 and S2 set of
feature subspaces were used, without the feature selection step. The
base classification schemes used are listed in Table 4.28. A 3-fold inner
crossvalidation was used. Two variants of the system, using different
ensemble voting rules, were evaluated: (1) WMV, and (2) BWWV voting
rule, based on pre-contest experimental results.

The system was submitted to the so called the ‘Train-Test Task Set’:

• Genre Classification (western music corpus)

• Genre Classification (latin music corpus)

• Music Mood Classification

• Classic Composer Identification
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Scheme Parameters
Näıve Bayes (NB) default
HyperPipes (HP) default
3-NN Euclidean dist.
1-NN, Manhattan dist.
1-NN Chebishev dist.
RIPPER default
C4.5 default
REPTree default
Random Forest (RF) default
SVM, linear kernel (SVM-lin) default
SVM, quadratic kernel (SVM-quad) default
SVM, Puk kernel (SVM-Puk) C = 4, ω = 3.2, σ = 13.0

Table 4.28: Base classifiers for the cartesian ensemble submission to the
MIREX 2009 evaluation contest. ‘default’ parameters means the default
Weka 3.6.1 implementation parameters are used.

The corpora used for evaluation were the same as in the previous
edition. The evaluation was performed using a 3-fold crossvalidation,
that corresponds to the outer crossvalidation of the ensemble. In genre
classification, artist filtering was used. Album filtering was used in the
classic composer identification task. As in other editions of MIREX, the
ANOVA significance test with Tukey-Kramer HSD for multiple comparisons
was applied to the results. A summary of the ‘Train-test task set’ results in
MIREX 2009 is presented in Table 4.29.

Contest Best Cartesian ensmb. Rank TK-HSD

Genre classification (western) 73.33% 68.84% (1) 8/31 false
Genre classification (latin) 74.66% 58.37% (1) 12/32 false
Classical composer identif. 62.05% 53.57% (1) 11/29 false
Audio mood classification 65.67% 60.17% (2) 9/28 false

Table 4.29: MIREX 2009 average raw accuracy summary.

The cartesian ensemble obtained results consistently higher than average
MIREX 2009 results. When compared to early fusion results obtained
in previous MIREX contest (see Table 4.30), the late fusion approach is
superior, in general, to early fusion methods. The only exception is the LMD
corpus, where the accuracy of the cartesian ensemble was expected to be
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higher. Expectations were based on previous results obtained on this dataset.
Table 4.31 shows these results, obtained using a 5-fold outer/3-fold inner
crossvalidation, without artist filtering. The system was configured with the
same feature subspaces used for MIREX 2009, but only five classification
schemes: Näıve Bayes, 3-NN, C4.5, Random Forest, and SVM with default
WEKA 3.6.1 parameters. Up to a 92% average accuracy was obtained with
the SVW and RSWV voting rules. The MIREX 2009 evaluation result on
LMD was 58.37%, almost a 34% drop in performance.

This issue was investigated by Andrei Grecu, from our partner research
group in Vienna, who also submitted a system for music genre recognition
to the contest, which suffered similar drops in performance. That system is
based on SMVs trained using audio features only (Grecu et al., 2009). Using
a 3-fold crossvalidation without artist filtering, it reached a 92.6% average
accuracy, a result very similar to that obtained with the cartesian ensemble
system. After applying an artist filter to the data, performance dropped
to 77.6%. However their result in MIREX was 62.79%. So the particular
artist filter set up used at MIREX seems in part responsible for the lower
performance. After informal conversations with people from IMIRSEL (the
MIREX evaluation laboratory), the drop is more or less explainable. They
agreed that some genre train/test splits get highly deteriorated using an
artist filter, due to a highly unbalanced number of songs per artist in some
genres.

Take, for example, the genre ‘Tango’, from LMD. It has only five artists,
one of which, Carlos Gardel, is the artist in 335 out of 408 files. Using
an artist filter the train/test splits get deteriorated, making it essentially
impossible to recognize that genre. There is the additional circumstance
that Carlos Gardel is arguably the most important tango artist. Training
a tango genre recognizer without Gardel’s songs risks of not capturing the
essential traits of such genre, and will probably have a rather low accuracy in
identifying his songs. The same issue can probably appear whenever a strong
artist-genre relation exists, even if the number of songs from this artist is not
particularly high in the genre dataset.

A benchmarking study of the cartesian ensemble performance

An extensive benchmarking study of the cartesian ensemble’s performance
has been carried out, without considering artist filtering, due to issues
mentioned above. Moreover, the focus in this study was put on whether the
ensemble performed consistently better than single classifiers in the music
genre recognition task.

215



CHAPTER 4. MUSIC GENRE RECOGNITION

Early fusion Late fusion
Task 2007 2008 2009
Genre classification (western) 66.71 65.08 68.84
Genre classification (LMD) – 62.23 58.37
Classical composer identif. 47.26 39.54 53.57
Audio artist identification 38.76 35.42 –
Audio mood classification 59.67 56.00 60.17

Table 4.30: Comparison between early and late fusion approaches. Average
raw accuracy results from MIREX evaluation contests are shown.

Voting rule Acc. (stdev)
PV 91.88 (1.58)
SWV 92.00 (1.03)
RSWV 92.06 (0.87)
BWWV 91.94 (0.90)
QBWWV 91.60 (1.17)
WMV 91.88 (0.82)

Table 4.31: Cartesian ensemble accuracy on the LMD dataset (without artist
filtering).

The 9GDB, GTZAN, ISMIRgenre, ISMIRrhythm, LMD, and Africa
have been used in this study. For the Africa dataset, various meta-
data categories are available, including 27 different functions, 11 different
instrument families, 11 different countries and 40 ethnic groups (Lidy et al.,
2010b). The number of files varies according to the number of meta-data
available in each category.

System and evaluation parameters The A3 audio feature sets, and the
S3 symbolic feature set have been used as feature subspaces for every dataset.
In order to correctly extract the chordal features in S3, the transcriptor
maximum polyphony parameter has been set to P = 5. The classification
schemes listed in Table 4.28 have been utilized, with the exception of the 1-
NN with Chebyshev distance. It produced classifications results very close to
those produced using the Manhattan distance, and thus has been removed.

The voting methods described in section 2.4.1 have been tested. In addi-
tion, three other unweighted methods have been also tested, for comparison
purposes. They are listed in Table 4.32, where P (ωk|xi) is the posterior
probability of instance x to belong to category ωk, given by model hi. xi is
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what hi knows about x, i.e., feature values that correspond to the feature
subspace hi was trained on. The posterior probability that instance x belongs
to class ωk given by the ensemble is denoted by P (ωk|x), and is computed as
indicated in the second column of the table. The ensemble predicts class ωj
for instance x if

P (ωj|x) =
M

max
k=1

P (ωk|x) (4.12)

where M is the number of classes in the problem. These unweighted
combination rules are further described in (Kittler et al., 1998), and used
through their implementation in WEKA.

Rule mnemonic P (ωk|x)

AVG Average of P (ωk|xi)
MAX Maximum of P (ωk|xi)
MED Median of P (ωk|xi)

Table 4.32: Additional unweighted voting methods used with the cartesian
ensemble.

Two sets of experiments have been performed, one without feature
selection, the other applying a feature selection stage at the feature subspace
level. A 10-fold outer / 3-fold inner crossvalidation has been set up for every
experiment.

Experiment results without feature selection

Dataset Classifier Featureset Accuracy

9GDB SVM-Puk TSSD 78.15
GTZAN SVM-lin SSD 72.60
ISMIRgenre SVM-quad TSSD 81.28
ISMIRrhythm SVM-lin RP 87.97
LatinMusic SVM-Puk TSSD 89.46
Africa/country SMO-quad SSD 86.29
Africa/ethnic group SVM-lin TSSD 81.10
Africa/function 1-NN SSD 51.06
Africa/instrument SVM-Puk TSSD 69.90

Table 4.33: Best results on individual classification of feature sets and
classifiers on different datasets
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D = 7 feature subspaces have been extracted: six audio feature sets
(A3), plus one symbolic feature set (S3). C = 11 classification schemes were
set up for the ensemble, making a total of D × C = 77 base models. To
have a baseline for the cartesian ensemble, all the models have been trained
separately using a 10-fold crossvalidation. Table 4.33 gives an extract of the
accuracies achieved with these single models. Only the best combination of
an algorithm and a feature set is given. It can be observed that there is no
clear trend, neither for a classifier, nor a feature set. While SVMs clearly
dominate the results, the choice of the kernel is not obvious, and results can
vary by several percent points. Also the feature sets do not show a clear
trend – in approximately half of the cases, TSSDs are the best set to use,
while also SSD and RP features sometimes yield clearly better results. These
results nourish the hypothesis that ensemble classifiers may provide means
to release the user from the difficult choice of the proper feature set and
classifier combination.

The accuracy results for the classifier ensembles are shown in Table 4.39,
with the best single classifier as our assumed baseline to improve on. Note
that achieving the baseline result would require to know the best combination
of feature set and classifier in advance. On each of the datasets, we can
observe higher classification accuracies with the ensembles than with the
baseline. The improvements are three percent points on average. The
highest gains are on the GTZAN dataset, with five percent points, while
the improvements on the ISMIRrhythm dataset are of 1.14%. However, the
baseline on this dataset is already very high, around 88%.

Out of the nine classification tasks, the QBWWV rule performed five
times the best, followed by WMV which was three times the best rule. AVG
and BWWV are both once the highest ranked combination rule. In the
tasks where QBWWV is not the rule with the highest accuracy, the relative
difference to the top rule is minimal – the largest margin is 0.7% percent
points, or 0.86% relative difference.
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CHAPTER 4. MUSIC GENRE RECOGNITION

Experiment results applying feature selection

The fast correlation-based filter (FCBF), described in section 2.5.2, has been
selected as a feature selection method for the cartesian ensemble. Only
the GTZAN, 9GDB, ISMIRgenre, and ISMIRrhythm datasets were used in
these experiments. The same audio and symbolic feature sets, classification
schemes, and other system parameters as in the previous section are used
here.

Feature selection is performed independently for each subspace at each
fold, using outer training data. Table 4.35 presents a summary of the best
single model classification results. All accuracies are average values over
folds, except for the last column. The fourth column shows the average
number of features selected per fold, also as a percentage of the whole
feature subspace. The last column shows performance results without feature
selection for the given classifier/subspace combination. Table 4.36 shows the
best classifier/subspace combination results without feature selection. This
comparison suggests that SVM classifiers’ performance on these datasets
deteriorates more than schemes based on decision trees.

Dataset Classifier Subspace avg. feat. sel. Acc. (%) Acc. (%)
(all feat.)

