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Abstract

We aim at learning annbiasedstochastic edit dis-
tance in the form of a finite-state transducer from
a corpus of ifiput,outpu} pairs of strings. Con-
trary to the other standard methods, which gener-
ally use the algorithm Expectation Maximization,
our algorithm learns a transducer independently on
the marginal probability distribution of thimput
strings. Such an unbiased way to proceed requires
to optimize the parameters ofcnditionaltrans-
ducer instead of int one. This transducer can be
very useful in many domains of pattern recognition
and machine learning, such as noise management,
or DNA alignment. Several experiments are car-
ried out with our algorithm showing that it is able
to correctly assess theoretical target distributions.

Introduction

pute the similarity of a pairifput,outpu} of strings. A
widely-used similarity measure is the well knowedit dis-

tance which corresponds to the minimum number of oper-

ations,i.e. insertions, deletionsandsubstitutions required

to transform thénputinto theoutput If this transformation

is based on a random phenomenon and then on an underl
ing probability distribution, edit operations become randomtr
variables. We call then the resulting similarity measure, thq

stochastic edit distance

An efficient way to model this distance consists in viewing
it as a stochastic transduction between the input and output
phabetgRistad and Yianilos, 1998In other words, it means

that the relation constituted by the setimigut,outpuj strings

can be compiled in the form of a 2-tape automaton, called a
stochastic finite-state transduceéduch a model is able to as-
sign a probability at each new pair of strings, and could be
then very useful to tackle many problems based on edit oper-
ations, such as segmentation, DNA alignment, classification,
noisy channel decoding, or more generally to handle noise
in sequences. Concerning this last case, note that Sakak-
ibara and Siromomey have characterizediSakakibara and
Siromoney, 199Pwhat they calledit noise i.e. the result
of the corruption of an input string (into an output one) by
random errors of edit operations. In such a context, learn-
ing a transducer providing a probability to each coujihe (
put,outpu} of sequences would be very useful in domains
where the presence of noise has dramatic effects on the qual-
ity of the inferred models. This is the case in grammatical
inference, for instance, which requires either to remove or
correct noisy data to avoid overfitting phenomena. More gen-
erally, the main problem does not consist in finding domains
where such a model of stochastic edit distance could be effi-
ciently used, but rather in estimating the parameters of the
fransducer itself. Actually, stochastic finite-state transduc-
ers suffer from the lack of a training algorithm. To the best
of our knowledge, the first published algorithm to automati-
cally learn the parameters of a stochastic transducer has been
proposed by Ristad and Yianil¢Ristad and Yianilos, 1996;
1994. They provide a stochastic model which allows us to
¥arn a stochastic edit distance, in the form of a memoryless
ansduceri(e. with only one state), from a corpus of simi-
ar examples, using the Expectation Maximization (EM) al-
gorithm. During the last few years, the algorithm EM has
Iso been used for learning other transducer-based models
Casacuberta, 1995; Clark, 2002; Eisner, 4002

Ristad and Yianilos define the stochastic edit distance be-
tween two strings: andy as (the minus logarithm of) theint
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operations is one, then the probability of the substitution of A string edit distance is characterized by a triflf¢ Y, c.)
another symbol by itself can not obviously be too large. Thusconsisting of the finite alphabef§ andY and the primitive
by using a joint distribution (summing to 1), one generates arcost functionc, : £ — Rt whereE = E, U E; U E; is the
awkward dependence between edit operations. alphabet of primitive edit operationg, = X x Y, is the set
Moreover, we think that the primitive edit costs of the of substitutionsE; = X x {\} is the set of deletiondy; =
edit distance must be independent of tagriori distribu- {A} x Y is the set of insertions. Each such trigl§, Y’ c.)
tion p(x) of the input strings. Howevern(z) can be di- induces a distance functieh: X* x Y* — R* that maps a
rectly deduced from the joint distributigr(, /), as follows:  pair of strings to a non negative real value. The edit distance
plx) = Zyey* p(x,y), whereY ™ is the set of all finite d(z,y) between two strings € X andy € Y is defined
strings over the output alphallét This means that this infor- recursively as:
mation is totally included in the joint distribution. By defining

the stochastic edit distance as a function of the joint probabil- [ce(a,b) + d(@', ¥')]a=arany=y'b

ity, as done ir[Ristad and Yianilos, 1998the edit costs are d(z,y) = min q [ce(a, A) + d(@', y)]a=ca

then dependent gf(z). However, if we use a conditional dis- [ceN y) + de(, ¥ y=yt

tribution, this dependence is removed, since it is impossible . . _
to obtainp(z) from p(y|z) alone. Note thatd(x, y) can be computed i@ (|z|-|y|) time using

