
Learning Unbiased Stochastic Edit Distance in the form
of a Memoryless Finite-State Transducer∗

Jose Oncina†

Dep. de Lenguajes y Sistemas Informáticos, Universidad de Alicante, E-03071 Alicante (Spain)
Marc Sebban‡

EURISE, Universit́e de Saint-Etienne,
23 rue du Docteur Paul Michelon, 42023 Saint-Eienne (France)

Abstract

We aim at learning anunbiasedstochastic edit dis-
tance in the form of a finite-state transducer from
a corpus of (input,output) pairs of strings. Con-
trary to the other standard methods, which gener-
ally use the algorithm Expectation Maximization,
our algorithm learns a transducer independently on
the marginal probability distribution of theinput
strings. Such an unbiased way to proceed requires
to optimize the parameters of aconditional trans-
ducer instead of ajoint one. This transducer can be
very useful in many domains of pattern recognition
and machine learning, such as noise management,
or DNA alignment. Several experiments are car-
ried out with our algorithm showing that it is able
to correctly assess theoretical target distributions.

1 Introduction
Many applications dealing with sequences require to com-
pute the similarity of a pair (input,output) of strings. A
widely-used similarity measure is the well knownedit dis-
tance, which corresponds to the minimum number of oper-
ations,i.e. insertions, deletions, andsubstitutions, required
to transform theinput into theoutput. If this transformation
is based on a random phenomenon and then on an underly-
ing probability distribution, edit operations become random
variables. We call then the resulting similarity measure, the
stochastic edit distance.

An efficient way to model this distance consists in viewing
it as a stochastic transduction between the input and output al-
phabets[Ristad and Yianilos, 1998]. In other words, it means
that the relation constituted by the set of (input,output) strings

∗This work was supported in part by the IST Programme of the
European Community, under thePASCAL Network of Excellence,
IST-2002-506778. This publication only reflects the authors’ views.

†The author thanks the Generalitat Valenciana for partial support
of this work through project GV04B-631, this work was also sup-
ported by the Spanish CICyT trough project TIC2003-08496-C04,
partially supported by the EU ERDF.

‡This work was done when the author visited the Departamento
de Lenguajes y Sistemas Informáticos of the University of Alicante,
Spain. The visit was sponsored by the Spanish Ministry of Educa-
tion trough project SAB2003-0067.

can be compiled in the form of a 2-tape automaton, called a
stochastic finite-state transducer. Such a model is able to as-
sign a probability at each new pair of strings, and could be
then very useful to tackle many problems based on edit oper-
ations, such as segmentation, DNA alignment, classification,
noisy channel decoding, or more generally to handle noise
in sequences. Concerning this last case, note that Sakak-
ibara and Siromomey have characterized in[Sakakibara and
Siromoney, 1992] what they calledit noise, i.e. the result
of the corruption of an input string (into an output one) by
random errors of edit operations. In such a context, learn-
ing a transducer providing a probability to each couple (in-
put,output) of sequences would be very useful in domains
where the presence of noise has dramatic effects on the qual-
ity of the inferred models. This is the case in grammatical
inference, for instance, which requires either to remove or
correct noisy data to avoid overfitting phenomena. More gen-
erally, the main problem does not consist in finding domains
where such a model of stochastic edit distance could be effi-
ciently used, but rather in estimating the parameters of the
transducer itself. Actually, stochastic finite-state transduc-
ers suffer from the lack of a training algorithm. To the best
of our knowledge, the first published algorithm to automati-
cally learn the parameters of a stochastic transducer has been
proposed by Ristad and Yianilos[Ristad and Yianilos, 1996;
1998]. They provide a stochastic model which allows us to
learn a stochastic edit distance, in the form of a memoryless
transducer (i.e. with only one state), from a corpus of simi-
lar examples, using the Expectation Maximization (EM) al-
gorithm. During the last few years, the algorithm EM has
also been used for learning other transducer-based models
[Casacuberta, 1995; Clark, 2002; Eisner, 2002].

Ristad and Yianilos define the stochastic edit distance be-
tween two stringsx andy as (the minus logarithm of) thejoint
probability of the pair(x, y). In this paper, we claim that it
would be much more relevant to express the stochastic edit
distance from aconditionalprobability.

