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Abstract— We present preliminary work on automatic
human-readable melody characterization. In order to ob-
tain such a characterization, we (1) extract a set of statisti-
cal descriptors from the tracks in a dataset of MIDI files, (2)
apply a rule induction algorithm to obtain a set of (crisp)
classification rules for melody track identification, and (3)
automatically transform the crisp rules into fuzzy rules by
applying a genetic algorithm to generate the membership
functions for the rule attributes. Some results are presented
and discussed.

I. INTRODUCTION

Melody is a somewhat elusive musical term that
often refers to a central part of a music piece that
catches most of the listener’s attention, and which the
rest of music parts are subordinated to. This is one of
many definitions that can be found in many places,
particularly music theory manuals. However, these are
all formal but subjective definitions given by humans.
The goal in this work is to automatically obtain an
objective and human friendly characterization of what
it is considered to be a melody.

The identification of a melody track is relevant for a
number of applications like melody matching [1], motif
extraction from score databases, or extracting melodic
ringtones from MIDI files. In this work we approach
the problem of automatically building a model that
characterizes melody tracks. Such a model is tested
in experiments on finding a melody track in a MIDI
file. The melody model is a set of human-readable
fuzzy rules automatically induced from a corpora of
MIDI files by using statistical properties of the musical
content.

To our best knowledge, the automatic description of
a melody has not been tackled as a main objective
in the literature. The most similar problem to the
automatic melody definition is that of finding a melody
line from a polyphonic source. This problem has been
approached mainly for three different objectives and
with different understandings of what a melody is. The
first objective is the extraction of the melody from a
polyphonic audio source. For this task it is important
to describe the melody in order to leave out those notes
that are not candidates to belong to the melody line[2].
In the second objective, a melody line (mainly mono-
phonic) must be extracted from a symbolic polyphonic
source where no notion of track is used [3]. The last
objective is to select one track containing the melody
from a list of input tracks of symbolic polyphonic

music (e.g. MIDI). Ghias et al. [1] built a system to
process MIDI files extracting a sort of melodic line
using simple heuristics. Tang et al. [4] presented a work
where the aim was to propose candidate melody tracks,
given a MIDI file. They take decisions based on single
features derived from informal assumptions about what
a melody track may be. Madsen and Widmer [5] try to
solve the problem by the use of several combination of
the entropies of different melody properties like pitch
classes, intervals, and IOI.

A. What’s a melody?

Before focusing on the machine learning methodol-
ogy to extract automatically the characterization of a
melody, the musical concept of melody needs to be
reviewed.

Melody is a concept that has been given many
definitions, all of them complementary. The variability
of the descriptions can give an idea on the difficulty of
the task to extract a description automatically.

From the music theory point of view, Ernst Toch [6]
defines it as “a succession of different pitch sounds
brighten up by the rhythm”. He also writes “a melody
is a sound sequence with different pitches, in opposi-
tion to its simultaneous audition that constitutes what
is named as chord”. He distinguishes also the term
"melody” from the term "theme".

A music dictionary [7] defines melody as: “a combi-
nation of a pitch series and a rhythm having a clearly
defined shape”.

An informal survey was carried out where the sub-
jects were asked to answer the question What is a
melody?. Both musicians and non-musicians took part
in the survey. The following list is a compendium of
shared melody traits found in answers gathered on that
survey:

• (finite) succession of notes
• cantabile pitch range
• monophonic
• lead part
• identifies/characterices the piece, song
• unity
• diversity
• contains repeating patterns
• often linked to text
• done by humans
• understandable, memorizable by humans



The music theory literature lacks the same amount
of works about melody than can be found about
counterpoint, harmony, or "form" [8]. Besides, the
concept of melody is dependant on the genre or
the cultural convention. The most interesting studies
about melody have appeared in recent years, mainly
influenced by new emerging models like generative
grammars [9], artificial intelligence [10], and Gestalt
and cognitive psychology [11]. All these works place
effort on understand the melody in order to generate
it automatically.

The types of tracks and descriptions of melody versus
accompaniment is posed in [8]. The author distin-
guishes:

• compound melodies where there is only a melodic
line where some notes are principal, and others
tend to accompany, being this case the most
frequent in unaccompanied string music.

• self-accompanying melodies, where some pitches
pertain both to the thematic idea and to the
harmonic (or rhythmic) support

• submerged melodies consigned to inner voices
• roving melodies, in which the theme migrates from

part to part
• distributed melodies, in which the defining notes

are divided between parts and the prototype can-
not be isolated in a single part.