Finally, although it is sensible and practical to model thedynamic programming.
stochastic edit distance by a memoryless transducer, it is pos-
sible that thea priori distributionp(z) may not be modeled 3 Stochastic Edit Distance and Memoryless
by such a very simple structure. Thus, by learning a trans-  Transducers
ducer defining the joint distributiop(x, y), its parameters _ . _ .
can converge to compromise values and not to the true onel,!1€ edit operations are achieved according to a random pro-

This can have dramatic effects from an application stand¢€SS: the dedit d(ij;tance is Sthen Cﬂ”ed fjwﬁh?‘SﬁC e%it g.il.s'
point. Actually, a widely-used solution to find an optimal {&nNc& and notedi,(z,y). Since the underlying probability

output stringy according to an input one consists in first distribution is unknown, one solution consists in learning the
learning the joint distribution transducer and later deducingg”m't've ed'é costs bylmeans ofda sunedTmodedI. In this pa-
the conditional transducer dividing k() (more precisely er,lwe usde_ memory esls_‘ transducers. rfans :,ICG_I’S lare cur-
by its estimates over the learning set). Such a strategy is th({ﬁmy used in many applications ranging from lexical ana-
yzers, language and speech processing, etc. They are able

irrelevant for the reason we mentioned above. handle | Cof data. in the f f vairsaf
In this paper we have developed a way to learn directI)}0 andie farge amount ot data, In the form o pairsafy)
sequences, in a reasonable time complexity. Moreover, as-

the conditional transducer. After some definitions and no- X ; . .
tations (Section 2), we introduce in Section 3 the Iearning&“mIng that edit operations are randomly and independently

principle of the stochastic edit distance proposed by Rista@ci€ved (that is the case in the edit ndiSakakibara and
and Yianilos[Ristad and Yianilos, 1996; 1988 Then, by iromoney, 199D, a memoryless transducer is sufficient to
simulating different theoretical joint distributions, we show model the stochastic edit distance.

that theunique way using their algorithm, to find them con- 3 1 j5int Memoryless Transducers

sists in sampling a learning set af, (/) pairs according to the
marginal distributioni(e. over the input strings) of the targe
joint distribution itself. Moreover, we show that for all other ; ; .

a priori distribution, the difference between the target and thd X ¥ ¢, 7) where X is the input alphabet)” is the out-
learned models increases. To free the method from this bia®Ut @lphabeétc is the primitive joint probability function,
one mustirectly learn at each iteration of the algorithm EM ¢ : £ — [0,1] and~y is the probability of the termination
the conditional distribution(y|z). Achieving this task re- SYmPol of astring. A, \) ¢ E, in order to simplify the

quires to modify Ristad and Yianilos’s framework. That is Notations, we are going to use\, A) andy as synonyms.
the goal of Section 4. Then, we carry out experiments thaf Let us assume for the moment that we know the probability
unction ¢ (in fact, we will learn it later). We are then able

show that it is possible to correctly estimate a target distribu- o - i )

tion whatever the priori distribution we use. to compute the joint probability(x, y) of a pair of strings
(x,y). Actually, the joint probabilityp : X* x Y* — [0, 1]

. . I of the stringse, y can be recursively computed by means of

2 Classic String Edit Distance an auxiliary function (forward) : X* x Y* — R" as:

An alphabetX is a finite nonempty set of symbols(* de-

t Ajoint memoryless transducer defines a joint probability dis-
tribution over the pairs of strings. It is denoted by a tuple

notes the set of all finite strings ovéf. Letx € X* be a(z,y) = [La=rny=r o
an arbitrary string of lengthz| over the alphabeX . In the + [e(a,b) - a(2’, ¥ )]o=arany=y'b
following, unless stated otherwise, symbols are indicated by + [e(a, ) - a(@’, y)] e—zra
a,b, ..., strings byu,v, ...,z and the empty string by.
gs e leNB) - e,y )]y

R™ is the set of non negative reals. Lgt:) be a function,
from which [f(z)]x(,...) is equal tof(x) if the predicate And then,

m(x,...) holds and O otherwise, wheteis a (set of) dummy
variable(s). p(z,y) = alz,y)y.



