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ABSTRACT

A multiple fundamental frequency estimator is presented in
this work. At each time frame, a set of fundamental fre-
quencies is found in a frame by frame analysis taking into
account the spectral smoothness measure described in [1]
and the information contained in adjacent frames.

1 INTRODUCTION

This work is an extension of the research presented in [1]
that was evaluated in MIREX 2007 [2]. In the previous ap-
proach, a set of fundamental frequency candidates was se-
lected at each time frame, then all the possible candidate
combinations were generated, and the combination with the
highest salience was selected. The salience of a combina-
tion was computed by taking into account the sum of the
harmonic amplitudes and the spectral smoothness of its can-
didates [1].

Most instruments have spectral patterns that tend to be
smooth, and this characteristic is used for estimating the
fundamental frequencies that are present in the signal. An
interpolation method was also introduced to deal with some
harmonic overlap situations.

In [1], each frame was analyzed, yielding a combination
of fundamental frequencies that maximized a salience mea-
sure. One of the main limitations of this approach is that the
window size often used in multiple fundamental frequency
estimation (93 ms) is relatively short to detect the funda-
mental frequencies, even for an expert musician. Context is
very important in music to disambiguate certain situations
so, in the work presented, short context information is also
considered to get a combination of pitches at each frame.

2 METHODOLOGY

This new approach is based on [1], but considering informa-
tion about adjacent frames. Instead of selecting the combi-
nation with highest salience at each time frame, short con-
text information is taking into account to get the salience of
each combination of pitches, performing a temporal smooth-
ing.

For grouping similar information across time, a set of
fundamental frequency combinations are generated at each
time frame and the frequencies of each combinationC are
converted into MIDI pitches.

For example, the combinationC = {261, 416}Hz is con-
verted intoC′ = {60, 68}. In order to have unique combina-
tions in each time frame, if more than one combination with
the same pitches is found in a single frame, only the com-
bination with highest salience is kept, removing duplicates
with lower saliences.

At a target framet, the new salienceS(C′(t)) of a com-
binationC′ is calculated as:

S(C′(t)) =

t+k∑

i=t−k

S(C′

i
(t)) (1)

Therefore, the saliences of the same pitch combinations
than those inC′ in the2k adjacent frames are summed to get
the salience of the target combinationC′(t). Different values
of k were tested, and the best results were obtained withk =
2, i.e., considering 2 previous frames, 2 posterior frames and
the target frame to get the salience of a combination.

Finally, the maximum salience is selected to get the pitches
at the target framet.

S(t) = max
i

{S(C′

i(t))} (2)

This new approach increases importantly the robustness
of the system in the test set used for evaluation, and it al-
lows to remove two parameters added in [1] to avoid local
false positives. These parameters are the minimum number
of harmonics (η) to select a spectral peak as af0 candidate,
and the minimum loudness of a peak to be selected as a fun-
damental frequency candidate.

The equation to get the salienceS of a combination in
a single frame was also modified respect to [1], increasing
the importance to the smoothness valueσ(c).

S = [l(c) · σ4(c)]
2

(3)

The harmonic search method was also changed respect
to [1]. In the previous work, a constant rangehf0 ± fr

around each harmonic frequencyhf0 for h = 2, 3, ... was



id Prec Rec Acc Etot Esubs Emiss Efa

YRC2 0.741 0.78 0.665 0.426 0.108 0.127 0.19
YRC1 0.698 0.741 0.619 0.477 0.129 0.129 0.218

PI2 0.832 0.647 0.618 0.406 0.096 0.257 0.053
RK 0.698 0.719 0.613 0.464 0.151 0.13 0.183
PI1 0.824 0.625 0.596 0.429 0.101 0.275 0.053

VBB 0.714 0.615 0.54 0.544 0.118 0.267 0.159
DRD 0.541 0.66 0.495 0.731 0.245 0.096 0.391
CL2 0.671 0.56 0.487 0.598 0.148 0.292 0.158
EOS 0.591 0.546 0.467 0.649 0.21 0.244 0.194