9GDB RF TSSD 42.6 (3.6%) 73.2 76.5
GTZAN RF TSSD 19.1 (1.6%) 53.1 58.2
ISMIRgenre RF TSSD 20.5 (1.7%) 72.4 73.2
ISMIRrhythm SVM-lin RP 38.0 (2.6%) 81.6 88.0

Table 4.35: Best results on single subspace/classifier combinations with
feature selection.

Dataset Classifier Subspace Acc. (%)

9GDB SVM-Puk TSSD 78.2
GTZAN SVM-lin SSD 72.6
ISMIRgenre SVM-quad TSSD 81.3
ISMIRrhythm SVM-lin RP 88.0

Table 4.36: Best results on single subspace/classifier combinations without
feature selection.

Table 4.37 provides further insight on the feature selection step on the
GTZAN corpus. These results are averaged over cross-validation folds. The
third column shows that the greatest dimensionality reduction is obtained
for large audio feature subspaces. The fourth column indicates how many
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Features # feats. avg. selected at least once always best avg. acc. (%)

RH 60 2 (3.3%) 7 (11.7%) 0 27.5 (NB)
RP 1440 9.1 (0.6%) 49 (3.4%) 1 41.2 (RF)
SSD 168 7.4 (4.4%) 15 (8.9%) 4 49.3 (RF)
TRH 420 2 (0.5%) 7 (1.7%) 0 28.1 (NB)
TSSD 1176 19.1 (1.6%) 71 (6%) 4 53.1 (RF)
MVD 420 4.6 (1.1%) 22 (5.2%) 1 31 (RF)
SYMB 63 7.3 (11.8%) 14 (22.6%) 3 44.2 (SVM-quad)

Table 4.37: Feature selection results for the GTZAN corpus.

features have been selected at least once. It is worth noting that for the larger
subspace, only 3.4% of the features have been selected once. The next column
shows how many features were always selected. Here, the symbolic feature
subspace shows the best ratio of very predominant features. The accuracy
column indicates average accuracy for the best single model trained with
selected features. The Random Forest scheme shows best performance most
of the time.

Feature selection times are negligible when compared to training times,
as shown in Table 4.38. Moreover, training and testing times are an order
of magnitude lower than those obtained using the ensemble with all features
available. Though, in general, the accuracy of single models decreases when
applying a feature selection step, it remains reasonably good for most of the
benchmarking corpora.

all features with feature selection
Corpus train test train feat. sel. test
9GDB 6645 140 905 93 18
GTZAN 10702 345 1247 96 23
ISMIRgenre 12510 275 1244 133 23
ISMIRrhythm 5466 185 707 60 8

Table 4.38: Ensemble cross-validation execution times (in seconds) with
and without feature selection (test times are averaged over combinations
methods).

The integration of a feature selection stage aims at speeding up training
and testing phases, while maintaining a good accuracy level on the task of
music genre classification. The concern in this experiments was to integrate
a feature selection step in the cartesian ensemble and evaluate its impact on
the ensemble performance on several datasets. The size of feature subspaces
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Rule 9GDB GTZAN ISMIR genre ISMIR rhythm

Single best 73.2 (4.9) 53.1 (4.9) 72.4 (3.2) 81.6 (4.3)

MAJ 71.38 (5.16) 61 (5.01) 55.83 (1.4) 81.09 (4.8)

MAX 63.9 (5.3) 45.9 (3.41) 67.97 (2.55) 59.46 (7.71)

MED 64.72 (4.88) 42.8 (4.18) 54.39 (2.36) 66.19 (5.56)

AVG 80.02 (5.88) 65.2 (3.58) 70.23 (2.21) 83.52 (4.84)

SWV 77.69 (4.36) 61.7 (5.54) 56.1 (2.28) 82.95 (5.37)

RSWV 78.27 (4.71) 62 (4.69) 57.96 (3.13) 83.81 (5.07)

BWWV 78.97 (5.14) 61.8 (4.73) 67.08 (3.73) 83.67 (5.16)

QBWWV 79.67 (5.23) 60.7 (4.62) 71.81 (1.82) 84.53 (4.93)

WMV 77.92 (5.17) 53.2 (3.97) 72.43 (1.98) 84.24 (4.29)

Best wo/ FS 81.66 (3.96) 77.50 (4.30) 84.02 (1.50) 89.11 (4.62)

Table 4.39: Results of the ensemble classification (standard deviations in
parentheses)

has been greatly reduced to less than 4% of their original size, on average.
This has been achieved while maintaining the classification accuracy at a
reasonable good level at least for two of the benchmarking corpora, 9GDB
and ISMIRrhythm, as shown in Table 4.39. The ‘Single best’ row corresponds
to the fifth column of Table 4.35, i.e., the best performing base model trained
on selected features, in average. The experiments were designed to ensure
that, given a feature subspace and a dataset fold, the feature selection
algorithm would select the same features when training single models or
the whole ensemble. The last row shows the best results obtained without
feature selection, from Table 4.39. From these results, the final word would
be to say that there should exist a tradeoff between the gain in training time
and the loss of discrimination power in the ensemble. This should be further
investigated, for example, tuning the δ parameter of the FCBF algorithm, or
choosing a different feature selection method.

4.6 Conclusions on music genre recognition

The main goal in this work has been to assess the capability of melodic,
harmonic, and rhythmic statistical descriptors to perform musical genre
recognition of symbolically encoded music. An important feature of the
approach is that the use of timbral information is purposedly avoided. A
methodology for feature extraction, selection and music genre classification
experiments was developed, where new corpora, description models, and
classifiers can be easily incorporated, and tested in a systematic way on
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4.6. CONCLUSIONS ON MUSIC GENRE RECOGNITION

a given range of melody fragment sizes. Both single classifiers and ensembles
have been evaluated on a two-genre problem (jazz vs. classical music). This
statistical pattern recognition approach has been also tested in combination
with audio features over a broader domain of music genres.

In order to establish some reference baseline for music genre recognition, a
survey on genre recognition by humans in the absence of timbral information
has been performed. A 16% average human recognition error rate (84%
accuracy) has been obtained for a two-genre problem (jazz and classical
music), when dealing with short (3 bars) to medium sized (16 bars) melody
fragments. This result has been taken as a base line for comparison with
automatic music genre recognition approaches discussed in this chapter.

The feasibility of the proposed categories of descriptors has been assessed
through several single feature evaluation experiments. Pitch and pitch
interval descriptors have shown to be the most discriminant features.
Other important features have been the number of notes and the rhythm
syncopation. From the statistical point of view, standard deviations were
very relevant. Though descriptors based on note onset and duration
performed worse when used alone, their use in combination with pitch related
descriptors should not be discarded.

The music genre recognition experiments have been carried out over a
parameter space defined by ω, the size of segments extracted from melody
tracks of MIDI files. The two classifier schemes tested were a quadratic Bayes
and a nearest neighbor (NN) classifier. They performed comparatively well
on feature sets of different sizes. The parametric approach preferred the
reduced size feature sets but NN performed well with all models. The best
average recognition rate has been found using the Bayesian classifier and a
12-descriptor model (89.5%), although the best result was obtained with the
NN, that reached a 96.4% with ω = 95. Note that both results are above the
human recognition base line (84%) described above. In general, best results
were obtained for medium to large melody fragments. However, a drop in
performance has been found when very large fragments, or even the whole
melody, is used, due to the reduction of the training data available in such
conditions.

The experiments demonstrated that melodies encoded symbolically con-
vey statistical information about genre, but that this information is incom-
plete. While quite good performance results have been obtained on the ‘jazz
vs. classical’ problem, given that this is a relatively ‘easy’ task, there is
evidence that a glass ceiling for classification performance exists when relying
only on information provided by the melody in a music piece. Moreover,
music genres have fuzzy boundaries, evidence of which has been detected

223



CHAPTER 4. MUSIC GENRE RECOGNITION

in the proposed feature space through its exploration and visualization by
self-organising maps (SOM).

Voting ensembles of classifiers have been proposed for its use in music
genre recognition. In particular, three novel decision combination approaches
(RSWV, BWWV, QBWWV11), have been proposed and evaluated on a
series of classification benchmarking tasks. Their performance is shown
to be precise and robust, revealing voting ensembles as a good choice
for general purpose classification tasks, and in particular to music genre
recognition, where they have improved both the accuracy and robustness
of single classifier systems. The use of ensembles looks like an a priori better
choice, reducing the risk of selecting the wrong classifier for a given problem.

The diversity of a voting ensemble, that is, the degree of variety in the
decisions taken by its base models has been investigated in the context
of music genre recognition, through the use of different feature spaces for
building the ensemble. Evidence has been found that the use of different
modalities (feature spaces) for training base models, increases the ensemble
diversity, and improves its robustness and performance.

The proposed timbre-less, statistical symbolic music description has been
used in combination with audio features in audio music genre recognition
problems. They have been incorporated by means of a music transcription
system. This system does not generate explicit timbre information in
the transcription, so the use of such symbolic representation is specially
adequate in this context. While the transcription system is designed for
monotimbral, polyphonic transcriptions, it is assumed that ‘an inaccurate
but systematic monotimbral symbolic music transcription of a multitimbral
audio music signal still conveys information about genre’. Two feature space
combination approaches have been evaluated: early and late fusion. The
first one, consisting of feeding a classifier with a combination of symbolic
and audio feature spaces, has shown a consistent, though not significant,
improvement on all tested corpora, with respect to both single feature sets
and combinations of audio features only. It also compares favorably to other
authors’ results on the same datasets.

Some results, however, showed that early fusion approaches are very
sensitive to which particular feature set combination is used. This is an
evidence in favor of using alternative approaches, like late fusion methods,
in order to try to improve results in a more robust way.

A cartesian ensemble system, which combines different feature spaces
with different classification schemes, has been proposed as a late fusion
approach for combining audio and symbolic descriptors for music genre

11c.f. sec. 2.4.1
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recognition. A set of benchmarking experiments on audio genre recognition
have been performed, where it has been shown that the performance results
obtained for the ensemble are superior, in general, to those obtained by early
fusion methods. The QBWWV voting rule has emerged as the best option,
in general, among other rules. These results nourish the hypothesis that
ensemble classifiers may provide means to release the user from the difficult
choice of the proper feature set and classifier combination.

Feature selection in the cartesian ensemble has been investigated. The
symbolic feature subspace has shown a best ratio of very predominant
features, when compared to audio feature sets. Training and testing times of
the ensemble have been reduced an order of magnitude with respect to using
all features available. The size of feature subspaces has been greatly reduced
to less than 4% of their original size, on average. This has been achieved
while maintaining the classification accuracy at a reasonable good level at
least for two of the benchmarking corpora, 9GDB and ISMIRrhythm. These
experiments in feature selection for ensembles showed that there should exist
a tradeoff between the gain in training time and the loss of discrimination
power in the ensemble.