In a symmetric wayp(z, y) can be recursively computed

Iké)jrrr;g:\nsofanauxiliaryfunction(backwa;@i) X*xY* — C*(i’b) 0.0% 0.035 0.023 O.OCZ 0.0d2 C;(‘ll)7
_ i a 0.01|0.04|0.01]| 0.01] 0.01| 0.08
B, y) = [Ha=any=x b 0.02] 0.01] 0.16] 0.04| 0.01| 0.24
+ [e(a,b) - B(@", ¥')]w=az ny=by’ c 0.01] 002|001 0.15 0.00| 0.19
Fe(@ ) - By 1) d | 001]001]001]0.01] 028 0.32
+ [e(X0) - Bla, y)ly=by - Table 1: Target joint distribution* (a, b) and its correspond-
And then, ing marginal distributior*(a).

p(z,y) = Bz, y)7.
Both functions (forward and backward) can be computed o _
in O(|z| - |y|) time using a dynamic programming technique. &nd the maximization as:

This model defines a probability distribution over the pairs §(a,b)
(x,y) of strings. More precisely, c(a,b) = N Va € X U{A}LVbe Y U{\}
zEX* yey*
that is achieved if the following conditions are fulfilléRis- N = Z 0(a,b).
tad and Yianilos, 1998 aEXU{A}
v > 0,c(a,b),c(\b),c(a,\) >0 Vae X,beY beYU{M}
Z c(a,b) =1 3.3 Limits of Ristad and Yianilos’s algorithm
e X0 - . o :
bgyﬁ{{A; To analyze the ability of Ristad and Yianilos’s algorithm to

, , . correctly estimate the parameters of a target joint memoryless
Givenp(x,y), we can then compute, as mentionedRis-  ransducer, we have implemented it and carried out a series of
tad and Yianilos, 1998 the stochastic edit distance between experiments. Since the joint distributipiz, ) is a function

z andy. Actually, the stochastic edit distandg(z, y) is de-  of the learned edit costda, b), we only focused here on the
fined as being the negative logarithm of the probability offnctionc of the transducer.

the string paip(z, y) according to the memoryless stochastic  The experimental setup was the following. We simu-
transducer. lated a target joint memoryless transducer from the alpha-
ds(z,y) = —logp(z,y),Vx € X* Vye Y™ betsX =Y = {a,b,c,d}, such asva € X U {A\},Vb €
In order to computel, (, y), a remaining step consists in ¥ U {A}, the target model is able to return the primitive the-
learning the parametetga, b) of the memoryless transducer, oretical joint probabilityc*(a, b). The target joint distribu-

i.e. the primitive edit costs. tion we used is described in Tablé.1The marginal dis-
R o tribution ¢*(a) can be deduced from this target such that:
3.2 Optimization of the parameters of the joint c*(a) = Ypexupy € (a,b).

memoryless transducer

Let S be a finite set of £, y) pairs ofsimilar strings. Ristad
and Yianilos[Ristad and Yianilos, 1998ropose to use the
expectation-maximization (EM) algorithm to find the optimal
joint stochastic transducer. The EM algorithm consists in two
steps (expectation and maximization) that are repeated until a
convergence criterion is achieved.

Given an auxiliary(|X| + 1) x (|[Y| + 1) matrix ¢, the
expectation step can be described as followse X, b € Y,

o= 3 Ampdabiy)

v /
(zam/,yby’)es p(‘ral 7yby )
(5 A b _ OK(JU,y)C()\,b)ﬂ(ZJ,y/)’Y ) ) .
(A b) = Z plza’, yby) Figure 1: Automaton used for generating the input sequences.
(zz’,yby’)€S ’ The probabilityp(#) corresponds to the probability of a ter-
a(z,y)cla, \)B(x',y')y mination symbol of a string, or in other words the probability
6(a,\) = Z p(zaz’, gy of the state to be final.
(zazx’ ,yy’')ES ’
SN = Z oz, y)y e 'Note that we carried out many series of experiments with vari-
A p(z,y) 7 ous target joint distributions, and all the results we obtained follow

(w,y)€s the same behavior as the one presented in this section.