First, in order to correctly compute the edit distance, we
think that the probabilities of edit operations over a symbol
must be independent of those computed over another symbol.
In other words, if the transformation of a stringx into another
oney does not require many edit operations, it is expected
that the probability of the substitution of a symbol by itself
should be high. But, as the sum of the probabilities of all edit

operations is one, then the probability of the substitution of
another symbol by itself can not obviously be too large. Thus,
by using a joint distribution (summing to 1), one generates an
awkward dependence between edit operations.

Moreover, we think that the primitive edit costs of the
edit distance must be independent of thea priori distribu-
tion p(x) of the input strings. However,p(x) can be di-
rectly deduced from the joint distributionp(x, y), as follows:
p(x) =

∑
y∈Y ∗ p(x, y), whereY ∗ is the set of all finite

strings over the output alphabetY . This means that this infor-
mation is totally included in the joint distribution. By defining
the stochastic edit distance as a function of the joint probabil-
ity, as done in[Ristad and Yianilos, 1998], the edit costs are
then dependent ofp(x). However, if we use a conditional dis-
tribution, this dependence is removed, since it is impossible
to obtainp(x) from p(y|x) alone.

Finally, although it is sensible and practical to model the
stochastic edit distance by a memoryless transducer, it is pos-
sible that thea priori distributionp(x) may not be modeled
by such a very simple structure. Thus, by learning a trans-
ducer defining the joint distributionp(x, y), its parameters
can converge to compromise values and not to the true ones.
This can have dramatic effects from an application stand-
point. Actually, a widely-used solution to find an optimal
output stringy according to an input onex consists in first
learning the joint distribution transducer and later deducing
the conditional transducer dividing byp(x) (more precisely
by its estimates over the learning set). Such a strategy is then
irrelevant for the reason we mentioned above.

In this paper we have developed a way to learn directly
the conditional transducer. After some definitions and no-
tations (Section 2), we introduce in Section 3 the learning
principle of the stochastic edit distance proposed by Ristad
and Yianilos[Ristad and Yianilos, 1996; 1998]. Then, by
simulating different theoretical joint distributions, we show
that theunique way, using their algorithm, to find them con-
sists in sampling a learning set of (x, y) pairs according to the
marginal distribution (i.e. over the input strings) of the target
joint distribution itself. Moreover, we show that for all other
a priori distribution, the difference between the target and the
learned models increases. To free the method from this bias,
one mustdirectly learn at each iteration of the algorithm EM
the conditional distributionp(y|x). Achieving this task re-
quires to modify Ristad and Yianilos’s framework. That is
the goal of Section 4. Then, we carry out experiments that
show that it is possible to correctly estimate a target distribu-
tion whatever thea priori distribution we use.

2 Classic String Edit Distance
An alphabetX is a finite nonempty set of symbols.X∗ de-
notes the set of all finite strings overX. Let x ∈ X∗ be
an arbitrary string of length|x| over the alphabetX. In the
following, unless stated otherwise, symbols are indicated by
a, b, . . . , strings byu, v, . . . , z, and the empty string byλ.
R+ is the set of non negative reals. Letf(·) be a function,
from which [f(x)]π(x,...) is equal tof(x) if the predicate
π(x, . . .) holds and 0 otherwise, wherex is a (set of) dummy
variable(s).

A string edit distance is characterized by a triple(X, Y, ce)
consisting of the finite alphabetsX andY and the primitive
cost functionce : E → R+ whereE = Es ∪ Ed ∪ Ei is the
alphabet of primitive edit operations,Es = X × Y , is the set
of substitutions,Ed = X × {λ} is the set of deletions,Ei =
{λ} × Y is the set of insertions. Each such triple(X, Y, ce)
induces a distance functiond : X∗ × Y ∗ → R+ that maps a
pair of strings to a non negative real value. The edit distance
d(x, y) between two stringsx ∈ X andy ∈ Y is defined
recursively as:

d(x, y) = min

[ce(a, b) + d(x′, y′)]x=x′a∧y=y′b

[ce(a, λ) + d(x′, y)]x=x′a

[ce(λ, y) + dc(x, y′)]y=y′b

Note thatd(x, y) can be computed inO(|x|·|y|) time using
dynamic programming.