From the audio processing community, several defi-
nitions can be found about what a melody is. Maybe,
the most general definition is that of Kim et at. [12]:
“melody is an auditory object that emerges from a
series of transformations along the six dimensions:
pitch, tempo, timbre, loundness, spatial location, and
reverberan environment".

Gómez et al. [13] gave a list of mid and low-level
features to describe melodies:

• Melodic attributes derived from numerical analysis
of pitch information: number of notes, tessitura,
interval distribution, melodic profile, melodic den-
sity.

• Melodic attributes derived from musical analysis
of the pitch data: key information, scale type
information, cadence information.

• Melodic attributes derived from a structural analy-
sis: motive analysis, repetitions, patterns location,
phrase segmentation.

Another attempt to describe a melody can be found
in [14]. In that book, Temperley proposes a model of
melody perception based on three principles:

• Melodies tend to remain within a narrow pitch
range.

• Note-to-note intervals within a melody tend to be
small.

• Notes tend to conform to a key profile (a distribu-
tion) that depends on the key.

All these different properties a melody should have
can be a reference to compare the automatic results.

The rest of the paper is organized as follows: first,
the methodology used in this work is presented. Sec-
ond, the experimentation framework is outlined. Next,
results on several datasets for both crisp and fuzzy
rule systems are discussed and compared to related
work results. Finally, conclusions and further work are
presented.

II. METHODOLOGY

The goal of this work is to obtain an human-
readable characterization of MIDI tracks containing
melody lines, against other kind of tracks. A fuzzy rule
system has been chosen as the technique to obtain
such a characterization. These fuzzy models should
achieve good performance in discriminating melody
tracks when compared to other non-fuzzy or non-rule
based crisp models.

The methodology applied to obtain such fuzzy mod-
els is sketched as follows: first, MIDI tracks are de-
scribed by a set of statistical features on several proper-
ties of the track content. This is presented in section II-
A. Next section briefly describes different rule extrac-
tion methods used to obtain crisp rule systems that
characterize melody tracks. Finally, these rule systems
are then converted to fuzzy rule systems applying
a fuzzyfication process to the input domain. This is
discussed in section II-C.

A. MIDI track content description

MIDI track content is described by a collection of
statistics on several properties of musical note streams,
such as pitch, pitch interval or note duration, as well as
track properties such as number of notes in the track,
track duration, polyphony rate or occupation rate. As
a result, MIDI tracks are represented by vectors v ∈R34

of statistical values. This representation has been used
to characterize melody tracks in previous works [15],
[16].

This set of statistical descriptors is presented in
Table I. The first column indicates the category being
analyzed, and the second one shows the kind of statis-
tics describing properties from that category. The third
column indicates the range of the descriptor1.

Four features were designed to describe the track as
a whole and fifteen to describe particular aspects of its
content. For the latter descriptors, both normalized and
non-normalized versions have been computed. Only
non-normalized ones are displayed in table I. Nor-
malized descriptors are defined in [0,1] and computed
using the formula

(vi −mi n)/(max −mi n)

where vi is the descriptor value to be normalized
corresponding to the i -th track, and mi n and max are,
respectively, the minimum and maximum values for
this descriptor for all the tracks of the target midifile.
This allows to represent these properties proportionally

1[x..y] denotes integer domains and [x, y] denotes real domains.



TABLE I

MIDI TRACK DESCRIPTORS

Category Descriptors Domain

Track info. Normalized duration [0,1]
Number of notes [0 ..+∞[
Occupation rate [0,1]
Polyphony rate [0,1]

Pitch Highest [0 .. 127]
Lowest [0 .. 127]
Mean [0,127]
Standard deviation [0,+∞[

Pitch intervals Number of distinct intv. [0 .. 127]
Largest [0 .. 127]
Smallest [0 .. 127]
Mean [0,127]
Mode [0 .. 127]
Standard deviation [0,+∞[

Note durations Longest [0,+∞[
Shortest [0,+∞[
Mean [0,+∞[
Standard deviation [0,+∞[

Syncopation No. of syncopated notes [0 ..+∞[
Class IsMelody {true, false}

to other tracks in the same file, using non-dimensional
values. This way, a total number of 4 + 15 × 2 = 34
descriptors were initially computed for each track.

The track information descriptors are normalized
duration (using the same scheme as above), number of
notes, occupation rate (proportion of the track length
occupied by notes), and the polyphony rate (the ratio
between the number of ticks in the track where two
or more notes are active simultaneously and the track
duration in ticks).