4.7 Contributions in this chapter

The following are the main contributions of this research in music genre
recognition, where statistical pattern recognition techniques are applied to
symbolically encoded music:

• A survey on music genre recognition by humans has been conducted.
Subjects were asked to recognize the genre of monophonic melodies
from jazz and classical music, without timbral information. A 16%
error rate baseline was suggested in this context for automatic genre
recognition systems.

• A methodology for evaluating symbolic music genre recognition of
melodies over a range of fragment sizes, and feature set sizes, has
been presented. Using a corpus of jazz and classical melodies, the
performance of a quadratic Bayesian classifier, and a nearest neighbor
classifier is evaluated and discussed.

• The performance of voting ensembles of classifiers has been also
investigated. Three novel voting rules are proposed, based on scaling
the weights of the ensemble with respect to the best and worst
classifiers. This rules have shown good performance on a series of
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benchmarking classification experiments, and in particular for music
genre recognition.

• A cartesian ensemble system has been introduced. It is a voting
ensemble that combines different feature subspaces, and different
classification schemes, build on top of the WEKA framework. It
provides a feature selection stage for each feature subspace, and a model
selection step that selects the most diverse models in the ensemble for
the decision combination stage. It has been shown to perform superior
to the best choice of a single algorithm on a single feature set. Moreover,
it also releases the user from making this choice explicitly.

Besides the above contributions, some tools were developed to help
research in symbolic music genre recognition. Obviously, there are the feature
extraction tools, that have been implemented for its use with the WEKA
toolkit. Also, a graphical user interface for symbolic music genre recognition
was developed, that allows the user to visualize the result of the proposed
music genre recognition models. A command line tool chain for converting
MIDI files to a text representation, and vice-versa, has also been developed
within my research group. It is an ubiquitous tool that showed valuable when
rapid inspection and transformation of MIDI file corpora is needed.
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5
Summary and future perspectives

This dissertation has presented a study on two applications of statistical
pattern recognition in the field of symbolic music information retrieval:
melody part selection (chapter 3), and music genre recognition (chapter 4).
MIDI file corpora have been used as evaluation materials in both tasks.
Music in such files is represented by vectors of statistical descriptors of note
pitches, intervals, durations, etc., that summarize the content of a piece (or
a fragment), while intentionally avoiding the use of any metadata. This
allows us to investigate to what extent the proposed tasks can be solved
relying on information extracted from the actual musical content. Or, from
a different point of view, to investigate how much of music genre is conveyed
in the music itself. A summary of the research done in both applications is
presented below.

5.1 Melody part selection

Melody part selection is the problem of selecting the part(s) that most
probably contains the melody in a multi-part music file. The problem is
first approached by using random forest (RF) classifiers to categorize tracks
as melody or non-melody tracks. Then this information is used to decide
which track, or tracks, in a MIDI file are the ones containing the melody.

For evaluating the approach, several corpora containing MIDI files from
jazz, classical, and popular music, and annotated and double checked by
human experts have been built. The track categorization and melody
part selection experiments yielded promising results, and showed that,
given a genre, enough training data of each genre are needed in order to
successfully characterize melody tracks, due to the specificities of melody
and accompaniment in each genre. Classical music emerged as a particularly
hard problem for this approach, because often the melody is not confined to
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a single track. For this kind of music, more sophisticated schemes oriented
to melodic segmentation are needed.

The RF-based system has been successfully used in commercial applica-
tions, by Sherlock Hums LLC, Chicago, for building mobile ringtones. The
tool was used to help extracting melodies from MIDI files. It could also serve
as a preprocessing step to any melody-based music processing system, such
as query-by-humming systems, or the symbolic music genre recognition tools
summarized in the next section.

A subsidiary goal of the melody part selection research was to answer
the general question What is a melody? under a statistical approach. This
was accomplished by providing human-readable characterizations of melody
tracks automatically extracted from sample data. These models are expressed
as fuzzy rules, derived from crisp rules learnt from MIDI corpora. As far as
this author knows, these are the first melody models of its kind in the area of
MIR. Being able to automatically obtain melody characterization rules that
are easily understandable by humans could be of interest for musicologists.
It would help building better tools for searching and indexing symbolically
encoded music.

The approach to melody part selection can be easily adapted to the
characterization of other track categories, like bass line tracks or percussion
tracks. Sections 3.4 and 3.5 present detailed conclusions and contributions,
respectively, of this research.

5.2 Music genre recognition

Music genre recognition has been explored from different angles. First,
genre recognition of melodies encoded symbolically was considered. For
this, a methodology for investigating the potential of the proposed statistical
description of music content has been contributed. It relies on the definition
of a music fragment length space, over which the feature extraction, feature
selection, and classification stages are evaluated. Several kind of classifiers
and statistical descriptor subsets have been assessed on a two-genre problem
(jazz and classical music).

In order to have a reference on the expected performance of this statistical
pattern recognition approach, a survey on genre recognition by humans
in the absence of timbral information has been performed. The ability of
the subjects to recognize the genre of jazz and classical melodies has been
assessed over several population parameters.

Voting classifier ensembles have been proposed for music genre recognition
in order to improve the performance and robustness of single classifiers.
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Three novel weighted voting rules have been proposed and evaluated. These
ensembles have been extensively evaluated on several benchmarking datasets,
including the two-genre corpus of jazz and classical music. The proposed
voting rules showed best performance results for most of the evaluation
experiments performed.

The ensemble approach allows the use of different music description
modalities. In particular, the global statistical description scheme proposed
in this research has been combined with a local statistical description
approach based on n-grams, providing promising results. Furthermore, this
same global description scheme has been combined with audio feature spaces
to deal with audio genre recognition tasks. This has been accomplished by
means of a transcription system. Two approaches for combining features have
been evaluated: early fusion of features and late fusion of classifier decisions
(through voting ensembles).

For the late fusion approach, a cartesian ensemble capable of combining
different feature subspaces with different classification schemes has been
contributed. It provides a feature selection stage for each feature subspace,
which greatly decreases the training time needed for the ensemble. It also
applies a model selection procedure for selecting the most diverse subset of
models, in order to improve the overall performance of the ensemble.

Sections 4.6 and 4.7 present detailed conclusions and contributions,
respectively, of this research on symbolic music genre recognition.

5.3 Perspectives on melody part selection

One of the problems that have been faced with the proposed melody part
selection system was the case of roving melodies, often found in classical
music. These are melodies that are not confined to a single track, but move
from one track to another. The approach taken here is clearly not adequate
to deal with these cases, as it is designed to propose whole tracks as melodies.
While it can certainly be easily adapted to point at several tracks at once
as the most probable tracks containing melodies, it will not be of much
help with roving melodies, where more precise location is desirable. Though
melody segmentation or extraction approaches are better suited to solve this
problem, a method based on characterizing track segments could be applied:
fragments from all tracks in a MIDI file would be extracted, using a sliding
window. Their probability of being a melody would be computed, and then
the most probable melody fragments, according to a given threshold, would
be proposed, using the same methodology as applied to whole tracks.
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The addition of entropy based measures proposed by other authors (Mad-
sen and Widmer, 2007b; Margulis et al., 2008) to the feature set utilized in
this work is under research. Also, a feature selection process is planned to
be applied to this enhanced feature set.

The annotation of corpora containing genres not considered here for
melody part selection is going to be undertaken. The objective would be
to evaluate the RF-based system on different genres. Also, the annotation of
other kind of tracks in the melody annotated corpora, like accompaniment,
bass line, or percussion, for example, is under development. This will allow
to apply the same part selection methodology to select other kind of music
parts. In particular, the method is currently being adapted to the selection
of bass line parts. Moreover, both the detection of melody and bass line
parts is planned to be combined, in such a way that the probabilities for a
track to be a melody, for example, would condition the probability of other
tracks to be a bass line, and vice-versa.

The characterization of melodies by fuzzy rule systems needs further
investigation. There is evidence that different rules have emerged that
characterize slightly different types of melodies, e.g., melodies for voice parts,
instrumental melodies, sparse melodies, etc. A study of what kind of tracks
are being selected by which rules would be undertaken in the near future.

Tuning the probability threshold for firing a fuzzy rule in fuzzy rule system
for melody characterization is under research. Also, enforcing more than
one fuzzy rule to be fired could help to improve the results. Alternative
approaches for the rule fuzzification, e.g. by using information theory
measures (Makrehchi et al., 2003) are envisaged. As some attributes appear
to be more frequently used than other in rule systems, weighting fuzzy sets
proportionally to their relative importance in the rules could be a way for
improvement for the proposed fuzzy rule system.

5.4 Perspectives on music genre recognition

The proposed music genre recognition framework, based on a sliding window,
is capable of applying classifiers ensembles to automatically tag MIDI track
fragments. Given a MIDI file, suppose it contains P tracks t1, t2, ..., tP . Each
of these tracks can be fragmented applying a sliding window method. For
simplicity, let the window displacement δ be equal to the window length, ω.
The number of fragments extracted from track ti is

Li =

{
1 if ω ≥ |ti|

1 +
⌈
|ti|−ω
ω

⌉
otherwise

(5.1)
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where |ti| is the length of track ti. Let us denote the set of such fragments
as Ω(ti) = {t1i , ..., t

Li
i }. The application of a genre model h to each fragment

produces a label lij. If the model is a trained voting ensemble of classifiers,
each base model predicts a label lkij for the fragment, and a voting method v
is applied to obtain a single label lij per fragment,

h(tji ) = v(l1ij, ..., l
k
ij) = lij. (5.2)

This is what the music genre recognition methods discussed in this
dissertation can already do. A further extension to the proposed scheme
is under development, where a voting scheme w, using rules similar to those
used in the proposed classifier ensembles, combines labels lij for each track
ti, thus producing a single output label li per track:

li = w(li1, ..., liLi
). (5.3)

If tracks are pre-tagged using some track characterization system like the
ones proposed in chapter 3, and denoting that track ti is pre-tagged with label
mi as < ti,mi >, a piece-wise combination of track tags li could be further
applied, thus producing a piece-wise label l for the whole music piece:

l = pw(< l1,m1 >, ..., < lP ,mP >) (5.4)

This multi-level music genre recognition scheme is depicted in figure 5.1.
The methodology would provide the possibility of ignoring windows due to
lack of enough data (music content). Also, some individual windows could
remain untagged due to lack of confidence in a particular classifier’s decision.

A problem to be solved in this approach is how to train the models
needed to classify fragments of different length, coming from different types
of tracks. Clearly, training a different model for each possible combination of
fragment lengths and track types is not feasible. One option would be to fix
the window size system-wise, and train models only using fragments of this
length. Choosing an adequate length could be a difficult decision to take,
although the research discussed in chapter 4 provided some hints on which
window lengths are likely to produce more accurate models.