3 Stochastic Edit Distance and Memoryless
Transducers

If the edit operations are achieved according to a random pro-
cess, the edit distance is then called thestochastic edit dis-
tance, and notedds(x, y). Since the underlying probability
distribution is unknown, one solution consists in learning the
primitive edit costs by means of a suited model. In this pa-
per, we used memoryless transducers. Transducers are cur-
rently used in many applications ranging from lexical ana-
lyzers, language and speech processing, etc. They are able
to handle large amount of data, in the form of pairs of (x, y)
sequences, in a reasonable time complexity. Moreover, as-
suming that edit operations are randomly and independently
achieved (that is the case in the edit noise[Sakakibara and
Siromoney, 1992]), a memoryless transducer is sufficient to
model the stochastic edit distance.

3.1 Joint Memoryless Transducers
A joint memoryless transducer defines a joint probability dis-
tribution over the pairs of strings. It is denoted by a tuple
(X, Y, c, γ) where X is the input alphabet,Y is the out-
put alphabet,c is the primitive joint probability function,
c : E → [0, 1] andγ is the probability of the termination
symbol of a string. As(λ, λ) 6∈ E, in order to simplify the
notations, we are going to usec(λ, λ) andγ as synonyms.

Let us assume for the moment that we know the probability
function c (in fact, we will learn it later). We are then able
to compute the joint probabilityp(x, y) of a pair of strings
(x, y). Actually, the joint probabilityp : X∗ × Y ∗ → [0, 1]
of the stringsx, y can be recursively computed by means of
an auxiliary function (forward)α : X∗ × Y ∗ → R+ as:

α(x, y) = [1]x=λ∧y=λ

+ [c(a, b) · α(x′, y′)]x=x′a∧y=y′b

+ [c(a, λ) · α(x′, y)]x=x′a

+ [c(λ, b) · α(x, y′)]y=y′b.

And then,

p(x, y) = α(x, y)γ.

In a symmetric way,p(x, y) can be recursively computed
by means of an auxiliary function (backward)β : X∗×Y ∗ →
R+ as:

β(x, y) = [1]x=λ∧y=λ

+ [c(a, b) · β(x′, y′)]x=ax′∧y=by′

+ [c(a, λ) · β(x′, y)]x=ax′

+ [c(λ, b) · β(x, y′)]y=by′ .

And then,

p(x, y) = β(x, y)γ.

Both functions (forward and backward) can be computed
in O(|x| · |y|) time using a dynamic programming technique.
This model defines a probability distribution over the pairs
(x, y) of strings. More precisely,∑

x∈X∗

∑

y∈Y ∗
p(x, y) = 1,

that is achieved if the following conditions are fulfilled[Ris-
tad and Yianilos, 1998],

γ > 0, c(a, b), c(λ, b), c(a, λ) ≥ 0 ∀a ∈ X, b ∈ Y∑

a∈X∪{λ}
b∈Y ∪{λ}

c(a, b) = 1

Givenp(x, y), we can then compute, as mentioned in[Ris-
tad and Yianilos, 1998], the stochastic edit distance between
x andy. Actually, the stochastic edit distanceds(x, y) is de-
fined as being the negative logarithm of the probability of
the string pairp(x, y) according to the memoryless stochastic
transducer.

ds(x, y) = − log p(x, y),∀x ∈ X∗, ∀y ∈ Y ∗

In order to computeds(x, y), a remaining step consists in
learning the parametersc(a, b) of the memoryless transducer,
i.e. the primitive edit costs.

3.2 Optimization of the parameters of the joint
memoryless transducer

Let S be a finite set of (x, y) pairs ofsimilar strings. Ristad
and Yianilos[Ristad and Yianilos, 1998] propose to use the
expectation-maximization (EM) algorithm to find the optimal
joint stochastic transducer. The EM algorithm consists in two
steps (expectation and maximization) that are repeated until a
convergence criterion is achieved.