Pitch descriptors are measured using MIDI pitch
values. The maximum possible MIDI pitch is 127 (pitch
G8) and the minimum is 0 (pitch C−2).

The interval descriptors summarize information
about the difference in pitch between consecutive
notes. Absolute pitch interval values are computed.

Finally, note duration descriptors are computed in
terms of beats, so they are independent from the MIDI
file resolution. Syncopations are notes that start at some
place between beats (usually in the middle) and extend
across them.

B. A rule system for melody characterization

In this work, a rule system obtained using the
RIPPER algorithm [17] is used as the basis to induce
a fuzzy rule system. Briefly, the RIPPER constructs a
rule set RS by considering each class, from the less
prevalent one to the more frequent one. It builds RS
until the description length (DL) of the rule set and
examples is 64 bits greater than the smallest DL met
so far, or there are no positive examples, or the error
rate >= 50%. Rules are constructed by greedily adding
antecedents to the rule until the rule is perfect (i.e.
100value of each attribute and selects the condition
with highest information gain (for details see [17]).
We applied the RIPPER algorithm and obtained a rule

system from the SMALL dataset (see section III), so
it is called the RIPPER-SMALL rule system. Table II
shows the rules in this system. Note that only 13 out
of 34 initial statistical descriptors have been selected
by the algorithm to characterize melody tracks. Figures
about this rule system performance are presented in
section V.

TABLE II

RIPPER-SMALL (CRISP) RULES.

Name Rule

R1 if (AvgPitch >= 65.0)
and (TrackOccupationRate >= 0.51)
and (AvgAbsInterval <= 3.64)
and (TrackNumNotes >= 253)
then IsMelody=true

R2 if (AvgPitch >= 62.6)
and (TrackOccupationRate >= 0.42)
and (TrackPolyphonyRate <= 0.21)
and (NormalizedDistinctIntervals >= 1)
then IsMelody=true

R3 if (AvgPitch >= 65.4)
and (TrackNumNotes >= 284)
and (ShortestNormalizedDuration <= 0.001)
and (ShortestDuration >= 0.02)
and (NormalizedDistinctIntervals >= 1)
then IsMelody=true

R4 if (AvgAbsInterval <= 2.72)
and (TrackSyncopation >= 16)
and (AvgPitch >= 60.5)
and (TrackOccupationRate >= 0.42)
and (StdDeviationPitch <= 5.0)
then IsMelody=true

R5 if (AvgAbsInterval <= 3.87)
and (TrackSyncopation >= 24)
and (LowestNormalizedPitch >= 0.14)
and (DistinctIntervals >= 25)
and (TrackNormalizedDuration >= 0.95)
then IsMelody=true

R6 if (AvgAbsInterval <= 2.44)
and (TrackNumNotes >= 130)
and (AvgPitch >= 55.2)
and (TrackOccupationRate >= 0.31)
and (TrackPolyphonyRate <= 0.001)
then IsMelody=true

C. From crisp to fuzzy rule system

Although informative, this rule system is not easily
readable or even understandable at first sight, at least
for people as musicians or musicologists. Also, being
melody such a vague concept, the authors find that a
fuzzy description of melody would be more sensible in
the imprecise domain of music characterization.

In order to produce such a fuzzy description, a
fuzzyfication process is applied to a crisp rule system,
such the one presented in Table II.

Two basic steps must be carried out for the fuzzy-
fication of the crisp rule system. First, the data repre-
sentation must be fuzzified. That is, numerical input
and output values must be converted to fuzzy terms.
Second, the rules themselves must be translated into
fuzzy rules, substituting linguistic terms for numerical
boundaries.



D. Fuzzyfying attributes

As stated above, a MIDI track is described by a set
of statistical descriptors (called attributes from herein).
The very first step of the attribute fuzzyfication process
is to define the domain for every attribute. Most at-
tributes have a finite domain. For practical application
of the fuzzification method, infinite domains should
be converted to finite domains. Appropriate upper and
lower bounds are so defined for these domains.

In order to fuzzify crisp attributes (statistical descrip-
tors), linguistic terms (such as low, average, or high) for
every attribute domain are defined. Then the shape
of the fuzzy set associated with each linguistic term
is selected and, finally, the value of each fuzzy set
parameter within the attribute domain is set.

Fuzzyfication of numerical attributes usually involves
the participation of a human expert who provides do-
main knowledge for every attribute. The expert usually
takes into consideration the distribution of values for
an attribute in a reference data collection, as well as
any other information available.

