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ABSTRACT

A multiple fundamental frequency estimator is presented in
this work. At each time frame, a set of fundamental fre-
guencies is found in a frame by frame analysis taking into

For grouping similar information across time, a set of
fundamental frequency combinations are generated at each
time frame and the frequencies of each combinaficare
converted into MIDI pitches.

For example, the combinatigh= {261,416} Hz is con-

account the spectral smoothness measure described in [1] yerted intac’ = {60,68}. In order to have unique combina-

and the information contained in adjacent frames.

1 INTRODUCTION

This work is an extension of the research presented in [1]
that was evaluated in MIREX 2007 [2]. In the previous ap-

proach, a set of fundamental frequency candidates was se-

lected at each time frame, then all the possible candidate
combinations were generated, and the combination with the

highest salience was selected. The salience of a combina-

tion was computed by taking into account the sum of the

harmonic amplitudes and the spectral smoothness of its can-

didates [1].

Most instruments have spectral patterns that tend to be
smooth, and this characteristic is used for estimating the
fundamental frequencies that are present in the signal. An
interpolation method was also introduced to deal with some
harmonic overlap situations.

In [1], each frame was analyzed, yielding a combination
of fundamental frequencies that maximized a salience mea-
sure. One of the main limitations of this approach is that the
window size often used in multiple fundamental frequency
estimation 93 ms) is relatively short to detect the funda-
mental frequencies, even for an expert musician. Context is
very important in music to disambiguate certain situations
so, in the work presented, short context information is also
considered to get a combination of pitches at each frame.

2 METHODOLOGY

This new approach is based on [1], but considering informa-
tion about adjacent frames. Instead of selecting the combi-
nation with highest salience at each time frame, short con-
text information is taking into account to get the saliente o

each combination of pitches, performing a temporal smooth-

ing.

tions in each time frame, if more than one combination with
the same pitches is found in a single frame, only the com-
bination with highest salience is kept, removing duplisate
with lower saliences.

At a target frame, the new saliencé&(C’(t)) of a com-
binationC’ is calculated as:

t+k
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Therefore, the saliences of the same pitch combinations
than those i’ in the2k adjacent frames are summed to get
the salience of the target combinati@iit). Different values
of k were tested, and the best results were obtainediwith
2,i.e., considering 2 previous frames, 2 posterior framels an
the target frame to get the salience of a combination.
Finally, the maximum salience is selected to get the pitches
at the target frame

1)

)

This new approach increases importantly the robustness
of the system in the test set used for evaluation, and it al-
lows to remove two parameters added in [1] to avoid local
false positives. These parameters are the minimum number
of harmonics{) to select a spectral peak agacandidate,
and the minimum loudness of a peak to be selected as a fun-
damental frequency candidate.

The equation to get the salien®eof a combination in
a single frame was also modified respect to [1], increasing
the importance to the smoothness valfe).

S(t) = max{S(C;(t))}

2
S =) - o' (c)] (3)

The harmonic search method was also changed respect
to [1]. In the previous work, a constant ranfi¢, + f,
around each harmonic frequenky, for h = 2,3, ... was



id Prec Rec Acc Eiot Esubs Eiss E¢q 4 RESULTS
YRC2 | 0.741] 0.78 | 0.665 | 0.426 | 0.108 0.127 0.19
YRC1 | 0.698 | 0.741 | 0.619 | 0.477 | 0.129 0.129 0.218

P12 0.832 | 0.647 | 0.618 | 0.406 | 0.096 0.257 0.053

RK 0.698 | 0.719 | 0.613 | 0.464 0.151 0.13 0.183

In the multiplef, estimation task, both systems yielded com-

PIL | 0.824 | 0.625 | 0596 | 0.429 | 0.101 | 0.275 | 0.053 petitive results and a very good performance. P12 had a high
VBB | 0714 | 0.615| 054 | 0.544 | 0.118 | 0.267 | 0.159 . ; Lo

bR | 0521 | 0.66 | 0405 | 0731 | 0225 | 0096 | 0391 accuracy, obtaining the highest precision among the system
CL2 | 0671 | 056 | 0487 | 0598 | 0.148 | 0.292 | 0.158 analyzed, and the lowest errdt,(,;) in the metrics proposed
EOS 0.591 | 0.546 | 0.467 | 0.649 0.21 0.244 0.194 H i H
eep2 | 0713 | 0493 | 0252 | 0299 | 0146 | 0362 | 0002 b_y_Polllner and Ellis in [3]_. In the_Tukey—Kramer HSD sig-
EBDL1 | 0.674 | 0.498 | 0.447 | 0.629 | 0.161 | 0.341 | 0.127 nificance tests, the first six algorithms ordered by accuracy

CL1 0:358 Oj63 0:358 1.68 0:236 0:001 1:443 didn’t show S|gn|f|cant differences using< 0_'05'
RFF1 | 0506 | 0.226 | 0.211 | 0.854 | 0.183 | 0601 | 0.071 The system was presented for the tracking note contours
RFF2 0.509 | 0.191 | 0.183 | 0.857 0.155 0.656 0.047 . . .
task. Although the algorithm was not designed for this task
(for example, no partial tracking is done), the results were

Table 1: Results of multiplef, estimation task satisfactory. In this task, the postprocessing stage ldl et
better results than P12, probably because it favors some tem
poral continuity in the detection.

considered, to allow some harmonic deviations. The clos-

est peak to the center of this margin was set as a harmonic vigc oP;%% oRffz Avg-OF-srTslgasure Avgbgggrlap
partial and, if no peak was found within this margin, the Rk | 0312 | 0.382 0337 0.884
harmonic was considered as missing. Now, a triangular win- %Sg 8522 8'232 ggg 8-233
dow cent_er_ed irh fo, |s_use_d to weight the amplitudes of th_e ZR1 | 0233 | 0303 0961 0.875
peaks within this region in order to choose the peak with EF’élS g-ggé gggg 8.34312 g-ggg
maximum weighted value. VBB | 0.162 | 0.268 0.197 0.829
PI2 0.145 | 0.301 0.192 0.854
EBD1 | 0.165 | 0.200 0.176 0.865
EBD2 | 0.153 | 0.178 0.158 0.845
3 POSTPROCESSING RFF2 | 0.037 | 0.030 0.032 0.645
RFF1 | 0.034 | 0.025 0.028 0.683

Two different postprocessing techniques were proposed to
remove some local errors. Both share the previous method-

ology. Table 2: Results of note tracking task

3.1 PI1 method

id runtime
Sometimes, partials that belongs to one candidate are as- e | 700 o[ umeme
signed in a given time frame to other pitch. To avoid tempo- VF’Blt3 2905851 ZF’ll?l3 ggg
ral discontinuities in the detection, a weighted acyclie di cl1 | 2430 7R1 | 1415
rected graph (WDAG) organized by layers is built. Each %(2 gg;g \%Ré égég
layer represents a time frame. The nodes of the graph cor- Eos | 938 RK 5044
respond to the: combinations with highest salience at each ED;; 1;‘-?% EEB(I)Dsl 3512880
time frame. The edges of the graph correspond to the in- EeD2 | 22270 || EBD2 | 22270
verse of the salience of the destination node multiplied by YRC1 | 57483 || YRC | 57483
the loudness differences between two combinations. This R | Stoes || Rees | Tore
loudness difference is computed as the sum of the absolute RFF1 | 73784
differences of each note loudness. Finally, the shorteht pa ) . o
is found using the Dijkstra algorithm. Table 3: Runtimes of multiplef, estimation task (left) and

tracking note contours task (right).

3.2 PI2 method

This postprocessing technique is described and used in [1].
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