Then, we sampled an increasing set of learning inputy: X* x Y* — R" as:
strings (from 0 to 4000 sequences) of variable length gener- a(ylz) = [aerrger
ated from a given probability distributign(a) over the input PEANY=

alphabetX . In order to simplify, we modeled this distribution + [e(bla) - a(y'[2")]a=arany=y'b
in the form of an automaton with only one stagad| X | out- + [e(Na) - a(y|z")]smera
put transitions with randomly chosen probabilities satisfying bIA ,
thaty", . x p(a) +p(#) = 1, wherep(#) corresponds to the +[e(bA) - aly'2)]y=y's-
probability of a termination symbol of a string (see Figure 1).And then,

We used different settings for this automaton to analyze p(ylr) = a(y|z)y.

the impact of the input distribution(a) on the learned joint

: . .~ In a symmetric wa can be recursively computed b
model. Then, given an input sequencégenerated from this y yply|) y y y

means of an auxiliary function (backward): X* x Y* —

automaton) and the target joint distributiot{a,b), we sam-  p+ as:
pled a corresponding outpyt Finally, the sefS of generated '
(z,y) pairs was used by Ristad and Yianilos'’s algorithm to Blyle) = [Ha=any=r
learn an estimated primitive joint distributi@(a, b). + [e(bla) - B |2)] smaw’ Ay=by’
We compared the target and the learned distributions to an- Aa) - N
. . + [e(Ma) - B(ylz")]z=az
alyze the behavior of the algorithm to correctly assess the ,
parameters of the target joint distribution. We computed an + [e(bIN) - B [2)]y=by -

average difference between the both, defined as follows:  And then,

. p(ylz) = Blylz)y.

Laexupny Lvevuiag [0, 8) = ¢ (a,b)] As in the joint case, both functions can be compute@ x| -

2 ly|) time using a dynamic programming technique. In this

model a probability distribution is assigned conditionally to
Normalized in this wayd(c,c*) is a value in the range each input string. Then

0, 1]. Figure 2 shows the behavior of this difference accord- .
i[ng 10 various configurations of the automaton of Figure 1. Z plylr) € {1,0} Voe X"
We can note that the unique way to converge towards a differ- yey™
ence near from 0 consists in using the marginal distributiorThe0 is in the case the input stringis not in the domain of
c*(a) of the target for generating the input strings. For all thethe functiod. It can be show (see Annex) that the normal-
other ways, the difference becomes very large. ization of each conditional distribution can be achieved if the

As we said at the beginning of this article, we can easilyfollowing conditions over the functionand the parameter
explain this behavior. By learning the primitive joint proba- are fulfilled,
bility function c(a, b), Ristad and Yianilos learn at the same > 0, ¢(b|a), c(b|]A),c(Aa) >0 Vac X,beY (1)
time the marginal distributiom(a). The learned edit costs
(and the stochastic edit distance) are then dependent af the > c®lN) + > clbla) +e(Ma)=1 Vae X  (2)
priori distribution of the input strings, that is obviously awk- bey bey
ward. To free of this statistical bias, we have to learn the Z c(BA) +7 =1 ©)
primitive conditional probability function independently of
the marginal distribution. That is the goal of the next section

d(c,c*) =

bey

As in the joint case, the expectation-maximization algorithm
can be used in order the find the optimal parameters. The

. . . tation step deals with th tation of the matri
4 Unbiased Learning of a Conditional expectation step deals with the computation of the matrix

/ /
Memoryless Transducer sty = 0‘(?/|9“)(C(bb|fi)ﬁ(?{)|” il
rax
(zax’,yby’)ES plyvy
A conditional memoryless transducer is denoted by a tuple bIA 1ot
(X,Y,c,7v) where X is the input alphabety” is the output o(b|A) = Z a(ym(c(b' ,?ﬁ(% ')y
alphabet¢ is the primitive conditional probability function: (z’ ,yby')ES plyby e
E — [0,1] and~ is the probability of the termination symbol \ 1ot
of a string. As in the joint case, sin¢a, \) ¢ E, in order to 0(Aa) = Z afylz)el Ja)ﬂ(f/ =)y
simplify the notation we use andc(\|)\) as synonyms. (zaz yy')ES p(yy'|zaz’)
The probabilityp : X* x Y* — [0, 1] of the stringy as- a(y|z)y
suming the input one was @& (notedp(y|x)) can be recur- SN = > W) S|
sively computed by means of an auxiliary function (forward) (z,y)€S

3If p(z) = 0 thenp(z,y) = 0 and agp(y|z) = % we have
2Here also, we tested other configurations leading to the same% indeterminism. We chose to solve it takir%g: 0, in order to
results. maintain}_ . p(y|z) finite.
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Figure 2: Average difference between the target and the learned distributions according to various generations of the inp
strings.