Our approach in this paper is to replace the human
expert by a genetic algorithm (GA) which, given the
linguistic term definitions for each attribute, automati-
cally learns the fuzzy set parameters. Such combination
of a fuzzy system with a genetic algorithm is known as
a genetic fuzzy system [18].

In order to select the number of linguistic terms
per attribute, a number of different crisp rule systems
have been induced by different algorithms from the
SMALL dataset. The presence of each attribute in those
rule systems has been accounted for. Five terms have
been assigned to most frequently used attributes. Three
terms have been assigned to the rest of attributes.
Table III shows these linguistic terms for attributes used
in the RIPPER-SMALL crisp rule system.

TABLE III

FUZZY LINGUISTIC TERMS

Attribute Linguistic terms

TrackNormalizedDuration shortest, average, largest
TrackNumNotes low, average, high
TrackOccupationRate void, low, average, high, full
TrackPolyphonyRate none, low, average, high, all
LowestNormalizedPitch low, average, high
AvgPitch veryLow, low, average,

high, veryHigh
StdDeviationPitch low, average, high
DistinctIntervals few, average, alot
NormalizedDistinctIntv. lowest, average, highest
AvgAbsInterval unison, second, third, fourth, high
ShortestDuration low, average, high
ShortestNormalizedDur. shortest, average, longest
TrackSyncopation few, average, alot

Every linguistic term has a fuzzy set or membership
function associated to it. This is a probability function
from the attribute crisp input domain to the range [0,1]
that, for every possible attribute crisp value, outputs
the probability for this value to be named with that
specific linguistic term. Figure 1 shows an example.

TrackNormalizedDuration
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Fig. 1. Fuzzy set example for attribute TrackNormalizedDuration

For efficiency reasons, the shape for a fuzzy set in
this work is restricted to be either trapezoidal or trian-
gular, being the latter a special case of the former. Each
fuzzy set is modeled by four points, corresponding to
the extreme points of the core (prototype) and support
of a fuzzy set, as depicted in Fig. 2. The support of a
fuzzy set defines the range of the input domain where
the fuzzy set membership probability is not zero. These
fuzzy set parameters would be inferred from data by
the GA.

The objective for the genetic fuzzy system presented
here is to optimize fuzzy set parameters for every
attribute in a fuzzy rule system. This optimization
process is guided by a fitness function that, given a
reference fuzzy rule system, tests potential solutions
against a reference dataset.

1) Fuzzy set representation scheme: An individual’s
chromosome encodes all attributes of the fuzzy rule
system. This means to encode fuzzy sets associated
with linguistic terms for every attribute. The fuzzy set
support is considered the most important part of a
fuzzy set, while its shape is considered a subjective
and application-dependent issue [19]. The fuzzy set
core is defined as a function of its support. So, the
only fuzzy set parameters we need to optimize are the
support points of each fuzzy set for every attribute.
Figure 3a shows how an attribute domain is partitioned
in overlapping fuzzy partitions, each corresponding to
a fuzzy set. Let X be such attribute domain, we define

CORE

SUPPORT SUPPORT

PROTOTYPE

ATTRIBUTE DOMAIN

0

1

Fig. 2. Fuzzy set parts



a fuzzy partition of X as

X i =
[

xi
L , xi

R

]
, X i ⊂ X , 1 É i É m (1)

where xi
L and xi

R are the left and right support points
of fuzzy set i , respectively. m is the number of fuzzy
sets for the attribute. Partitions are defined so that
X = ⋃

X i , that is, every input value belong to at least
one partition. We also force the overlapping between
adjacent partitions i and i +1 to be not void:

Z i ,i+1 = X i ⋂
X i+1 =

[
xi+1

L , xi
R

]
6= ; (2)

Given these definitions, the set of parameters to
optimize for a given attribute is

Θ= {
x1

L , x2
L , x1

R , · · · , xm
L , xm−1

R , xm
R

}
(3)

In order to have an uniform GA representation for
every attribute, their domains are normalized to range
[0,1], so every parameter is a value in that range. For
the sake of simplicity, let express Θ as

Θ= {
p0, p1, p2, · · · , p2m−1

}
(4)

From the partitioning scheme definition, it follows
that p0 = x1

L = 0, so we can drop this first parameter.
In order to make Θ suitable to crossover and mutation
operations, a relative parameter representation scheme
is used in the GA. Such scheme is defined as follows

θ = {
p1,r2,r3, · · · ,r2m−1

}
(5)

where ri = pi −pi−1. Figure 4 depicts the representa-
tion scheme used in the GA. Note that

Z i ,i+1 = r2i , 1 É i < m
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Fig. 3. (a) Fuzzy set partitions overlapping. (b) Boundaries of a fuzzy
set.

