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Francisco Moreno-Seco, José M. Iñesta, Pedro J. Ponce de León, and Luisa
Micó
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Abstract. This work presents a comparison of current research in the
use of voting ensembles of classifiers in order to improve the accuracy
of single classifiers and make the performance more robust against the
difficulties that each individual classifier may have. Also, a number of
combination rules are proposed. Different voting schemes are discussed
and compared in order to study the performance of the ensemble in each
task. The ensembles have been trained on real data available for bench-
marking and also applied to a case study related to statistical description
models of melodies for music genre recognition.

1 Introduction

Combining classifiers is one of the most widely explored methods in pattern
recognition in the recent years. These techniques have been shown to reduce the
error rate in classification tasks in opossite to single classifiers. Also, the com-
bination of different techniques to make a final decision makes the performance
of the system more robust against the difficulties that each individual classifier
may have on each particular data set. Different reasons have been argued for
this behaviour, amongst others, statistical, computational or representational
reasons [1].

Several different approaches have been used to obtain classifier ensembles.
As stated in a recent work by Duin [2], base classifiers should be different, but
they should be comparable as well. Also, works on this subject point out the im-
portance of the concept of diversity in classifier ensembles, with respect to both
classifier outputs and structure [3–6]. This points out that a trade-off between
comparability and diversity is desirable when combining different classifiers.

Classifiers for an ensemble can be generated using different initializations (like
in neural networks), different parameter choices (like the number of neighbors in
the k-NN rule), different classification schemes or, for example, different training
sets from the same target problem. A set of classifiers generated in one of these
ways is called to be consistent.
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In this work, the base classifiers used to combine are comparable in terms
that they are applied to the same data sets and using the same partitioning,
and are diverse since they come from different pattern recognition paradigms:
a k-nearest-neighbor (k-NN), a multi-layer perceptron (MLP), a support vector
machine (SVM), a decision tree (DT), and a näıve Bayes classifier (NB). All the
base classifiers have been trained in the same feature spaces and with the same
training set.

Current research and new proposals on the decision combination of the base
classifiers is presented in this paper. First, the classification techniques based
on them are described, along with the different ensemble schemes for combining
classifier decisions. Following this, the results for the ensembles are presented
and compared with single classifier results for data sets from the UCI/Statlog
project [7], and for a data set based on the classification of music styles using
MIDI files. Finally, the conclusions drawn from the results are discussed, pointing
the research to further work lines.

2 Base classifiers

Five conceptually different classification techniques have been used in this work:
the k-nearest-neighbour classifier (k-NN), the naive Bayesian classifier (NB), a
support vector machine (SVM), a multi-layer perceptron (MLP), and a decision
tree (DT). For the first case, given a sample xi, the distances to the prototypes in
the training set are computed, and the class labels of the closest k are taken into
account to classify the sample into the most frequent class among them. After
some initial testing on the performance of this particular classifier on some of
the utilized datasets, a single value k = 3 was established for this classifier in
all the experiments for simplicity. The rest of the classifiers have been applied
using the default parameters established for them in the open source software
project WEKA, using the Explorer interface [8]. The decision tree is the J48.

Each base classifier has been trained using the same training set, and its
accuracy has been estimated using the same test set. Two methods have been
used to train the classifiers, and the ensembles: first, for the UCI/Statlog project
data sets, a total of 50 pairs of train/test sets were generated, using 10 random
seeds for generating 5 cross-validation pairs (with approximately an 80% of the
data for training, and the rest for testing). The base classifiers have been run 50
times with different train and test sets from the same data (each data sample
has been classified 10 times). The error rate of the classifier has been estimated
by counting the total number of errors over the 50 experiments, divided by the
total number of samples classified (that is 10 times the size of the data set).