Another alternative would be to train models with assorted fragment
sizes, and apply them to tag fragments of any size. The performance of
models trained in this way will be investigated in the future. From what
was learned in this research, it seems like a lower bound on the window
length should be applied to such variable-length, fragment-based models.
Another issue to be solved is how this fragments are to be generated for
training in the feature extraction stage. A method that would partition
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tracks in fragments of random length looks like an obvious first approach.
Alternatively, smart music segmentation methods could be applied (Bruderer
and McKinney, 2008)1.

Another improvement to be investigated in the future is to provide the
system with the capability to sequentially label track fragments, in a way
that decisions on the previous n fragments affect the decision on the next
fragment:

lij = h(tji , {li,j−1, li,j−2, ..., li,j−n}). (5.5)

1(cited by extended abstract)
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The development and evaluation of new weighted voting methods, like
those discussed in section 2.4.1 is planned. In the case of audio and
symbolic feature spaces fusion, several areas of improvement were identified,
notably on the symbolic descriptors side. A better transcription system
is expected to help symbolic descriptors to improve their performance.
Also, the development of new symbolic features, adapted to the particular
characteristics of the transcriptions, could provide a better representation
of the transcribed signal, and thus, hopefully, a better overall classification
performance.

The application of symbolic music genre recognition methods to auto-
matic composition systems has been another field were some research effort
has been invested. In particular, an automatic genre-oriented composition
prototype based on genetic algorithms has been developed (Esṕı et al., 2007).
In this system, candidate melodies represented using the description scheme
discussed in section 4.3.1 are assigned a fitness measure based on distances
computed by a k-NN classifier. The fitness value provided by this kind of
supervisor (the music“critic”) models the affect for a certain music genre
after a training phase. The early stages of this work have been encouraging
since they have responded to the a priori expectations and more work has
to be carried out in the future to explore the creative capabilities of the
proposed system.

Other applications of the statistical pattern recognition models discussed
in this dissertation are envisaged, like the fingerprinting of files containing
symbolically encoded music. A hashing function based on statistical
representations of the content of a music file, in particular multi-part files,
could be developed to assign a unique identifier that could help in fast
cataloging and retrieval of music in very large databases.

5.5 Publications

Most parts of this thesis have been published in journals and conference
proceedings. Here is a list of papers in inverse chronological order (in
brackets, the chapter, or chapters, to which each paper is related):

Journal articles:

• Pedro J. Ponce de León, José M. Iñesta (2007). ”A Pattern Recognition
Approach for Music Style Identification Using Shallow Statistical
Descriptors”. IEEE Transactions on Systems Man and Cybernetics
C, 37(2):248-257 (2007) [Chapter 4]
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Book chapters:

• Pedro J. Ponce de León, José M. Iñesta, David Rizo (2008). ”Min-
ing digital music score collections: melody extraction and genre
recognition”. Pattern Recognition, pp. 559-590,. Vienna, Austria.
[Chapters 3 & 4]

• Pedro J. Ponce de León, Carlos Pérez-Sancho, José M. Iñesta (2006).
Classifier ensembles for genre recognition. Pattern Recognition: Progress,
Directions and Applications, pages 41–53. [Chapter 4]

Conference proceedings:

• Thomas Lidy, Rudolf Mayer, Andy Rauber, Pedro J. Ponce de León,
Antonio Pertusa, José M. Iñesta (2010). “A Cartesian Ensemble of
Feature Subspace Classifiers for Music Categorization”. In Proceedings
of the 11th International Society for Music Information Retrieval
Conference (ISMIR 2010), pp. 279-284. Utrecht, Netherlands.
[Chapter 4]

• Rudolf Mayer, Andy Rauber, Pedro J. Ponce de León, Carlos Pérez-
Sancho, José M. Iñesta (2010). “Feature Selection in a Cartesian
Ensemble of Feature Subspace Classifiers for Music Categorisation”. In
Proc. of ACM Multimedia Workshop on Music and Machine Learning
(MML 2010), pp. 53–56. Florence (Italy) [Chapter 4]

• Thomas Lidy, Andrei Grecu, Andy Rauber, Antonio Pertusa, Pedro
J. Ponce de León, José M. Iñesta (2009) “A Multi-Feature-Set Multi-
Classifier Ensemble Approach For Audio Music Classification” Music
Information Retrieval Evaluation eXchange (MIREX 2009), held in
conjunction with the ISMIR 2009 conference in Kobe, Japan.
[Chapter 4]

• José M. Iñesta, Pedro J. Ponce de León, J. L. Heredia-Agoiz (2008).
“A ground-truth experiment on melody genre recognition in absence
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A
Software tools used/developed

A.1 Third-party tools

jFuzzyLogic

jFuzzyLogic is an open source fuzzy logic library and FCL language im-
plementation. It is written in Java, and accepts FIS definition input files
in Fuzzy Control Language (FCL). This is a language for implementing
fuzzy logic systems, especially fuzzy control, that was standardized by the
IEC 61131-7 norm (International Electrotechnical Commission (IEC), 1997).
FCL allows the programmer to specify linguistic terms, fuzzy sets, and
rule systems. jFuzzyLogic provides a fuzzy inference engine, parametric
optimization algorithms, fuzzy set visualization, and an Eclipse1 plugin. It
is distributed under the Apache License V2.0, GNU Lesser General Public
License version 3.0 (LGPLv3). It is available at http://jfuzzylogic.
sourceforge.net.

JGAP

JGAP stands for Java Genetic Algorithms Package. It is a genetic algorithms
and genetic programming component provided as an open source Java
framework. It also allows building a grid of computers to distribute
computation of fitness as well as evolution steps. JGAP is distributed under
the GNU Lesser Public License2 for non-commercial use. The project is
located at http://jgap.sourceforge.net/.

SOM PAK

This software package contains all programs necessary for the correct
application of the Self-Organizing Map (SOM) algorithm in the visualization
of complex experimental data (Kohonen et al., 1995). The last version is 3.1,
from 1995, when development of the package apparently stopped. It contains

1http://eclipse.org
2http://www.gnu.org/licenses/lgpl.html
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command line tools, written in C, for training, labeling, and visualizing
SOMs.

This program package is copyrighted in the sense that it may be used
freely for scientific purposes. However, the package as a whole, or parts
thereof, cannot be included or used in any commercial application without
written permission granted by its producers. It is available for download at
http://www.cis.hut.fi/research/som_lvq_pak.shtml.

WEKA

WEKA is a collection of machine learning algorithms for data mining tasks,
developed by the Machine Learning Group at the University of Waikato,
New Zealand. The algorithms can either be applied directly to a dataset or
called from your own Java code (Hall et al., 2009). WEKA contains tools for
data pre-processing, classification, regression, clustering, association rules,
and visualization. It is also well-suited for developing new machine learning
schemes. There is a book (Witten et al., 2011) on data mining associated
to the software, as well as online documentation and an active mailing
list. WEKA is open source software issued under the GNU General Public
License., and available for download at http://www.cs.waikato.ac.
nz/ml/weka/.

A.2 GUI for melody part selection

The RF melody track classifier presented in section 3.1 has been used as the
base model for a graphical user interface for melody part selection. This
application can be used to train and test the classifier. In ‘test’ mode, a list
of MIDI files are opened, statistical features describing the content of their
tracks are extracted and used to feed the classifier. Results from the classifier
are gathered and melody part selection results are displayed in a graphical
way. The tracks from each MIDI file can be played simultaneously or in ’solo’
mode. A snapshot of the interface is shown in Figure 3.5 (page 103).

The underlying RF model is trained by just selecting a folder containing
MIDI files. Of course, the melody tracks in these files should be tagged
accordingly (currently, the tag ‘BBOK’ is used). The trained model can be
saved to file, and reloaded subsequently. When a model is loaded in memory,
MIDI files can be started to be tagged. Multiple files can be selected at
once. The left part of the screen shows the list of MIDI files loaded. The
right part shows the result of the classification process, where each track
gets its probability to be a melody displayed as a progress bar. By default,
probabilities are shown unnormalized. Tracks containing less than a pr-
established number of notes are shown with a special ‘Empty’ tag and are
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not classified, to distinguish them for track with zero probability. The user
can select the whole MIDI file, or any combination of tracks, to be played.
A slider control allows to listen to a specific section of the file.

A.3 GUI for music genre recognition

An experimental graphical user interface has been developed to facilitate
working on the problem of music genre recognition, using the sliding
window and global description approach presented in section 4.3. The main
motivation for such a tool is to allow investigate why classification errors
occur. The interface allows to select a pre-trained model (ω, δ, µ, γ) for
classifying selected tracks from MIDI files. Table A.1 shows the currently
available choices.

Parameter choices

ω [1..100]
δ [1..ω] if ω < 50

[1..20] if ω ≥ 50
µ 6, 10, 12, or 28 descriptors
γ Bayes, k-NN, SOM

Table A.1: Model configuration parameter choices available in the genre
recognition graphical application.

Currently, one MIDI file at a time can be loaded. Some metadata,
if available, about the file and the track selected for classification is
shown, including title, author, initial tempo, initial time signature, and
overall duration in seconds and bars. A raw textual representation of the
classification model currently loaded, the result of the classification, and
the statistical description of each extracted window can be displayed. The
actual classification of each extracted window is visualized as a row of boxes,
and encoded by colors. Each color corresponds to a different genre. The
interface allows to play the whole MIDI file, the currently selected track, a
particular window, or to play the file from a certain point. A summary of the
classification is displayed at the bottom, as the proportion of windows tagged
with available genre labels. This is a simple way of combining predicted
window labels, giving the user an approximate estimation of the genre for
the whole selected track.

A snapshot of the interface (currently in spanish) is shown in Figure 4.25
(page 188).
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B
Predefined fuzzy sets

Predefined fuzzy sets in Figure B.1 are defined by hand, according to expert
knowledge. They correspond to attributes in the RIPPER-ALL200 fuzzy rule
system (see Table 3.31), and are used to fuzzify this rule set according to the
procedure discussed in section 3.3.2. The last fuzzy sets for some attributes
(e.g., TrackNumNotes) are sometimes not drawn for the whole input domain.
In these cases, the fuzzy value for the rest of the domain is the same as the
value indicated for the last point (for rightmost fuzzy sets).
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Figure B.1: Predefined fuzzy sets for attributes in the RIPPER-ALL200
fuzzy rule system (see Table 3.31).
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Figure B.1: (cont.) Predefined fuzzy sets for attributes in the RIPPER-
ALL200 fuzzy rule system (see Table 3.31)
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C
Resumen en castellano

C.1 Introducción

La recuperación de información musical, o music information retrieval
(MIR), en inglés, es un campo de investigación dedicado a la extracción
de información relevante a partir del contenido de obras musicales digi-
tales (Orio, 2006; Typke et al., 2005). En cuanto a la aplicación de técnicas de
reconocimiento de formas en este campo, se pueden encontrar dos enfoques
principales: la recuperación de información musical a partir del sonido
(audio information retieval) (Foote, 1999; Tzanetakis and Cook, 2000b), y la
recuperación de información musical desde representaciones simbólicas (prin-
cipalmente, partituras digitales o representaciones equivalentes) (Downie,
2003).