Once the support points are known, left and right
boundaries (figure 3b) are set. They are restricted to lie
inside the overlapping section of their corresponding
partition. For right boundaries,

X1

0

1

X2
. . .

p0=xL
1=0 p1=xL

2

r2

Xm

r3 r
4

r
2m-2

r
2m-1

. . .

Fig. 4. Representation scheme of fuzzy sets.

0 É B i
R É Z i ,i+1 = r2i , 1 É i < m

and 0 É B m
R É r2m−1.

For left boundaries

0 É B i
L É Z i−1,i = r2i−2, 1 < i É m

and 0 É B 1
L É p1. This ensures that the core of a fuzzy

set is equal or greater than zero.

E. Fitness function

The fitness function for the GA consists of testing
each individual in a fuzzy inference system (FIS) using
the fuzzy rule system discussed in section II-F on
a reference dataset (see section III). The better the
performance of the rule system, given the fuzzy set def-
initions provided by the individual’s chromosome, the
better the individual’s score. This is possible because
rule fuzzification is a process independent from fuzzy
set definition. Several metrics can be used to measure
the performance of the FIS. In this work two different
metrics have been tested: 1) number of hits and 2)
F measure (geometric mean of precision and recall of
class IsMelody=true).

F. Crisp rule system fuzzyfication

The goal of the rule system presented above is to
identify MIDI tracks as melody or non-melody tracks.
The objective of this work is to convert this crisp rule
system, which perform fairly well for the task at hand,
in a human-friendly description of melody tracks.

The final step in this method is to fuzzify the rule
system. Antecedents of the form (x = v) where = is
an inequality operator, are translated into one or more
antecedents of the form (x I S T ), where T is a linguistic
term defined for attribute x. The value v partitions the
attribute domain in two subsets, and the direction of
the inequality guides the selection of the fuzzy terms
to be included in fuzzy antecedents.

In the present work, the crisp RIPPER-SMALL rule
system (section II-B) has been fuzziyfied in order to
present a proof of concept of the methodology applied.
A disjunctive fuzzy rule set is then obtained. Table IX
shows fuzzy rules corresponding to those shown in
section II-B.



III. EXPERIMENTS

A. Datasets

Table IV shows information about all the datasets
used to test the fuzzy rule system. They consist of MIDI
files, where melody tracks were tagged with a special
string in their track name. These tracks have been
manually or automatically tagged, depending on the
dataset. The automatic tagging process is based on a
dictionary of frequent melody track names. The manual
tagging was carried out by experts on the different
music genres present in the datasets.

The SMALL reference dataset has been used to ob-
tain the crisp rule system from which the fuzzy rule
system has been derived. It is also the dataset used
in the GA fitness function to test the performance of
potential solutions. The rest of datasets are used for
testing the system: RWC-G [20], RWC-P [21], LARGE
and AJP are all multi-genre datasets of academic, pop-
ular, rock and jazz music, among more than ten genres.

TABLE IV

DATASETS.

Dataset Tracks Songs Melody tracks
SMALL 2775 600 554
LARGE 15168 2513 2337
RWC-P 801 75 74
RWC-G 311 48 44

AJP 3732 762 760

B. FIS Optimization Experiment setup

Our genetic fuzzy system has six free parameters that
let configure different experiment setups. Table V shows
these parameters and the values chosen to build a set
of experiments. Parameter values have been restricted
to at most three different values. This allows the use of
an orthogonal array [22] to explore the free parameter
space. Briefly, an orthogonal array of level L, strength n
and M runs ensures that, given any n parameters with
L values each, all their respective values will appear in
combination in an equal number of experiments. This
avoids testing all possible combinations, while remain-
ing confident that every combination of n parameters
appears at least once in some experiment. In this work,
an orthogonal array of strength 2 and 18 runs has been
used to setup experiments.

TABLE V

FIS OPTIMIZATION SETUP PARAMETERS

Experiment parameter Values

GA population size 100,500,1000
GA no. of generations 100,500,1000
GA mutation ratio none, 0.05, 0.1
GA selection strategy2 Best one, Best 10%, Best 20%
GA fitness metric Hit count, F-measure
Defuzzyfication threshold3 0.5,0.6,0.7

IV. FUZZY INFERENCE SYSTEM OPTIMIZATION RESULTS

Table VI shows the performance of evolved FIS
versus the RIPPER-SMALL crisp rule system perfor-
mance. Average results from the eighteen experi-
ments performed are shown. Figures in parenthe-
sis are standard deviations. Precision, recall and F-
measure are computed for the class ’IsMelody’. Also,
the performance of the best evolved FIS are pre-
sented. Note that the best evolved FIS performance
is very close to that from the crisp rule system. The
definition of fuzzy sets for the best evolved FIS, as
well as other information and examples on this work
can be found on the web at the following address:
http://grfia.dlsi.ua.es/cm/worklines/smc08.