Once the ensembles have been trained with the UCI/Statlog project data sets,
a validation experiment has been run, using a new random seed for generating
another 5 pairs of train/test sets. The base classifiers have also been run with
the validation data, in order to obtain a reference. Obviously, the validation data
is not unseen data for the classifiers, as it should be, but the results can be a
reference for future experiments on completely unseen data.
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The training of the base classifiers in the music genre classification task was
made under a more realistic approach: each data set has been divided into 5
subsets with approximately the same size. The division has been made at the
level of MIDI files. Given the 5 subsets, 3 of them have been used to train
the classifier, 1 for test (and for training the ensembles), and the last one for
validation. The partitions have been rotated 5 times, in order to obtain more
significant results.

3 Ensemble design: voting schemes

Designing a suitable method of decision combinations is a key point for the
ensemble’s performance. In this paper, different possibilities have been explored
and compared. In particular, several weighted voting methods, along with the
unweighted plurality vote (the most frequent class is the winner class). In the
discussion that follows, N stands for the number of samples, contained in the
training set X = {x}N

i=1, M is the number of classes in a set C = {cj}M
j=1, and

K classifiers, Ck, are utilized.

ek ek ek

ak ak ak

0 N(1−1/M)

1 1 1

eWeB eWeB

0

Fig. 1. Different models for giving the authority (ak) to each classifier in the ensemble
as a function of the number of errors (ek) made on the training set.

3.1 Unweighted methods

1. Plurality vote (PV). Is the simplest method. Just count the number of deci-
sions for each class and assign the sample xi to the class cj that obtained the
highest number of votes. The problem here is that all the classifiers have the
same ‘authority’ regardless of their respective abilities to classify properly. In
terms of weights it can be considered that wk = 1/K ∀k.

3.2 Weighted methods

2. Simple weighted vote (SWV). The decision of each classifier, Ck, is weighted
according to its estimated accuracy (the proportion of successful classifications,
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αk) on the training set [9]. This way, the authority for Ck is just ak = αk. Then,
its weight wk is:

wk =
ak∑
l al

(1)

Also for the rest of weighting schemes presented here (except the last one),
the weights are the normalized values for ak, as shown in this equation.

The weak point of this scheme is that an accuracy of 0.5 in a two-class
problem still has a fair weight although the classifier is actually unable to predict
anything useful. This scheme has been used in other works [10] where the number
of classes is rather high. In those conditions this drawback may not be evident.

3. Re-scaled weighted vote (RSWV). The idea is to assign a zero weight to clas-
sifiers that only give N/M or less correct decisions on the training set, and scale
the weight values proportionally. As a consequence, classifiers with an estimated
accuracy αk ≤ 1/M are actually removed from the ensemble. The values for the
authority are computed according to the line displayed in figure 1-left. Thus, if
ek is the number of errors made by Ck, then

ak = max{0, 1− M · ek

N · (M − 1)
}

4. Best-worst weighted vote (BWWV). In this ensemble, the best and the worst
classifiers in the ensemble are identified using their estimated accuracy. A max-
imum authority, ak = 1, is assigned to the former and a null one, ak = 0, to the
latter, being equivalent to remove this classifier from the ensemble. The rest of
classifiers are rated linearly between these extremes (see figure 1-center). The
values for ak are calculated as follows:

ak = 1− ek − eB

eW − eB
,

where
eB = min

k
{ek} and eW = max

k
{ek}

5. Quadratic best-worst weighted vote (QBWWV). In order to give more author-
ity to the opinions given by the most accurate classifiers, the values obtained by
the former approach are squared (see figure 1-right). This way,

ak = (
eW − ek

eW − eB
)2 .

6. Weighted majority vote (WMV) The theorem 4.1 of Kuncheva’s book [11, p.
124] states that accuracy of the ensemble is maximized by assigning weights

wk ∝ log
αk

1− αk
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where αk is the individual accuracy of the classifier. In order to use a voting
method of this type as a reference for the previously proposed methods (numbers
3 to 5), in this case the weight of each classifier is computed as:

wk = log
αk

1− αk

Classification by the weighted methods. Once the weights for each classifier
decision have been computed, the class receiving the highest score in the voting
is the final class prediction. If ĉk(xi) is the prediction of Ck for the sample xi,
then the prediction of the ensemble can be computed as

ĉ(x) = arg max
cj∈C

∑

k

wkδ(ĉk(xi), cj) , (2)

being δ(a, b) = 1 if a = b and 0 otherwise.
Since the weights represent the normalized authority of each classifier, it

follows that
∑M

k=1 wk = 1. This makes it possible to interpret the sum in Eq. 2
as P (xi|cj), the probability that xi is classified into cj .