Given an auxiliary(|X| + 1) × (|Y | + 1) matrix δ, the
expectation step can be described as follows:∀a ∈ X, b ∈ Y ,

δ(a, b) =
∑

(xax′,yby′)∈S

α(x, y)c(a, b)β(x′, y′)γ
p(xax′, yby′)

δ(λ, b) =
∑

(xx′,yby′)∈S

α(x, y)c(λ, b)β(x′, y′)γ
p(xx′, yby′)

δ(a, λ) =
∑

(xax′,yy′)∈S

α(x, y)c(a, λ)β(x′, y′)γ
p(xax′, yy′)

δ(λ, λ) =
∑

(x,y)∈S

α(x, y)γ
p(x, y)

= |S|,

c∗(a, b) λ a b c d c∗(a)
λ 0.00 0.05 0.08 0.02 0.02 0.17
a 0.01 0.04 0.01 0.01 0.01 0.08
b 0.02 0.01 0.16 0.04 0.01 0.24
c 0.01 0.02 0.01 0.15 0.00 0.19
d 0.01 0.01 0.01 0.01 0.28 0.32

Table 1: Target joint distributionc∗(a, b) and its correspond-
ing marginal distributionc∗(a).

and the maximization as:

c(a, b) =
δ(a, b)

N
∀a ∈ X ∪ {λ}, ∀b ∈ Y ∪ {λ}

where

N =
∑

a∈X∪{λ}
b∈Y ∪{λ}

δ(a, b).

3.3 Limits of Ristad and Yianilos’s algorithm

To analyze the ability of Ristad and Yianilos’s algorithm to
correctly estimate the parameters of a target joint memoryless
transducer, we have implemented it and carried out a series of
experiments. Since the joint distributionp(x, y) is a function
of the learned edit costsc(a, b), we only focused here on the
functionc of the transducer.

The experimental setup was the following. We simu-
lated a target joint memoryless transducer from the alpha-
betsX = Y = {a, b, c, d}, such as∀a ∈ X ∪ {λ},∀b ∈
Y ∪ {λ}, the target model is able to return the primitive the-
oretical joint probabilityc∗(a, b). The target joint distribu-
tion we used is described in Table 11. The marginal dis-
tribution c∗(a) can be deduced from this target such that:
c∗(a) =

∑
b∈X∪{λ} c∗(a, b).

p(#)

a: p(a)
b: p(b)
c: p(c)
d: p(d)

Figure 1: Automaton used for generating the input sequences.
The probabilityp(#) corresponds to the probability of a ter-
mination symbol of a string, or in other words the probability
of the state to be final.

1Note that we carried out many series of experiments with vari-
ous target joint distributions, and all the results we obtained follow
the same behavior as the one presented in this section.

Then, we sampled an increasing set of learning input
strings (from 0 to 4000 sequences) of variable length gener-
ated from a given probability distributionp(a) over the input
alphabetX. In order to simplify, we modeled this distribution
in the form of an automaton with only one state2 and|X| out-
put transitions with randomly chosen probabilities satisfying
that

∑
a∈X p(a) + p(#) = 1, wherep(#) corresponds to the

probability of a termination symbol of a string (see Figure 1).
We used different settings for this automaton to analyze

the impact of the input distributionp(a) on the learned joint
model. Then, given an input sequencex (generated from this
automaton) and the target joint distributionc∗(a, b), we sam-
pled a corresponding outputy. Finally, the setS of generated
(x, y) pairs was used by Ristad and Yianilos’s algorithm to
learn an estimated primitive joint distributionc(a, b).

We compared the target and the learned distributions to an-
alyze the behavior of the algorithm to correctly assess the
parameters of the target joint distribution. We computed an
average difference between the both, defined as follows:

d(c, c∗) =

∑
a∈X∪{λ}

∑
b∈Y ∪{λ} |c(a, b)− c∗(a, b)|

2

Normalized in this way,d(c, c∗) is a value in the range
[0, 1]. Figure 2 shows the behavior of this difference accord-
ing to various configurations of the automaton of Figure 1.
We can note that the unique way to converge towards a differ-
ence near from 0 consists in using the marginal distribution
c∗(a) of the target for generating the input strings. For all the
other ways, the difference becomes very large.

As we said at the beginning of this article, we can easily
explain this behavior. By learning the primitive joint proba-
bility function c(a, b), Ristad and Yianilos learn at the same
time the marginal distributionc(a). The learned edit costs
(and the stochastic edit distance) are then dependent of thea
priori distribution of the input strings, that is obviously awk-
ward. To free of this statistical bias, we have to learn the
primitive conditional probability function independently of
the marginal distribution. That is the goal of the next section.