En la recuperación de información musical desde fuentes sonoras, se
procesa la señal digital de audio directamente, donde la información musical
no está representada expĺıcitamente, sino que hay que inferirla. Normalmente
se utilizan como fuente ficheros en formato WAV o MP3. Por otro lado,
cuando se usan representaciones simbólicas, se procesan representaciones
que contienen śımbolos con un significado musical expĺıcito: notas con
altura, duración, intensidad, etc. Nos referimos al tipo de información
que podemos encontrar escrita, por ejemplo, en los pentagramas de una
t́ıpica partitura de música occidental, por lo que llamaremos partitura
digital a este tipo de representaciones. Los formatos digitales que contienen
este tipo de información pueden ser archivos de texto (MusicXML, kern,
abc (Good, 2001; Selfridge-Field, 1997)) o archivos binarios como los ficheros
MIDI (Selfridge-Field, 1997), entre otros.

Entre algunos de los problemas que actualmente reciben más atención
por parte de la comunidad investigadora se encuentran

• La clasificación de obras musicales por género, artista, o cualquier otro
conjunto de etiquetas que se pueda asociar a un conjunto de obras:
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el objetivo es predecir el género musical de una obra, su compositor,
intérprete, pertenencia geográfica, etc.

• Identificación de la melod́ıa: identificar la ĺınea melódica en un
fichero musical multi-parte. Se denomina aśı a aquellos formatos de
representación simbólica de la música donde esta se encuentra dividida
en secciones (distintos pentagramas en una partitura) o pistas (en el
caso de ficheros MIDI).

La melod́ıa y el género musical son los dos conceptos con los que tratamos
en este trabajo. Son algunos de los conceptos más imprecisos y ambiguos, a la
hora de definirlos, que se pueden encontrar en la teoŕıa musical. A menudo,
su definición y ámbito no están claramente establecidos, al menos no de
una forma que sea completamente computable. El presente trabajo trata
sobre la aplicación de técnicas de reconocimiento de formas a la selección
de melod́ıa y al reconocimiento de géneros musicales a partir de música
codificada simbólicamente, utilizando descripciones estad́ısticas del material
musical, con el objetivo de capturar la parte computable de los concepto
de melod́ıa y género. Ambos problemas van a ser abordados sin utilizar
información relacionada con el timbre. De esta forma, se pretende obtener,
como objetivo secundario, algunas evidencias sobre la viabilidad de resolver
este tipo de problemas usando únicamente información presente en lo que
hemos denominado la partitura digital, sin servirnos de ninguna información
ajena a ella (instrumentación, metadatos, etc.)1.

Aśı pues, en este trabajo nos concentramos en qué es lo que se está
tocando (qué notas), y no en cómo suena (cómo se interpreta). Se trata de
un enfoque cient́ıfico, más que ingenieril, donde evitar la información acerca
del timbre nos permite estudiar las propiedades intŕınsecas del contenido
melódico, independientemente de qué instrumento, en última instancia, será
utilizado para interpretar dichas notas. Esto es especialmente relevante
cuando hablamos de formatos simbólicos como MIDI, donde cambiar de un
instrumento a otro no altera el contenido musical en śı, sino sólo algunos
parámetros de control. Frente a esos cambios, el contenido musical simbólico
almacenado en este tipo de ficheros permanece inalterado (la partitura es
la misma), aunque su conversión en sonido pueda variar substancialmente.
Como metáfora de este objetivo, piénsese en una situación en que un oyente
convenientemente entrenado intenta reconocer el género musical de una serie
de obras interpretadas exclusivamente al piano.

1..., excepto, obviamente, las etiquetas necesarias para aplicar métodos de aprendizaje
supervisado.
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Los ficheros MIDI son el material con el que se trabaja en el presente
trabajo. Una propiedad clave de los llamados ficheros MIDI en Formato 1
(el más ampliamente utilizado), es que es un formato multi-pista. La parte
correspondiente a cada uno de los instrumentos que intervienen en la obra
suele estar codificada en una pista separada. Si embargo, esto no siempre
es aśı, ya que una misma pista puede contener partes para ser tocadas por
instrumentos diferentes en diferentes momentos de la obra, o por el contrario,
varias pistas podŕıan contener partes asignadas al mismo instrumento.

Resolver el problema de seleccionar la pista (o pistas) que contienen la
melod́ıa en un fichero MIDI es un paso previo al reconocimiento del género
musical, ya que, en este trabajo, utilizaremos principalmente la melod́ıa
para identificar el género de una obra. Como el material de trabajo son
ficheros MIDI, esto significa desarrollar un sistema capaz de distinguir qué
pistas contienen la melod́ıa, considerando al resto como acompañamiento.
Una vez conseguido esto, la clasificación de géneros musicales se tratara de
resolver extrayendo fragmentos de longitud fija de estas pistas de melod́ıa
(a las que llamaremos ventanas), de los cuales se intentará reconocer su
género. Se investigará el comportamiento de un sistema de reconocimiento
de géneros musicales, basado en técnicas de reconocimiento de formas, en
función de la longitud de dichos fragmentos. Más adelante, mediante el uso
de un transcriptor2 automático, se extenderá dicho sistema al reconocimiento
de género a partir de audio, donde no existe separación entre melod́ıa y
acompañamiento en la representación simbólica resultante.

C.1.1 Selección de partes melódicas

Uno de los problemas abordados en esta tesis es el de encontrar, de forma
automática, las partes correspondientes a la melod́ıa en un fichero multi-
parte, usando propiedades estad́ısticas del contenido musical y técnicas
de reconocimiento de patrones. Las soluciones a este problema son de
aplicación, por ejemplo, en sistemas de consulta donde ésta es con frecuencia
un fragmento de la melod́ıa (Uitdenbogerd and Zobel, 1999). Conocer de
antemano qué partes de la obra contienen secciones de la melod́ıa puede
reducir drásticamente el ámbito de búsqueda, que ya no tiene que ser la
obra completa. También pueden servir en el ámbito de la indexación de
grandes colecciones de obras musicales, mediante la generación automática
de ’miniaturas’ o thumbnails, y huellas digitales.

2Sistema capaz de transcribir una señal de audio musical en una partitura.
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¿Qué es la melod́ıa?

Existen multitud de definiciones de este concepto en el marco de la teoŕıa
musical. La mayoŕıa de ellas coinciden en identificar algunos de los rasgos
de la melod́ıa, como su carácter secuencial o monofónico, su papel como
referencia dentro de la obra, su relación con la ’letra’, su dependencia cultural,
etc. Se propone aqúı una definición que intenta aunar algunos de estos rasgos:

La melod́ıa es un término musical que a menudo se refiere a aquel
componente fundamental de una obra musical que captura la
mayor parte de la atención del oyente, y a la cual el resto de
componentes se subordinan.

Esta definición se enmarca dentro de un contexto general de obras musi-
cales donde hay al menos dos componentes: la melod́ıa y el acompañamiento.
En (Selfridge-Field, 1998) se distinguen diversos tipos de melod́ıas:

• compuesta melod́ıas donde hay una única ĺınea melódica a la que
pertenecen algunas de las notas, mientras el resto tienden a servir de
acompañamiento, siendo el caso más frecuente el caso de música para
cuerda sin acompañamiento.

• auto-acompañada melod́ıas donde algunas de las notas pertenecen tanto
a la idea temática como al soporte armónico (o ŕıtmico).

• inmersa melod́ıas confinadas a voces interiores.

• errante melod́ıas en las cuales el tema migra de una parte a otra.

• distribúıda meld́ıas en las cuales las notas que la definen están divididas
entre diferentes partes, de manera que el prototipo melódico no puede
ser aislado en una sola parte.

C.1.2 Reconocimiento del género musical

Esta tarea puede definirse como el problema de asignar automáticamente
uno o más géneros a una obra o fragmento de obra musical. La hipótesis
de trabajo es que las obras musicales que pertenecen al mismo género
deben compartir ciertos rasgos comunes que, una vez identificados, podŕıan
permitir clasificar correctamente nuevas obras por géneros. El problema
ha sido abordado en la literatura principalmente mediante la aplicación de
técnicas de aprendizaje supervisado, evitando aśı la necesidad de formular
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una definición computable de qué es un género musical. No obstante, se
presenta aqúı una breve discusión del concepto.

El género musical es una cualidad de la música que la mayoŕıa de los
oyentes pueden percibir de forma intuitiva. Es, probablemente, el descriptor
musical más popular, ya que es utilizado con frecuencia para describir,
categorizar o comparar colecciones, obras o autores. No existe una definición
formal de género musical. Es más, a menudo los términos género y estilo
son a menudo tratados como sinónimos. En (Fabbri, 1999), el autor define
ambos términos con el objeto de establecer una distinción entre ellos3:

• El género es “un tipo de música, tal y como es aceptado por una
comunidad por cualquier razón o propósito o criterio, es decir, un
conjunto de eventos musicales cuyo curso es gobernado por reglas (de
cualquier tipo) aceptadas por una comunidad.”

• El estilo es “una disposición recurrente de rasgos en eventos musicales
que es t́ıpica de un individuo (compositor, intérprete), un grupo de
músicos, un género, un lugar o un periodo de tiempo.”

Estas definiciones sugieren que género es un concepto más amplio que el
de estilo. En aquel existe la concurrencia de una audiencia que de algún modo
acuerda aglutinar bajo el mismo término una colección de obras musicales.
Las fronteras entre diferentes géneros son imprecisas. La existencia de corpora
de referencia, es decir, la definición por extensión de los géneros, parece
la única forma de delimitar de forma aproximada dichas fronteras. Aún
teniendo en cuenta estas limitaciones, la investigación en este problema
merece la pena, ya que proporciona un marco de trabajo donde diversos
aspectos de la investigación en recuperación de información musical pueden
ser probados y evaluados. Además, los géneros musicales siguen siendo, hoy
d́ıa una forma efectiva de describir y catalogar a los músicos y su obra.

Las aplicaciones más inmediatas de los resultados de esta investigación
son la clasificación, indexación y búsqueda basada en contenido en bibliotecas
de música digital, donde se puede encontrar música digitalizada (MP3),
secuenciada (MIDI) o representada de forma estructurada (XML). En
general, cualquier organización de objetos musicales basada en etiquetas es
campo de aplicación para este tipo de sistemas de reconocimiento.

3(trad. libre del autor)
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C.2 Selección de partes melódicas

Como se ha indicado en la introducción, la selección de partes melódicas,
según el enfoque adoptado en esta tesis, consiste en decidir qué pistas
contienen la melod́ıa en un fichero MIDI multi-pista. Como objetivo
secundario se plantea el obtener modelos de pistas de melod́ıa de forma
objetiva, mediante representaciones legibles. Para conseguirlo, se aplica una
metodoloǵıa clásica de reconocimiento de formas a los datos de entrada,
integrando un mı́nimo de conocimiento a priori, cuyo uso se limita a definir
el universo de discurso.