4 Experiments

Two different experiments have been carried out in order to compare the voting
schemes proposed (numbers 3 to 5) with those of reference (1, 2 and 6). The first
experiment tries to study the performance of the voting schemes when used with
benchmarking data. For that, 19 data sets from the public available UCI/Statlog
projects have been utilized. Each data set has been partitioned as explained in
section 2. In total, 50 pairs of train/test sets were generated, so a total number
of 50 experiments for each data set have been run in order to train the weights of
the ensembles. The error rates of each base classifier were computed as the total
number of errors made (on the 50 experiments) divided by the total number
of samples classified. Finally, in order to test the ensembles, another 5 pairs
of train/test sets were generated for validation. Recall from section 2 that the
validation data are not unseen data.

The table 1 presents the error rates of the validation experiments for the
datasets, with the best results for each data set emphasized in boldface. Note
that the result for the best single classifier classifier is showed as a reference.

To summarize the results, the ensembles outperform the best classifier in 8
out of 19 data sets, the best classifier wins in 5 data sets, and in the remaining
6 data sets they obtain the same error rate. Specially significant is the result for
the glass database, where the ensembles obtain an error rate which is almost 4%
below the error rate of the best classifier. Note that the quadratic best-worst
has performed the best, being 8 times one of the winner schemes. Note that the
best single classifier was not always the same (1 NB, 1 SVM, and 3 MLP) and
there are not analytic methods to decide which is the best classifier to be used
according to the data. Thus, the ensembles seem a better option for designing a
classification system.
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Data set PV SWV RSWV BWWV QBWWV WMV Best

australian 13.04 13.04 13.04 13.62 14.64 13.04 14.64 (SVM)

balance 12.64 11.36 11.36 10.56 10.56 11.20 8.80 (MLP)

cancer 3.37 3.37 3.37 3.37 3.37 3.37 3.22 (SVM)

diabetes 23.18 23.18 23.18 23.44 22.66 23.18 22.66 (SVM)

german 24.30 24.30 24.30 23.5 23.70 24.30 23.70 (SVM)

glass 32.71 30.84 30.84 28.51 29.91 28.51 32.24 (MLP)

heart 15.93 15.93 15.93 15.19 15.19 15.93 14.07 (NB)

ionosphere 9.12 9.12 9.12 11.11 11.11 9.12 9.40 (MLP)

liver 36.81 36.81 35.36 33.62 31.88 35.36 31.88 (MLP)

monkey1 3.60 3.60 0 0 0 0 0 (MLP)

phoneme 16.78 16.78 16.78 13.53 12.31 16.78 12.31 (3-NN)

segmen 3.51 3.07 3.07 2.55 2.55 3.07 3.77 (DT)

sonar 24.04 24.04 24.04 23.08 23.08 24.04 22.12 (MLP)

vehicle 21.75 21.04 21.04 20.33 20.33 20.33 18.91 (MLP)

vote 4.37 4.37 4.37 3.69 4.14 4.37 4.14 (DT)

vowel 14.02 11.74 11.74 5.87 4.92 5.68 4.92 (3-NN)

waveform21 14.74 14.70 14.70 13.36 13.3 14.70 13.30 (SVM)

waveform40 14.50 14.50 14.50 13.96 13.74 14.50 13.74 (SVM)

wine 1.69 1.69 1.69 2.25 2.25 1.69 1.69 (NB)

Table 1. Error rates (in %) of the different ensembles with the UCI/Statlog data sets,
together with the result of the best individual classifier (Best) column. The winning
classifications schemes in terms of accuracy for each data set have been highlighted.