4 Unbiased Learning of a Conditional
Memoryless Transducer

A conditional memoryless transducer is denoted by a tuple
(X, Y, c, γ) whereX is the input alphabet,Y is the output
alphabet,c is the primitive conditional probability functionc :
E → [0, 1] andγ is the probability of the termination symbol
of a string. As in the joint case, since(λ, λ) 6∈ E, in order to
simplify the notation we useγ andc(λ|λ) as synonyms.

The probabilityp : X∗ × Y ∗ → [0, 1] of the stringy as-
suming the input one was ax (notedp(y|x)) can be recur-
sively computed by means of an auxiliary function (forward)

2Here also, we tested other configurations leading to the same
results.

α : X∗ × Y ∗ → R+ as:

α(y|x) = [1]x=λ∧y=λ

+ [c(b|a) · α(y′|x′)]x=x′a∧y=y′b

+ [c(λ|a) · α(y|x′)]x=x′a

+ [c(b|λ) · α(y′|x)]y=y′b.

And then,

p(y|x) = α(y|x)γ.

In a symmetric way,p(y|x) can be recursively computed by
means of an auxiliary function (backward)β : X∗ × Y ∗ →
R+ as:

β(y|x) = [1]x=λ∧y=λ

+ [c(b|a) · β(y′|x′)]x=ax′∧y=by′

+ [c(λ|a) · β(y|x′)]x=ax′

+ [c(b|λ) · β(y′|x)]y=by′ .

And then,

p(y|x) = β(y|x)γ.

As in the joint case, both functions can be computed inO(|x|·
|y|) time using a dynamic programming technique. In this
model a probability distribution is assigned conditionally to
each input string. Then∑

y∈Y ∗
p(y|x) ∈ {1, 0} ∀x ∈ X∗.

The0 is in the case the input stringx is not in the domain of
the function3. It can be show (see Annex) that the normal-
ization of each conditional distribution can be achieved if the
following conditions over the functionc and the parameterγ
are fulfilled,

γ > 0, c(b|a), c(b|λ), c(λ|a) ≥ 0 ∀a ∈ X, b ∈ Y (1)∑

b∈Y

c(b|λ) +
∑

b∈Y

c(b|a) + c(λ|a) = 1 ∀a ∈ X (2)

∑

b∈Y

c(b|λ) + γ = 1 (3)

As in the joint case, the expectation-maximization algorithm
can be used in order the find the optimal parameters. The
expectation step deals with the computation of the matrixδ:

δ(b|a) =
∑

(xax′,yby′)∈S

α(y|x)c(b|a)β(y′|x′)γ
p(yby′|xax′)

δ(b|λ) =
∑

(xx′,yby′)∈S

α(y|x)c(b|λ)β(y′|x′)γ
p(yby′|xx′)

δ(λ|a) =
∑

(xax′,yy′)∈S

α(y|x)c(λ|a)β(y′|x′)γ
p(yy′|xax′)

δ(λ|λ) =
∑

(x,y)∈S

α(y|x)γ
p(y|x)

= |S|.

3If p(x) = 0 thenp(x, y) = 0 and asp(y|x) = p(x,y)
p(x)

we have

a 0
0

indeterminism. We chose to solve it taking0
0

= 0, in order to
maintain

P
y∈Y ∗ p(y|x) finite.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 500 1000 1500 2000 2500 3000 3500 4000

D
is

ta
nc

e
be

tw
ee

n
th

eo
re

tic
al

 a
nd

 le
ar

nt
 tr

an
sd

uc
er

s

Number of Strings

a (0.08) b (0.24) c (0.19) d (0.32) # (0.17)
a (0.06) b (0.28) c (0.03) d (0.32) # (0.31)
a (0.07) b (0.28) c (0.01) d (0.40) # (0.24)
a (0.12) b (0.15) c (0.26) d (0.14) # (0.32)
a (0.28) b (0.23) c (0.15) d (0.02) # (0.32)

Figure 2: Average difference between the target and the learned distributions according to various generations of the input
strings.