TABLE VI

BEST AND AVERAGE PERFORMANCE OF EVOLVED FIS V. CRISP

RIPPER-SMALL RULE SYSTEM PERFORMANCE.

Rule sys. Precision Recall F Error rate
crisp 0.89 0.87 0.88 0.05
Best FIS 0.81 0.83 0.82 0.06
Avg. FIS 0.80 (.03) 0.77 (.09) 0.78 (.05) 0.08 (.01)

V. RESULTS ON TEST DATASETS.

Table VII presents results from applying both the
crisp rule system and the best evolved FIS to test
datasets. In these test experiments, a track is classified
as a melody track if it fires at least one rule with
probability greater than 0.5. Otherwise, the track is
classified as non-melody.

TABLE VII

MELODY TRACK CLASSIFICATION RESULTS.

Dataset Precision Recall F Error rate
LARGE (crisp) 0.79 0.80 0.80 0.06
LARGE (fuzzy) 0.70 0.74 0.72 0.09
RWC-P (crisp) 0.95 0.80 0.87 0.02
RWC-P (fuzzy) 0.51 0.64 0.57 0.09
RWC-G (crisp) 0.54 0.77 0.64 0.13
RWC-G (fuzzy) 0.43 0.43 0.43 0.16
AJP (crisp) 0.88 0.89 0.88 0.05
AJP (fuzzy) 0.88 0.83 0.86 0.06

As the results show, the fuzzyfied rule system pre-
cision is consistenty lower than the precision of the
original crisp rule system. The bigest differences in
precision between the fuzzy and crisp rule systems is
observed in the smallest data sets, i.e. RWC-P AND
RWC-G, with a limited set of examples (e.g. RWC-G
contains only 44 melody examples). However, in the
LARGE and AJP data sets the difference in precisions
of the two rule systems is less considerable. The recall
is consistently better for the fuzzy classifier. It follows
that most errors are false positives, that is, some non-
melody tracks are classified as melody tracks. Also note
that the goal of the fuzzyfication process is not to
improve classification accuracy, but to obtain a human-
readable comprehensible characterization of melodies
within MIDI tracks.



VI. COMPARISON OF CRISP AND FUZZY SYSTEMS ON

SOME EXAMPLES

This section discuss several example characterization
of melody and non-melody tracks. The example ex-
cerpts are shown in Table VIII in the appendix. The
words ’Crisp’ and ’Fuzzy’ under the music systems
indicate which rules from the crisp and fuzzy systems
were fired, respectively. The fuzzy rule system used with
these examples was the best evolved FIS using the rules
in Table IX.

The first three tracks are melody tracks that were
correctly identified by the fuzzy rule system. Crisp rules
failed at characterizing the first one. This first track
almost fulfills rule R2, except that it has not the largest
pitch interval variety (its NormalizedDistinctIntervals
value is .85), as the last condition of the rule imposes.
The next three tracks in Table VIII are non-melody
tracks correctly identified by both rule systems (neither
track fire any rule). The last two examples are tracks
were both rule systems disagree. The melody track from
Satin Doll is unusual in the senese that is supposed to
be played by a vibraphone (a polyphonic instrument),
has one chorus of improvisation and the melody reprise
(which is the part shown in the example) is played
in a polyphonic closed chord style. The last example
is a piano accompaniment part, played in arpeggiato
style, which the fuzzy rules incorrectly identified as a
melody track. This track almost fired crisp rule R6,
except for the last condition of the rule, because its
TrackPolyphonyRate value is .097. This is a clear exam-
ple of why a fuzzy version of a crisp rule fires while
the crisp rule don’t. The value is accepted by the fuzzy
rule as linguistic term none for the TrackPolyphonyRate
attribute. This is because it lies into the support of the
fuzzy set corresponding to that term. See figure 5 for
some fuzzy set examples from the best evolved FIS.