Las técnicas de aprendizaje utilizadas son los árboles de decisión,
algoritmos de inferencia de reglas y lógica difusa. La representación del
contenido musical se realiza mediante descriptores estad́ısticos de bajo nivel,
como medias, modas, desviaciones estándar., etc., aplicadas a diferentes
aspectos melódicos, ŕıtmicos y armónicos de las pistas MIDI.

Los modelos obtenidos mediante entrenamiento supervisado asignan una
probabilidad de ser melod́ıa a cada pista candidata. Estos modelos son
posteriormente procesados para obtener, a partir de ellos, representaciones
comprensibles que caracterizan melod́ıas. Las pistas vaćıas (que no contienen
eventos de nota) y las pistas asignadas al canal de percusión4 son descartadas
como candidatas. El resto de pistas son descritas mediante vectores de
valores estad́ısticos obtenidos a partir del contenido de la pista. Se ha
utilizado para este problema un conjunto de descriptores estad́ısticos basados
en caracteŕısticas melódicas, ŕıtmicas y armónicas de la secuencia de notas
contenida en cada pista, aśı como algunas caracteŕısticas relacionadas con
la pista en śı, como su tasa de ocupación, duración, etc. Se utilizan
no normalizados y normalizados. En total, se obtienen 34 descriptores
estad́ısticos para cada pista. Cada pista utilizada en el entrenamiento está
etiquetada con un valor booleano que indica si se trata o no de una pista de
melod́ıa.

Denominamos aqúı caracterización de pista de melod́ıa al problema de
decidir si, dada una pista MIDI, esta contiene una melod́ıa o no. Dado
un sistema capaz de resolver este problema, llamaremos selección de partes
melódicas al problema donde, dado un fichero MIDI, hay que identificar
cuales de sus pistas contienen melod́ıa con mayor probabilidad.

Como un fichero puede contener cero, una o más pistas de melod́ıa, una
decisión o propuesta del modelo se considera correcta si, al evaluarlo:

4El canal MIDI 10 es el canal reservado para percusión o kits de bateŕıa, según el
estándar General Midi.
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1. Al menos una pista del fichero está etiquetada como melod́ıa y la pista
propuesta es una de ellas.

2. El fichero no contiene pistas de melod́ıa y el modelo aśı lo propone.

En consecuencia, se pueden dar tres escenarios de error diferentes:

• Error tipo 1: Pista de melod́ıa errónea. Existe efectivamente alguna
pista de melod́ıa, pero no es la predicha por el modelo.

• Error tipo 2: No hay pistas de melod́ıa, pero el modelo a propuesto
alguna.

• Error tipo 3: Existe alguna pista de melod́ıa pero el modelo no
propone ninguna.

En los corpora utilizados en los experimentos, los ficheros con una sola
pista de melod́ıa son mucho más frecuentes que aquellos con cero o más de
una pista. Para entrenar y evaluar los modelos propuestos se han creado
seis conjuntos de ficheros MIDI. Tres de ellos (llamados JZ200, CL200 y
KR200) se han usado como conjuntos de datos de entrenamiento y evaluación.
JZ200 contiene ficheros de jazz, CL200 está formado por ficheros de música
clásica y KR200 es un conjunto de ficheros de música popular especialmente
preparados para karaoke (contienen una parte para ser cantada). Cada uno
de ellos consta de 200 ficheros. El resto de conjuntos de ficheros MIDI
(llamados JAZ, CLA y KAR) se han usado exclusivamente para validar los
modelos. Todos los corpora han sido etiquetados manualmente por músicos
expertos. Aunque el proceso de etiquetado se reveló complejo, podemos
resumirlo diciendo que, en general, si al menos el 50% de un pista era parte
de lo que se percib́ıa como melod́ıa, entonces se etiquetaba como tal.

Se han llevado a cabo cuatro tipos de experimentos:

• Caracterización de pistas de melod́ıa.

• Selección de partes melódicas.

• Especificidad de género en la selección de partes melódicas.

• Especificidad del conjunto de entrenamiento en la selección de partes
melódicas (capacidad de generalización).

En el primero de ellos se han utilizado los conjuntos de datos CL200,
JZ200 y KR200, usando un esquema de validación cruzada, usando diez
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particiones del conjunto de datos para estimar la tasa de acierto del sistema.
El clasificador utilizado ha sido Random Forest, una combinación de 10
árboles de decisión. Se ha obtenido un 99% de tasa de acierto media para
CL200, un 98% para JZ200 y un 96% para KR200. Estos buenos resultados
ponen de manifiesto la viabilidad del uso de descriptores estad́ısticos del
contenido musical y árboles de decisión para la caracterización de pistas de
melod́ıa.

El análisis de los rasgos de las pistas mal clasificadas llevó a las siguientes
conclusiones:

Falsos negativos La mayoŕıa de pistas conteńıan alguna forma de polifońıa;
melod́ıa en octavas, melod́ıas a dos voces o partes corales homofónicas.
Algunas pistas conteńıan secciones de acompañamiento.

Falsos positivos El tipo más común eran pistas que ‘emulaban’ a la
auténtica pista de melod́ıa, o pistas con secciones monofónicas similares
a melod́ıas, como respuestas a la melod́ıa, voces de acompañamiento o
de contrapunto.

En los experimentos de selección de melod́ıa, se ha utilizado el mismo
sistema y los mismos conjuntos de datos que en el experimento precedente,
pero se ha usado un esquema de evaluación leave-one-out a nivel de fichero
para estimar la tasa de acierto. Para seleccionar una pista de melod́ıa por
fichero, se establece el umbral de probabilidad mı́nimo, pε, para que una
pista sea candidata, a pε = 0.25. Se han obtenido tasas de acierto del 99%
para CL200 y JZ200, y del 84.5% para KR200. en este último la mayoŕıa de
errores fueron de tipo 1 y 3.

Se ha investigado la sensibilidad del sistema al parámetro pε, llegando a la
conclusión de que un valor cercano a cero (0.01) produce mejores resultados
en general, por lo que se ha usado este valor en los experimentos que siguen.

En el tercer grupo de experimentos, se ha investigado la especificidad de
los modelos respecto al género, entrenando el clasificador con muestras de
un sólo género, usando los conjuntos de validación (CLA, JAZ, KAR) para
comprobar cómo varia la tasa de acierto. Los resultados fueron peor de lo
esperado cuando el conjunto de validación era del mismo género que el de
entrenamiento. No obstante, en general, los resultados mejoran entrenando
el clasificador con el mismo género del conjunto de validación. Esto se ha
corroborado al entrenar el clasificador con varios géneros distintos al del
conjunto de validación, excepto para música clásica, donde incluir muestras
del género en el entrenamiento no supone una mejora significativa.

Por último, se ha realizado un grupo de experimentos entrenando el
clasificador con muestras de todos los géneros. Los resultados sobre los
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conjuntos de validación muestran que, en general, los resultados mejoran
cuando el conjunto de entrenamiento incluye muestras del género de val-
idación, respecto a no incluirlas, en especial para el conjunto KAR. Se ha
comprobado, además, que los errores de tipo 3 disminuyen en todos los casos,
mientras que los errores de tipo 1 disminuyen para KAR y JAZ. La presencia
del género de validación en el conjunto de entrenamiento no tiene un efecto
apreciable en los errores de tipo 2. La tasa de acierto media combinada,
teniendo en cuenta la cardinalidad de cada conjunto de validación, es del
85%.

C.2.1 Modelización de melod́ıas mediante reglas

Una vez entrenado el clasificador RF, es posible obtener, a partir de los
árboles de decisión que conforman el modelo, conjuntos de reglas que
caractericen, en este caso, melod́ıas. La metodoloǵıa utilizada para ello se
puede resumir en estos pasos:

Extracción de reglas a partir de ramas de los árboles de decisión.

Simplificación de reglas mediante la poda de antecedentes.

Selección de reglas a partir de un ranking de reglas.

En el primer paso sólo se extraen reglas de aquellas ramas que llevan a un
nodo hoja positivo, es decir que caracteriza a una muestra como melod́ıa. Las
ramas que llevan a un nodo hoja negativo son ignoradas. De cada árbol de
decisión se obtiene un conjunto de reglas diferente. Cuando un conjunto de
reglas se aplica a una muestra, esta es aceptada si alguna regla del conjunto se
cumple. A partir de un RF deK árboles se obtienen por tantoK conjuntos de
reglas, que forman un sistema de reglas que asigna una probabilidad 1/r, r ≤
K de ser melod́ıa a una muestra cuando r conjuntos de reglas del sistema la
aceptan.

En una segunda etapa se simplifican las reglas eliminando antece-
dentes (Quinlan, 1999), lo cual equivale a hacer la regla más general. Por
último, de cada conjunto de reglas, se establece un ranking de reglas usando
una función de puntuación basada en el número de muestras positivas (en
este caso melod́ıas) de un conjunto de validación que cada regla acepta.
Se seleccionan, para cada conjunto de reglas, las N mejores del ranking
correspondiente. Aśı, por ejemplo, si K = 10 y N = 3, tendremos diez
conjuntos de reglas con tres reglas cada uno.

Se han realizado una serie de experimentos utilizando diversos conjuntos
de entrenamiento para los RF, a los cuales se les ha aplicado la metodoloǵıa de
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obtención de sistema de reglas descrita, que se han aplicado a varios conjuntos
de validación. En cuanto a la poda de antecedentes, por ejemplo, usando un
conjunto de entrenamiento de unas 15 000 muestras se podaron el 12% del
total de antecedentes (unos 25 000). Los resultados de clasificación mediante
reglas se han comparado con los obtenidos directamente mediante RF. En
cuanto a la categorización de pistas de melod́ıa, los resultados obtenidos
son comparables, y en algunos casos mejores, que los obtenidos con RF.
Cabe destacar que algunos de los mejores resultados se han obtenido con
valores de N pequeños. Especialmente destacables son los resultados con
N = 1 donde, en algunos experimentos los sistemas de reglas exhibieron
un comportamiento comparable a los RF. En cuanto a los experimentos de
selección de partes melódicas, los sistemas de reglas produjeron resultados
algo inferiores a los RF, excepto en un conjunto de validación de música
popular, donde un sistema de reglas con N = 2, K = 10 dio resultados algo
mejores que un RF, formado éste por diez árboles de decisión con cientos de
nodos hoja cada uno.