In order to do the maximization step, we begin by normal-
izing the insertion cost because it appears in both normaliza-
tion equations (eq. 2 and eq. 3). Then:

c(b|λ) =
δ(b|λ)

N

where
N =

∑

a∈X∪{λ}
b∈Y ∪{λ}

δ(b|a)

The value ofγ is now fixed by eq. 3 as:

γ =
N −N(λ)

N

where
N(λ) =

∑

b∈Y

δ(b|λ)

andc(b|a) andc(λ|a) are obtained working out the values in
eq. 2 and distributing the probability proportionally to their
respective expectationsδ(b|a) andδ(λ|a). Then

c(b|a) =
δ(b|a)
N(a)

N −N(λ)
N

c(λ|a) =
δ(λ|a)
N(a)

N −N(λ)
N

where
N(a) =

∑

b∈Y ∪{λ}
δ(b|a).

We carried out experiments to assess the relevance of our
new learning algorithm to correctly estimate the parameters
of target transducers. We followed exactly the same experi-
mental setup as the one of Section 3.3, except to the defini-
tion of our differenced(c, c∗). Actually, as we said before,

our new framework estimates|X| conditional distributions.
Sod(c, c∗) is defined as follows :

d(c, c∗) =
(A + B |X|)

2 |X|
where

A =
∑

a∈X

∑

b∈Y ∪{λ}
|c(b|a)− c∗(b|a)|

and
B =

∑

b∈Y ∪{λ}
|c(b|λ)− c∗(b|λ)|

The results are shown in Figure 3. We can make the two
following remarks. First, the different curves clearly show
that the convergence toward the target distribution is inde-
pendent of the distribution of the input strings. Using differ-
ent parameter configurations of the automaton of Figure 1,
the behavior of our algorithm remains the same,i.e the dif-
ference between the learned and the target conditional distri-
butions tends to 0. Second, we can note thatd(c, c∗) rapidly
decreases,i.e. the algorithm requires few learning examples
to learn the target.

5 Conclusion
In this paper, we proposed a relevant approach for learning
the stochastic edit distance in the form of a memoryless trans-
ducer. While the standard techniques aim at learning a joint
distribution over the edit operations, we showed that such a
strategy induces a bias in the form of a statistical dependence
on the input string distribution. We overcame this drawback
by directly learning a conditional distribution of the primi-
tive edit costs. The experimental results bring to the fore the

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 500 1000 1500 2000 2500 3000 3500 4000

D
is

ta
nc

e
be

tw
ee

n
th

eo
re

tic
al

 a
nd

 le
ar

nt
 tr

an
sd

uc
er

s

Number of Strings

a (0.10) b (0.17) c (0.26) d (0.20) # (0.28)
a (0.09) b (0.29) c (0.04) d (0.27) # (0.31)
a (0.15) b (0.18) c (0.32) d (0.15) # (0.20)
a (0.23) b (0.32) c (0.13) d (0.05) # (0.27)
a (0.18) b (0.23) c (0.16) d (0.15) # (0.28)

Figure 3: Average difference between the target and the learned conditional distributions according to various generations of
the input strings.

interest of our approach. We think that our model is particu-
larly suited for dealing with noisy data. For this reason, we
now plan to use it on real world applications which often are
subject to the presence of noisy data.

6 Annex

We are going to show that eq. 1, 2 and 3 are sufficient to
satisfy

∑

y∈Y ∗
p(y|x) = 1.

Let us first consider the case whenx = λ.

∑

y∈Y ∗
α(y|λ) = 1 +

∑

yb∈Y ∗
α(yb|λ)

= 1 +
∑

yb∈Y ∗
c(b|λ)α(y|λ)

= 1 +
∑

b∈Y

c(b|λ)
∑

y∈Y ∗
α(y|λ)

then

∑

y∈Y ∗
α(y|λ)(1−

∑

b∈Y

c(b|λ)) = 1

∑

y∈Y ∗
α(y|λ) =

(
1−

∑

b∈Y

c(b|λ)

)−1

Let us now consider the complete case

∑

y∈Y ∗
α(y|xa) =

α(λ|xa) +
∑

yb∈Y ∗
α(yb|xa) =

c(λ|a)α(λ|x) +
∑

yb∈Y ∗
c(b|a)α(y|x)