EBD2 0.713 0.493 0.452 0.599 0.146 0.362 0.092
EBD1 0.674 0.498 0.447 0.629 0.161 0.341 0.127
MG 0.481 0.57 0.427 0.816 0.298 0.133 0.385
CL1 0.358 0.763 0.358 1.68 0.236 0.001 1.443
RFF1 0.506 0.226 0.211 0.854 0.183 0.601 0.071
RFF2 0.509 0.191 0.183 0.857 0.155 0.656 0.047

Table 1: Results of multiplef0 estimation task

considered, to allow some harmonic deviations. The clos-
est peak to the center of this margin was set as a harmonic
partial and, if no peak was found within this margin, the
harmonic was considered as missing. Now, a triangular win-
dow centered inhf0, is used to weight the amplitudes of the
peaks within this region in order to choose the peak with
maximum weighted value.

3 POSTPROCESSING

Two different postprocessing techniques were proposed to
remove some local errors. Both share the previous method-
ology.

3.1 PI1 method

Sometimes, partials that belongs to one candidate are as-
signed in a given time frame to other pitch. To avoid tempo-
ral discontinuities in the detection, a weighted acyclic di-
rected graph (wDAG) organized by layers is built. Each
layer represents a time frame. The nodes of the graph cor-
respond to then combinations with highest salience at each
time frame. The edges of the graph correspond to the in-
verse of the salience of the destination node multiplied by
the loudness differences between two combinations. This
loudness difference is computed as the sum of the absolute
differences of each note loudness. Finally, the shortest path
is found using the Dijkstra algorithm.

3.2 PI2 method

This postprocessing technique is described and used in [1].
If a note is shorter than a given minimum duration, it is
removed, and if two pitches are separated with a silence
shorter than a minimum silence duration, they are glued.
These two parameters have changed from the previous work;
the minimum note duration (about20ms), and the minimum
silence duration (about50ms).

4 RESULTS

In the multiplef0 estimation task, both systems yielded com-
petitive results and a very good performance. PI2 had a high
accuracy, obtaining the highest precision among the systems
analyzed, and the lowest error (Etot) in the metrics proposed
by Polliner and Ellis in [3]. In the Tukey-Kramer HSD sig-
nificance tests, the first six algorithms ordered by accuracy
didn’t show significant differences usingp < 0.05.

The system was presented for the tracking note contours
task. Although the algorithm was not designed for this task
(for example, no partial tracking is done), the results were
satisfactory. In this task, the postprocessing stage PI1 yielded
better results than PI2, probably because it favors some tem-
poral continuity in the detection.

id Prec Rec Avg. F-measure Avg. Overlap
YRC 0.307 0.442 0.355 0.890
RK 0.312 0.382 0.337 0.884
ZR3 0.256 0.314 0.278 0.874
ZR2 0.236 0.306 0.263 0.874
ZR1 0.233 0.303 0.261 0.875
PI1 0.201 0.333 0.247 0.862
EOS 0.228 0.255 0.236 0.856
VBB 0.162 0.268 0.197 0.829
PI2 0.145 0.301 0.192 0.854

EBD1 0.165 0.200 0.176 0.865
EBD2 0.153 0.178 0.158 0.845
RFF2 0.037 0.030 0.032 0.645
RFF1 0.034 0.025 0.028 0.683

Table 2: Results of note tracking task

id runtime
MG 99
PI2 792
PI1 955

VBB 2081
CL1 2430
CL2 2475
RK 5058
EOS 9328
DRD 14502
EBD1 18180
EBD2 22270
YRC1 57483
YRC2 57483
RFF2 70041
RFF1 73784

id runtime
PI2 790
PI1 950
ZR3 871
ZR1 1415
ZR2 1415
VBB 2058
RK 5044
EOS 9328

EBD1 18180
EBD2 22270
YRC 57483
RFF1 73718
RFF2 71360

Table 3: Runtimes of multiplef0 estimation task (left) and
tracking note contours task (right).
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[2] Pertusa, A., Iñesta, J.M. “Multiple Fundamental Fre-
quency estimation based on spectral pattern loudness
and smoothness”. InMIREX 2007, fundamental fre-
quency estimation and tracking contest, Vienna, 2007.

[3] Poliner, G.E. and Ellis, D.P.W., “A Discriminative
Model for Polyphonic Piano Transcription”.EURASIP
Journal on Advances in Signal Processing, 2007