Utilizando un algoritmo de aprendizaje de reglas como RIPPER (Cohen,
1995) directamente a partir de los datos (en lugar de extraerlas de un RF),
se obtienen, en general, sistemas de reglas más compactos. Una de las reglas
obtenidas de esta forma es la siguiente:

(TrackOccupationRate ≥ 0.51) ∧ (TrackNumNotes ≥ 253) ∧ (AvgPitch ≥ 65.0)

∧(AvgAbsInterval ≤ 3.64) =⇒ IsMelody = true

El problema con estas reglas es que, aunque se pueden leer perfectamente,
su significado no es obvio. Por ejemplo, ¿es 253 un número de notas
elevado? Además, siempre existe un problema con este tipo de reglas: si
una tiene, por ejemplo 254 notas, pero cumple todos los demás antecedentes,
no será considerada como melod́ıa. En un intento de solventar ambos
problemas a la vez, se ha utilizado lógica difusa para reescribir estas reglas en
términos más compresibles y, a la vez evitar descartar totalmente muestras
candidatas que no cumplen ’por poco’ alguna de las condiciones de las
reglas. El procedimiento consiste, básicamente, en dos fases: primero,
establecer una representación de los datos mediante lógica difusa. La entrada
y salida del sistema debe convertirse en variables difusas, lo cual se consigue
declarando una serie de términos lingǘısticos sobre el dominio de cada
atributo de entrada, y ajustando las funciones de pertenencia que definen
dichos términos mediante un algoritmo genético. Una vez seleccionado
la mejor representación difusa de los dominios de entrada, se aplica un
procedimiento que permite convertir las reglas en reglas difusas. Por ejemplo,
tras aplicar dicho procedimiento, la regla presentada arriba se convierte en
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((AvgPitch IS high) ∨ (AvgPitch IS veryHigh))
∧ (TrackOccupationRate IS NOT void)
∧ (TrackOccupationRate IS NOT low)
∧ (AvgAbsInterval IS NOT fourth)
∧ (AvgAbsInterval IS NOT high)
∧ (TrackNumNotes IS high) =⇒ IsMelody IS true

Se ha investigado el comportamiento de estos sistemas de reglas difusas
respecto a los sistemas de reglas originales. En general, los resultados
obtenidos mediante reglas difusas en experimentos de categorización de pistas
de melod́ıa son peores que los obtenidos con las reglas originales. Aśı
pues, siendo preferible utilizar sistemas de reglas no difusos, los sistemas
difusos derivados de aquéllos pueden servir al propósito de hacer más
comprensible el tipo de melod́ıa que esas reglas modelan. Este tipo de
caracterización de melod́ıas mediante reglas difusas, obtenidas a partir de
datos de entrenamiento, ha sido, hasta donde el autor conoce, el primero
propuesto en el campo de la recuperación de información musical.

En esta tesis se ha presentado un sistema de selección de partes melódicas
basado en un clasificador RF y descriptores estad́ısticos del contenido
musical. Dado un fichero MIDI multi-pista, el sistema selecciona la pista de
melod́ıa más probable. La evaluación del sistema sobre conjuntos de datos
de diferentes géneros ha puesto de manifiesto que utilizar únicamente datos
de entrenamiento del mismo género da en general buenos resultados, siendo
una solución más simple que entrenar el modelo con multitud de géneros.
En el caso de la música clásica, sin embargo, donde las tasas de acierto son
menos elevadas, los resultados no vaŕıan significativamente con la presencia
de muestras de entrenamiento del mismo género. De hecho, para este género,
probablemente sea más adecuado utilizar otro enfoque, como por ejemplo
técnicas de extracción de melod́ıa (Isikhan and Ozcan, 2008; Uitdenbogerd
and Zobel, 1998).

Se ha propuesto y discutido un método para obtener sistemas de reglas
reducidos para caracterizar pistas de melod́ıa a partir de modelos RF. Estos
sistemas obtienen tasas de acierto comparables a las de los RF en los que
se basan. Con el objetivo de hacer estas reglas más comprensibles, se
ha aplicado un procedimiento de conversión en reglas difusas basado en
algoritmos genéticos. Las tasas de acierto usando estas reglas difusas son
peores que las de las reglas no difusas, pero los sistemas difusos pueden
servir al propósito de hacer más comprensible el tipo de melod́ıa que esas
reglas modelan.
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C.3 Reconocimiento del género musical

Como se ha mencionado en la introducción, la metodoloǵıa aplicada al
problema de reconocimiento del género musical se basa en dos técnicas:

Ventana deslizante La extracción de información a partir de una pista
se realiza usando una ventana deslizante. Esta se mueve a lo largo
de la secuencia musical, tomando muestras de su contenido de una
determinada longitud y a intervalos determinados. Ambos parámetros,
longitud de la ventana e intervalo de muestreo se expresan en tiempos
o compases.

Descripción estad́ıstica global A partir del contenido de cada muestra
se calcula un conjunto de descriptores estad́ısticos. de esta forma, una
secuencia musical es descrita por uno o más vectores de descriptores
numéricos. Se ha definido un conjunto de 28 descriptores estad́ısticos.
Entre otros, se calcula el rango, la media y la desviación estándar de
ciertas caracteŕısticas musicales como alturas, duraciones, intervalos,
notas no diatónicas, etc. sin tener en cuenta información relacionada
con el timbre.

Dado este contexto, se aplican técnicas supervisadas de reconocimiento
de patrones para la clasificación de fragmentos musicales por géneros. El
conjunto de obras utilizado esta compuesto por melod́ıas de jazz y música
clásica, codificadas como ficheros MIDI. Se ha realizado un estudio exhaustivo
de diferentes algoritmos de clasificación, conjuntos de descriptores y valores
de longitud y desplazamiento de ventana. El propósito de esta investigación
es comprobar que la metodoloǵıa propuesta es válida para la clasificación
automática por géneros de obras musicales representadas simbólicamente.

Con el objetivo de disponer de resultados con los cuales poder comparar la
metodoloǵıa, se ha realizado un estudio sobre la capacidad del ser humano de
diferenciar géneros musicales a partir de melod́ıas monofónicas y en ausencia
de timbre. Se encuestó a 149 individuos, a los que se les presentaron 40
fragmentos de melod́ıas de jazz y música clásica, divididos en tres niveles de
dificultad. Los fragmentos eran interpretados por un ordenador utilizando
un timbre neutro. Se obtuvo una tasa de error del 16%, que se ha tomado
como referencia para otros resultados. Se detectó también una correlación
negativa del error respecto a la edad y el nivel de estudios generales. Estos
resultados sugieren que existe información impĺıcita acerca del género en
las secuencias de notas que conforman una melod́ıa, al menos cuando nos
referimos a diferenciar la música clásica y el jazz.
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C.3.1 Resultados de clasificación de géneros

El espacio de los parámetros de ventana sobre los que se ha realizado
la investigación está limitado a ventanas de un tamaño máximo de 100
compases. Fijado el tamaño de ventana ω, para cada valor de desplazamiento
posible δ (hasta el tamaño de la ventana) se extrae un conjunto de datos
formado por segmentos de pista extráıdos de las pistas de melod́ıa de
las obras. El objetivo es comprobar como, evolucionan los resultados de
clasificación en función de la combinación de ambos parámetros, < ω, δ >.
Para ello, la tasa de acierto de clasificación sobre cada conjunto de datos
se ha estimado mediante validación cruzada estratificada de 10 particiones.
Las particiones se han realizado a nivel de fichero MIDI, para evitar que
fragmentos de la misma melod́ıa puedan aparecer a la vez en el conjunto de
entrenamiento y el de test.

El primer estudio realizado ha consistido en analizar la potencia discrimi-
natoria de cada descriptor por separado. Con algunos de ellos se han obtenido
tasas de acierto superiores al 80% para algún valor ω. Descriptores como el
rango de alturas o intervalos presentan un comportamiento más estable en
función de ω que el resto. En general los descriptores basados en altura de
nota parecen obtener mejores tasas de acierto que aquellos basados en la
duración de las notas.

Se ha realizado un ranking de descriptores en función de los resultados
obtenidos usándolos por separado, asumiendo que existe independencia
estad́ıstica entre ellos. El ranking se basa en una medida estad́ıstica de
la separabilidad entre clases que proporciona cada descriptor. Este ranking
a permitido definir cuatro conjuntos reducidos de descriptores, de los cuales
se ha estudiado su comportamiento en el espacio ω, δ.

Se han estudiado principalmente dos clasificadores: Bayesiano cuadrático
y k-vecinos. Cada experimento se denota (ω, δ, µ, γ), donde µ representa un
conjunto de descriptores y γ el clasificador utilizado. Para cada conjunto de
datos < ω, δ > se han realizado 12 experimentos de clasificación mediante
validación cruzada. La mejor tasa de acierto en término medio, 90%, se
obtuvo con un clasificador Bayesiano y un conjunto de 12 descriptores. En el
caso del clasificador Bayesiano, todos los conjuntos de descriptores reducidos
(6, 10 y 12 descriptores) dieron mejores resultados que utilizar el conjunto
completo (28 descriptores). La mejor tasa de acierto para el clasificador
Bayesiano fue del 96%, con 10 descriptores y sobre el conjunto de datos
< 98, 1 >. Los peores resultados fueron obtenidos al usar valores pequeños
de ω, probablemente debido a la escasez de eventos musicales en fragmentos
de pocos compases, que provocan que los descriptores estad́ısticos sean poco
fiables.
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Para el clasificador k-vecinos se optó por un valor k = 1, tras comprobar
que las tasas de acierto para distintos valores de k en conjuntos de datos
< ω, δ > seleccionados aleatoriamente no variaban significativamente. Las
tasas de acierto para todos los modelos con ω ≤ 35 son comparables. Para
valores mayores de ω, los modelos construidos con todos los descriptores
produce mejores resultados que utilizar conjuntos reducidos. La mejor tasa de
acierto para el k-vecinos, 96%, se obtuvo para el conjunto de datos< 95, 13 >,
con todos los descriptores. La tasa de acierto media del k-vecinos fue del 89%
con todos los descriptores, un par de puntos por encima que la de los modelos
basados en conjuntos reducidos de descriptores.

En resumen, el clasificador Bayes basado en un conjunto de 12 descrip-
tores y el clasificador k-vecinos con k = 1 y usando todos los descriptores,
se comportaron de forma similar, obteniendo tasas de acierto medio mejores
que el resto de combinaciones.

C.3.2 Combinaciones de clasificadores

Para tratar de mejorar las tasas de acierto obtenidas con clasificadores
individuales, la investigación se ha centrado en el uso de combinaciones de
clasificadores. En concreto se han evaluado combinaciones de clasificadores
basados en distintas reglas de combinación de decisiones, de las cuales
tres son aportadas en este trabajo. Los experimentos realizados sobre 19
conjuntos de datos de referencia del repositorio UCI5 demuestran la precisión
y robustez de dichas combinaciones, y en particular de las reglas propuestas,
respecto al uso de clasificadores individuales. Otros experimentos realizados
sobre clasificación de géneros musicales, utilizando descriptores estad́ısticos,
corroboran que se trata de una buena elección también en este contexto.