+ c(b|λ)α(y|xa) + c(λ|a)α(yb|x) =∑

y∈Y ∗
c(λ|a)α(y|x) +

∑

b∈Y

c(b|a)
∑

y∈Y ∗
α(y|x)

+
∑

b∈Y

c(b|λ)
∑

y∈Y ∗
α(y|xa) =

(
c(λ|a) +

∑

b∈Y

c(b|a)

) ∑

y∈Y ∗
α(y|x)

+
∑

b∈Y

c(b|λ)
∑

y∈Y ∗
α(y|xa)

then

∑

y∈Y ∗
α(y|xa)

(
1−

∑

b∈Y

c(b|λ)

)
=

(
c(λ|a) +

∑

b∈Y

c(b|a)

) ∑

y∈Y ∗
α(y|x)

and∑

y∈Y ∗
α(y|xa) =

(
1−

∑

b∈Y

c(b|λ)

)−1 (
c(λ|a) +

∑

b∈Y

c(b|a)

) ∑

y∈Y ∗
α(y|x)

Applying this equation recursively on the length ofx and tak-
ing in account that the base case is

∑

y∈Y ∗
α(y|λ) =

(
1−

∑

b∈Y

c(b|λ)

)−1

we have∑

y∈Y ∗
α(y|a1 . . . an) =

n∏

i=1

(
1−

∑

b∈Y

c(b|λ)

)−1 (
c(λ|ai) +

∑

b∈Y

c(b|ai)

)

·
(

1−
∑

b∈Y

c(b|λ)

)−1

and∑

y∈Y ∗
p(y|a1 . . . an) =

n∏

i=1

(
1−

∑

b∈Y

c(b|λ)

)−1 (
c(λ|ai) +

∑

b∈Y

c(b|ai)

)

·
(

1−
∑

b∈Y

c(b|λ)

)−1

γ

A sufficient condition for
∑

y∈Y ∗ p(y|a1 . . . an) = 1 is
that each of the terms that appear in the productory is equal
to 1 and that the final product is also 1. Then,

(
1−

∑

b∈Y

c(b|λ)

)−1 (
c(λ|ai) +

∑

b∈Y

c(b|ai)

)
= 1

1−
∑

b∈Y

c(b|λ) = c(λ|ai) +
∑

b∈Y

c(b|ai)

∑

b∈Y

c(b|λ) + c(λ|ai) +
∑

b∈Y

c(b|ai) = 1

and we have equation 2, and
(

1−
∑

b∈Y

c(b|λ)

)−1

γ = 1

1−
∑

b∈Y

c(b|λ) = γ

γ +
∑

b∈Y

c(b|λ) = 1

and we have equation 3.
Note that these equations are not valid if

∑
b∈Y c(b|λ) = 1

but this is impossible sinceγ > 0.

References
[Casacuberta, 1995] Francisco Casacuberta. Probabilistic

estimation of stochastic regular syntax-directed translation
schemes. InProceedings of th VIth Spanish Symposium on
Pattern Recognition and Image Analysis, pages 201–207,
1995.

[Clark, 2002] Alexander Clark. Memory-based learning of
morphology with stochastic transducers. InProceedings
of the Annual meeting of the association for computational
linguistic, 2002.

[Eisner, 2002] Jason Eisner. Parameter estimation for prob-
abilistic finite-state transducers. InProceedings of the An-
nual meeting of the association for computational linguis-
tic, pages 1–8, 2002.

[Ristad and Yianilos, 1996] Eric Sven Ristad and Peter N.
Yianilos. Finite growth models. Technical Report CS-
TR-533-96, Princeton University Computer Science De-
partment, 1996.

[Ristad and Yianilos, 1998] Eric Sven Ristad and Peter N.
Yianilos. Learning string-edit distance.IEEE Trans. Pat-
tern Anal. Mach. Intell., 20(5):522–532, 1998.

[Sakakibara and Siromoney, 1992] Yasubumi Sakakibara
and Rani Siromoney. A noise model on learning sets of
strings. InCOLT ’92: Proceedings of the fifth annual
workshop on Computational learning theory, pages
295–302, 1992.