VII. CONCLUSIONS AND FURTHER WORK

We presented an approach to automatic human-
readable melody characterization using fuzzy rules. We
considered MIDI files, and extracted a set of statis-
tical descriptors from MIDI files datasets. We then
applied a rule induction algorithm to obtain a set of
(crisp) classification rules for melody track identifica-
tion. Finally, we automatically transformed the crisp
rules into fuzzy rules by applying a genetic algorithm
to generate the membership functions for the rule
attributes. The classification accuracy of the resulting
fuzzy rule system is lower than the original crisp rule
system, but comprehensibility of the rues is improved.
We plan to improve the performance of the fuzzy
rule system by modifying (i.e. rising) the probability
threshold for firing a fuzzy rule. Also, enforcing more
than one fuzzy rule to be fired could help improve the
results. We plan to explore alternative approaches for
the rule fuzzyfication, e.g. by using information theory
measures.

ACKNOWLEDGMENTS

The authors want to thank Pablo Cingolani and
the rest of contributors to the jFuzzyLogic pack-
age (http://jfuzzylogic.sourceforge.net) we used to
implement our fuzzy rule systems. Also we want
to thank Klaus Meffert et al. as major contribu-
tors to the Java Genetic Algorithms Package, JGAP
(http://jgap.sourceforge.net), the one we used to imple-
ment our GA experiments. Last, but not least, thanks
to the people at University of Waikato behind the weka
project (http://www.cs.waikato.ac.nz/ml/weka/), used
to build our crisp rule models.

This work is supported by the projects: GV06/166
and CICyT TIN2006–14932–C02, partially supported by
EU ERDF.

REFERENCES

[1] A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith, “Query by
humming: Musical information retrieval in an audio database,”
in Proc. of 3rd ACM Int. Conf. Multimedia, 1995, pp. 231–236.

[2] J. Eggink and G. J. Brown, “Extracting melody lines from
complex audio,” in ISMIR, 2004.

[3] I.Karydis, A.Nanopoulos, A.Papadopoulos, E. Cambouropoulos,
and Y. Manolopoulos, “Horizontal and vertical integra-
tion/segregation in auditory streaming: a voice separation
algorithm for symbolic musical data,” in Proceedings 4th Sound
and Music Computing Conference (SMC’2007), Lefkada, 2007.

[4] M. Tang, C. L. Yip, and B. Kao, “Selection of melody lines
for music databases.” in Proceedings of Annual Int. Computer
Software and Applications Conf. COMPSAC, 2000, pp. 243–248.

[5] S. T. Madsen and G. Widmer, “Towards a computational model
of melody identification in polyphonic music.” in 20th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2007),
2007, pp. 459–464.

[6] E. Toch, La melodía (translation of ’Melodielehre’, 1923). Span-
Press Universitaria, 1997.

[7] S. Sadie and G. Grove, The New Grove Dictionary of Music and
Musicians. Macmillan, 1084.

[8] E. Selfridge-Field, Conceptual and representational issues in
melodic comparison, ser. Computing in Musicology. Cambridge,
Massachusetts: MIT Press, 1998, vol. 11, pp. 3–64.

[9] M.Baroni, Proposal for a Grammar of Melody: The Bach
Chorales. Les Presses de l’Université de Montréal, 1978.

[10] D. Cope, Experiments in Musical Intelligence. New York, NY,
USA: Cambridge University Press, 1996, vol. 2, no. 1.

[11] E.Narmour, The Analysis and Cognition of Basic Melodic Struc-
tures. University Of Chicago Press, 1990.

[12] Y. E. Kim, W. Chai, R. Garcia, and B. Vercoe, “Analysis of a
contour-based representation for melody,” in ISMIR, 2000.

[13] A. E. Gomez, A. Klapuri and B.Meudic, “Melody description and
extraction in the context of music content processing,” Journal
of New Music Research (JNMR), vol. 32-1, 2003.

[14] D. Temperley, The Cognition of Basic Musical Structures. The
MIT Press, 2004.

[15] P. J. Ponce de León, D. Rizo, and J. M. Iñesta, “Towards a
human-friendly melody characterization by automatically in-
duced rules,” in Proceedings of the 8th International Conference
on Music Information Retrieval, S. Dixon, D. Brainbridge, and
R. Typke, Eds. Vienna: Austrian Computer Society, September
2007, pp. 437–440.

[16] D. Rizo, P. J. Ponce de León, C. Pérez-Sancho, A. Pertusa,
and J. M. Iñesta, “A pattern recognition approach for melody
track selection in midi files,” in Proc. of the 7th Int. Symp. on
Music Information Retrieval ISMIR 2006, T. A. Dannenberg R.,
Lemström K., Ed., Victoria, Canada, 2006, pp. 61–66, iSBN: 1-
55058-349-2.