A case study. In order to test on a real new problem the experiences we have
learned from the first study, the same approach is now applied to a real problem
related to music information retrieval. The goal is to classify a digital music
score into a set of genres. In this case, jazz and classical music have been con-
sider due to a general agreement among the experts about their definitions and
taxonomy. The JvC (Jazz vs. Classical) corpus is made up of samples extracted
from standard MIDI files1 files from jazz and classical music and it has been
already utilized in former works2 [12, 13].

MIDI files contain music in symbolic format (a sort of digital score). The
files used here contain a melody track from which descriptors are extracted. All
melodies are monophonic sequences of notes (at most one note is playing at any
time). The corpus is composed of a total of 150 MIDI files, 65 of them being
classical music and 85 being jazz. This dataset represents more than 8 hours of
music.

Each sample is a vector of musical descriptors for a number of feature cate-
gories that assess melodic, harmonic and rhythmic properties of a melody. These
descriptors are mainly descriptive statistics like, for example, average note pitch,

1 http://www.midi.org
2 This dataset is available for research purposes on request to the authors.
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standard deviation of note durations, pitch interval range, etc. A total of 28 de-
scriptors are available.

From the set of MIDI files two datasets have been built. The first one com-
posed of 150 samples, one sample per melody track. The second one is made up
of 7125 samples. For this second dataset, each sample corresponds to a fragment
of a melody, extracted applying a 50-bar wide sliding window on each melody
track. The window is shifted one bar at each time along the track, until the
end of the track is reached. Each time the window is shifted, a new sample is
extracted. Being ω the size of the window, the first dataset corresponds to a
value ω = ∞, and the second dataset for ω = 50.

The experiments with the JvC data sets have been carried out using a train,
test, and validation scheme. Random partitions are not advisable since for ω = 50
attention has to be paid to samples belonging to the same melody do not appear
in both training and test or validation. This fact would underestimate the error
estimation. Each data set has been splitted into 5 partitions (keeping in the
same partition those samples belonging to the same MIDI file). 3 of them have
been used for training, 1 for test, and the remaining one for validation. The
experiment has been repeated 5 times, rotating the partitions. The results of the
validation presented in table 2 are average error rates from the 5 experiments.

Ensemble/classifier Data set

JvC, ω = ∞ JvC, ω = 50

Plurality 7.33 9.28

SWV 7.33 9.28

RSWV 7.33 9.16

BWWV 6.00 6.31

QBWWV 6.00 8.29

WMV 6.00 9.46

3-NN 6.00 11.80

DT 13.33 15.66

MLP 8.00 13.30

NB 16.00 15.56

SVM 10.67 11.08

Table 2. Average error rates (in %) of the different ensembles with the JvC data sets,
together with the results of the base classifiers.

The results for ω = ∞ show that even when the best single classifier (the
3-NN classifier) is much better than all the other single classifiers, the ensembles
still perform adequately. For the ω = 50 data set, the ensembles perform much
better than any base classifier, specially the BWWV, which obtains an error rate
4.5% below the rate of the best classifier (SVM). The results shown in table 2
confirm that the ensembles performance is better in the general case (although
in some cases may be slightly worse than a single particular classifier).
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5 Conclusions

We have proposed three weighted voting methods (RSWV, BWWV, and QB-
WWV) for classifier ensembles, and we have tested their performance with the
UCI/Statlog project data sets (a widely known repository of real data sets), and
also with a case study of music genre classification. In both cases the proposed
ensembles have shown a more robust performance in general than individual
classifiers, and with some data sets the results of the best ensemble is much
better than that of a classifier.

Among all the voting schemes tested, the approaches based on scaling the
weights to a range established by the best and the worst classifiers have shown
the best classification accuracy in most of the data sets.

Future work includes a more adequate validation scheme for the UCI/Statlog
project data sets, and using more base classifiers for testing the ensembles. Also,
we plan to study more carefully the results of each ensemble on the data sets
to find out the reasons of the (good or bad) performance of the ensemble, and
develop new voting methods to improve these results.
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