C.3.3 Fusión de dominios simbólico y sonoro

La representación de secuencias musicales simbólicas en ausencia de timbre
mediante descriptores estad́ısticos, propuesta en esta tesis, se ha usado en
combinación con descriptores de audio en problemas de reconocimiento de
género a partir de audio. Los descriptores simbólicos se han incorporado
por medio de un sistema de transcripción que, a partir de un fichero de
audio, genera un fichero MIDI. Este sistema no incorpora a la transcripción
información de timbre expĺıcita, por lo que el uso de dicha representación
estad́ıstica es especialmente adecuada en este contexto. Aunque el sistema de
transcripción está diseñado para tratar con señales sonoras polifónicas con un

5http://archive.ics.uci.edu/ml/
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único timbre, se asume que “una transcripción monot́ımbrica, inexacta pero
sistemática, de una señal de audio multit́ımbrica contiene cierta información
relacionada con el género musical”.

Se han evaluado dos estrategias de combinación de descriptores: fusión
temprana y fusión tard́ıa. La primera, que consiste en entrenar un clasificador
con una combinación de conjuntos de descriptores simbólicos y de audio,
ha mostrado mejoras consistentes, aunque no significativas, sobre todos
los corpora evaluados, con respecto a clasificar utilizando conjuntos de
descriptores por separado, o utilizar únicamente conjuntos de descriptores
de audio. La comparativa con los resultados obtenidos por otros autores
sobre los mismos corpora también es favorable al enfoque aqúı presentado.

Algunos resultados, sin embargo, mostraron que la estrategia de fusión
temprana era muy sensible a qué conjuntos de descriptores en particular
se estaban utilizando. Se postula aśı como conveniente el uso de una
estrategia de fusión tard́ıa, con el objeto de tratar de mejorar los resultados
de una forma más robusta. En este tipo de sistemas, y en concreto en
aquellos basados en estrategias de consenso, un conjunto de clasificadores
es entrenado de forma individual. Dado un nuevo objeto, cada clasificador
toma una decisión sobre él, tras lo cual se aplica una estrategia para combinar
(consensuar) las decisiones de todos los clasificadores en una sola.

En este trabajo se propone un sistema de fusión tard́ıa denominado
“conjunto cartesiano de modelos”, el cual es capaz de combinar diferentes
conjuntos de descriptores con diferentes tipos de clasificadores. Este
sistema se ha aplicado al problema de la clasificación de géneros musicales
combinando descriptores simbólicos y de audio. Se han realizado una serie
de experimentos sobre conjuntos de ficheros de audio de referencia, donde
se ha mostrado que el rendimiento del sistema, en términos de tasa de
acierto, es superior, en general, a los resultados obtenidos mediante fusión
temprana. La estrategia QBWWV de combinación de decisiones, una de las
propuestas en esta tesis, se ha revelado como la mejor opción, en general, en
comparación con otras reglas de combinación. Los resultados obtenidos en los
experimentos de clasificación mediante fusión tard́ıa refuerzan la hipótesis de
que las combinaciones de clasificadores pueden liberar, en parte, al usuario
de la siempre dif́ıcil elección del conjunto de descriptores y el clasificador
apropiado para un problema determinado.

El conjunto cartesiano de modelos permite además incorporar algoritmos
de selección de descriptores. Se ha investigado el uso de este tipo de
algoritmos, obteniendo tiempos de entrenamiento y test un orden de
magnitud inferiores a la alternativa de usar todos los descriptores. El tamaño
de los conjuntos de datos se ha reducido hasta menos del 4% de su tamaño
original, en término medio. Esto se ha conseguido manteniendo la tasa de
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acierto a un nivel razonable al menos en dos de los cinco conjuntos de datos
utilizados. Estos experimentos ha mostrado que se debe buscar una solución
de compromiso entre la ganancia en tiempos de entrenamiento y/o test y la
pérdida de la potencia discriminatoria del conjunto cartesiano de modelos.

C.4 Conclusiones y desarrollo futuro

En esta tesis se presentan varios sistemas de clasificación para obras musicales
que trabajan con contenido musical simbólico y evitan el uso de información
relacionada con el timbre. Esto sistemas han demostrado que es posible
obtener información sobre el carácter melódico de una parte musical, o sobre
su género, basándose únicamente en información estad́ıstica extráıda de la
secuencia de notas que la forman.

En concreto, se presenta un método para identificar automáticamente la
melod́ıa en una partitura digital multi-pista. El método ha sido aplicado
a ficheros MIDI. El contenido musical se describe mediante vectores de
descriptores estad́ısticos. Mediante aprendizaje supervisado se entrenan
modelos capaces de reconocer el carácter melódico de una pista. El sistema
se ha probado con música clásica, jazz y música popular (de karaoke), con
buenos resultados. Estos han evidenciado que, dada una obra de un género
determinado, el modelo construido debe haber sido expuesto a muestras de
ese mismo género para obtener mejores resultados a la hora de seleccionar
la pista de melod́ıa, debido a las especificidad de las pistas de melod́ıa y
acompañamiento en cada género.

A partir de los modelos capaces de identificar pistas de melod́ıa se
han obtenido representaciones comprensibles, inferidas automáticamente a
partir de los datos, en forma de reglas que caracterizan a dichas pistas.
Estas representaciones tienen indudable interés musicológico, ya que son
representaciones obtenidas de forma completamente objetiva.

En un futuro próximo se pretende integrar en el método una serie de
descriptores basados en entroṕıa, como los propuestos por (Madsen and
Widmer, 2007b; Margulis et al., 2008), además de un proceso de selección de
descriptores. Se abordará también la anotación de nuevos conjuntos de obras
de diferentes géneros. En este proceso se pretende anotar también otros tipos
de pistas, de manera que el método de identificación de melod́ıa puede ser
fácilmente adaptado a la identificación de otro tipo de pistas, como pistas
de bajo, percusión, etc. En particular el método está actualmente siendo
adaptado a la identificación de pistas de bajo. Además se está investigando
la combinación de identificación de melod́ıa y de bajo, de manera que la
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probabilidad de una pista de ser melod́ıa, condicione la probabilidad de otras
pistas de ser de bajo, y viceversa.

Otro de los problemas abordados en esta tesis es la clasificación au-
tomática de géneros musicales, que ha sido explorado desde diferentes
ángulos. En primer lugar, se ha considerado el reconocimiento de género
de melod́ıas codificadas simbólicamente. Para ello, se ha propuesto una
metodoloǵıa de investigación basada en la definición de un espacio de estudio
determinado por la longitud de los fragmentos de secuencia que forman los
conjuntos de datos. Para una longitud de fragmento determinada se aplican
las fases de extracción y selección de descriptores y clasificación. Se han
evaluado varios tipos de clasificadores y conjuntos de descriptores, sobre un
problema de dos clases (jazz y música clásica). Se ha presentado también
un estudio sobre la capacidad humana de distinguir melod́ıas de estos dos
géneros musicales, jazz y música clásica, en ausencia de timbre, que ha servido
como referencia para los resultados experimentales.

Los resultados obtenidos corroboran la hipótesis de que las melod́ıas
representadas simbólicamente, y excluyendo información sobre el timbre,
contienen información sobre el género, ya que los sistemas entrenados
con información estad́ıstica extráıda de fragmentos de dichas melod́ıas son
capaces de discriminar entre música clásica y jazz en más del 90% de los
casos, en término medio, llegando en algunos casos al 95% de tasa de acierto.
Los mejores resultados se han obtenido con fragmentos de larga duración (a
partir de 30 compases, aproximadamente). Los descriptores estad́ısticos que
más han contribuido a estos resultados son los basados en las alturas de las
notas, y en concreto las desviaciones t́ıpicas, frente a las medias o los rangos.

El problema se ha abordado también mediante el uso de combinaciones
de clasificadores por votación. Se han aportado tres nuevas reglas de voto
ponderado para estos sistemas, con los cuales se han obtenido los mejores
resultados de clasificación para la mayoŕıa de experimentos de evaluación
realizados sobre diferentes conjuntos de datos (incluyendo problemas de
clasificación de géneros musicales).

El esquema de representación de información musical simbólica mediante
descriptores estad́ısticos propuesto en esta tesis se ha combinado con
descriptores de audio para resolver el problema de la clasificación de géneros
utilizando muestras de audio. Esto se ha logrado introduciendo un sistema
de transcripción musical capaz de convertir ficheros de audio en ficheros
MIDI. Los descriptores simbólicos y de audio se han combinado mediante
dos estrategias: concatenación de descriptores en un solo conjunto de
caracteŕısticas (fusión temprana) y combinación de clasificadores entrenados
en diferentes espacios de caracteŕısticas (fusión tard́ıa). Para esta última
estrategia se ha propuesto un sistema denominado “conjunto cartesiano de
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modelos”, que combina a la vez distintos espacios de descriptores y distintos
tipos de clasificadores. Este sistema incluye una etapa de selección de
caracteŕısticas y de modelos, una vez entrenados.

En ambos enfoques, fusión temprana y fusión tard́ıa, se han obtenido
mejores resultados combinando descriptores simbólicos y de audio que
utilizando únicamente descriptores de audio. Además la combinación de
clasificadores mediante el conjunto cartesiano de modelos a proporcionado
mejores resultados que la concatenación de descriptores.

El método basado en clasificar fragmentos musicales descritos estad́ısti-
camente se puede extender de varias maneras. Centrándonos en la clasifi-
cación de géneros musicales, en primer lugar, las decisiones tomadas para
cada fragmento perteneciente a la misma pista, se pueden combinar en una
sola que se asigna a la pista completa. Además, estas decisiones se podŕıan
tomar secuencialmente, de manera que la decisión tomada para un fragmento,
podŕıa afectar a la decisión tomada para el siguiente fragmento de la misma
pista. En segundo lugar, como un fichero MIDI esta formado por una serie
de pistas, si estas están pre-etiquetadas, por ejemplo, usando un sistema
de identificación de pistas MIDI (melod́ıa, bajo,...) como el propuesto en
esta tesis, esta información se puede combinar con las decisiones tomadas
para cada pista para decidir el género de la obra musical completa. Esto
tiene la ventaja, frente a otros sistemas similares, de que no sólo se obtiene
una decisión para la obra completa, sino que se dispone de información
pormenorizada sobre el carácter/género/cualidad/etc. de cada pista y de
distintos fragmentos o secciones dentro de cada pista.
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F. Moreno-Seco, J. M. Iñesta, P. J. Ponce de León, and L. Micó. Comparison of
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A. Pertusa and J. M. Iñesta. Multiple fundamental frequency estimation using
Gaussian smoothness. In Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP), Las Vegas, USA, 2008a. ISBN 1-4244-1484-9. (Cited on
page 204).
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