In order to do the maximization step, we begin by normal-our new framework estimatgs(| conditional distributions.
izing the insertion cost because it appears in both normalizeSod(c, ¢*) is defined as follows :
tion equations (eqg. 2 and eq. 3). Then:

(A+ B|X])
d(c,c*) = —————*
c(b|A) = 501N 21X|
N
where
where
N= 3 6é(la) A=Y )" e(bla) — ¢ (bla)l
aeXU{\} acX beYU{A}
beYU{A} q
. . an
The value ofy is now fixed by eq. 3 as: *
i yeq B= 3 |eon) — e (bN)
_N-NW beYU{A}
N The results are shown in Figure 3. We can make the two
where following remarks. First, the different curves clearly show
= Z 5(b|\) that the convergence toward the target distribution is inde-
bey pendent of the distribution of the input strings. Using differ-

ent parameter configurations of the automaton of Figure 1,
the behavior of our algorithm remains the saimethe dif-
ference between the learned and the target conditional distri-
butions tends to 0. Second, we can note th{atc*) rapidly

andc(bla) andc(A|a) are obtained working out the values in
eg. 2 and distributing the probability proportionally to their
respective expectatiodsb|a) andd(A|a). Then

o(bla) N = N(\) d(Aa) N — N(X) decreased,e. the algorithm requires few learning examples
c(bla) = N(a) N (Ala) = N(a) N to learn the target.
5 Conclusion
where . In this paper, we proposed a relevant approach for learning
Z | the stochastic edit distance in the form of a memoryless trans-
bEYU{A} ducer. While the standard techniques aim at learning a joint

We carried out experiments to assess the relevance of oudlistribution over the edit operations, we showed that such a
new learning algorithm to correctly estimate the parameterstrategy induces a bias in the form of a statistical dependence
of target transducers. We followed exactly the same experien the input string distribution. We overcame this drawback
mental setup as the one of Section 3.3, except to the definBy directly learning a conditional distribution of the primi-
tion of our differenced(c, ¢*). Actually, as we said before, tive edit costs. The experimental results bring to the fore the
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Figure 3: Average difference between the target and the learned conditional distributions according to various generations

the input strings.

interest of our approach. We think that our model is particu-
larly suited for dealing with noisy data. For this reason, we
now plan to use it on real world applications which often are
subject to the presence of noisy data.

6 Annex

We are going to show that eq. 1, 2 and 3 are sufficient to
satisfy

3 plyle) = 1.

yey*

Let us first consider the case whenr= ).

S aN) =1+ > a(ybly)
yey* ybey *
=1+ Y cbNa(y)
ybeY*
=14 cBlN) > a(yl)
bey yeY *

Let us now consider the complete case

Y alylza) =

yey*

a(A|za) + Z

a(yblza) =
ybeY ™

c(Ala)a(Az) + Y clbla)a(ylz)
ybeY *

+ c(b[N)a(ylza) + c(Ala)a(yblz) =

Y cAa)alyle) + Y e(bla) Y alyle)

YyeEY * bey yeY *
+ ) e D alylra) =
beY yeYy*
(C(Ala) + Zc(bla)> > alyle)
bey YyeEY *
+Dcb]A) Y alylza)
beY yey*

then

then

Yo ayN(L = eblh) =

yeYy* bey
> aly) = (1 -> C(bl/\)>
yeY * bey

2.

yey*

a(ylza) (1 - anm)) -

bey

(C(Aa) + ZC(HG)) > alyle)
bey

yeY™*



and
> alylza) =
yey*
<1 > c(bA)) (C(Ma) + Zc(b|a)> > a(ylx)
bey bey yeyY *

Applying this equation recursively on the lengthuocind tak-
ing in account that the base case is

Y alyl) = (1 - C(bl/\)>

yeY * bey
we have
Z a(ylay ...an) =
yeEY ™

=

7

[(1 -3 c(b|>\)> <C()\ai) +> c(b|ai)>]
1 beyY bey

-1
: (1 - Zc(bm)

beyY
and
p(ylay ...an) =
YyeY *
I1 [(1 -3 c(b|>\)> <C()\ai) +> c(b|ai)>]
=1 bey bey
-1
: (1 - Zc(bm) v
beyY

A sufficient condition fory> . p(ylai...a,) = 1is
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that each of the terms that appear in the productory is equal

to 1 and that the final product is also 1. Then,

(1 -3 c(b|)\)> <C(Aai) +> c(b|ai)> =1

bey beYy

1= " e(blA) = c(Aa;) + > e(blas)
bey bey

D eN) +c(Mai) + > elblai) = 1

beY bey

and we have equation 2, and

(1 - Z c(b|)\)> v=1

bey
1-— Z c(b|]N) =~
bey
YD eblr) =1
beY

and we have equation 3.
Note that these equations are not valifl if ., c(b|\) = 1
but this is impossible since > 0.