[17] W. W. Cohen, “Fast effective rule induction,” Machine Learning:
Proceedings of the Twelfth International Conference, 1995.

[18] O. Cordón and F. Herrera, “A general study on genetic fuzzy
systems,” in Genetic Algorithms in Engineering and Computer
Science, J. Smith, Ed. John Wiley & Sons, 1995, ch. 3, pp. 33–
57.



[19] M. Makrehchi, O. A. Basir, and M. Kamel, “Generation of fuzzy
membership function using information theory measures and
genetic algorithm,” in Fuzzy Sets and Systems - IFSA 2003, ser.
Lecture Notes in Computer Science, T. Bilgiç, B. D. Baets, and
O. Kaynak, Eds., vol. 2715. Springer, 2003, pp. 603–610.

[20] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC music
database: Music genre database and musical instrument sound
database.” in ISMIR, 2003.

[21] ——, “RWC music database: Popular, classical and jazz music
databases.” in ISMIR, 2002.

[22] A. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal Arrays:
Theory and Applications, 1st ed. Springer, 1999.

APPENDIX

TABLE VIII

TRACK CLASSIFICATION EXAMPLES.

True positive examples
Air In F, Watermusic, Handel (Baroque)
Melody

4

Crisp: –
Fuzzy: FR6
There Is No Greater Love, I. Jones (pre-Bop Jazz)
Melody

Crisp: R2, R5
Fuzzy: FR4, FR6

True negative examples
Air In F, Watermusic
Bass

Crisp: –
Fuzzy: –
There Is No Greater Love
Piano (accompaniment)

Crisp: –
Fuzzy: –

False negative example
Satin Doll, D. Ellington (pre-Bop Jazz)
Melody

3
33

34
3 3

Crisp: R2
Fuzzy: –

False positive example
Sonata no. 3 K545, 2nd Mov., W.A. Mozart (Classicism)
Piano (accompaniment)

3 333
3

3
33 3

4
3

3
3

4
3

3 33 3
3

33

Crisp: –
Fuzzy: FR6

Fig. 5. Fuzzy set examples from the best evolved fuzzy rule system.



TABLE IX

FUZZY RULES EQUIVALENT TO THOSE SHOWN IN TABLE II

Name Rule Name Rule

FR1 IF (AvgPitch IS high OR AvgPitch IS veryHigh) FR2 IF (AvgPitch IS high OR AvgPitch IS veryHigh)
AND (TrackOccupationRate IS NOT void) AND (TrackOccupationRate IS NOT void)
AND (TrackOccupationRate IS NOT low) AND (TrackOccupationRate IS NOT low)
AND (AvgAbsInterval IS NOT fourth) AND (TrackPolyphonyRate IS NOT average)
AND (AvgAbsInterval IS NOT high) AND (TrackPolyphonyRate IS NOT high)
AND (TrackNumNotes IS high) AND (TrackPolyphonyRate IS NOT all)
THEN IsMelody IS true AND (NormalizedDistinctIntervals IS highest)

THEN IsMelody IS true
FR3 IF (AvgPitch IS high OR AvgPitch IS veryHigh) FR4 IF (AvgPitch IS high OR AvgPitch IS veryHigh)

AND (TrackNumNotes IS high) AND (TrackOccupationRate IS NOT void)
AND (LowestNormalizedDuration IS shortest) AND (TrackOccupationRate IS NOT low)
AND (ShortestDuration IS NOT low) AND (AvgAbsInterval IS NOT third)
AND (NormalizedDistinctIntervals IS highest) AND (AvgAbsInterval IS NOT fourth)
THEN IsMelody IS true AND (AvgAbsInterval IS NOT high)

AND (TrackSyncopation IS NOT few)
AND (StdDeviationPitch IS NOT high)
THEN IsMelody IS true

FR5 IF (AvgAbsInterval IS NOT fourth) FR6 IF (AvgPitch IS NOT veryLow)
AND (AvgAbsInterval IS NOT high) AND (AvgPitch IS NOT low)
AND (TrackSyncopation IS alot) AND (TrackOccupationRate IS NOT void)
AND (LowestNormalizedPitch IS NOT low) AND (TrackOccupationRate IS NOT low)
AND (DistinctIntervals IS alot) AND (AvgAbsInterval IS NOT third)
AND (TrackNormalizedDuration IS largest) AND (AvgAbsInterval IS NOT fourth)
THEN IsMelody IS true AND (AvgAbsInterval IS NOT high)

AND (TrackPolyphonyRate IS none)
AND (TrackNumNotes IS NOT low)
THEN IsMelody IS true


