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Abstract

The automatic extraction of the notes that were played in a digital musical signal (automatic music transcription) is

an open problem. A number of techniques have been applied to solve it without concluding results. The monotimbral

polyphonic version of the problem is posed here: a single instrument has been played and more than one note can sound

at the same time. This work tries to approach it through the identification of the pattern of a given instrument in the

frequency domain. This is achieved using time-delay neural networks that are fed with the band-grouped spectrogram

of a polyphonic monotimbral music recording. The use of a learning scheme based on examples like neural networks

permits our system to avoid the use of an auditory model to approach this problem. A number of issues have to be faced

to have a robust and powerful system, but promising results using synthesized instruments are presented.

� 2005 Elsevier B.V. All rights reserved.
1. Introduction

Tone perception is a complex phenomenon. The

human ear can detect musical tones even in pres-

ence of noise. We can also hear a number of simul-

taneous tones and detect subtle but expressive
tonal deviations (vibrato, microtonal intervals,

. . .). A problem related to this ability in computer

science is the automatic score extraction from dig-

itized music or, for short, music transcription.
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Music transcription can be defined as the act

of listening to a piece of music and writing down

music notation for the notes that make up the

piece (Martin, 1996). The automatic transcription

of monophonic signals (only one note playing

simultaneously) is a largely studied problem. Sev-
eral algorithms have been proposed that are reli-

able, commercially applicable, and operate in

real time. Nevertheless, automatic polyphonic mu-

sic transcription is an open research problem, be-

cause not even the perceptual mechanisms

involved in the isolation of different notes and

instruments and their insertion in the correspond-

ing musical phrases are clear.
ed.
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The first polyphonic transcription system dates

back to the 1970s, when Moorer (1975) built a

system for transcribing two-voice compositions.

Recent state-of-the-art in music transcription has

been discussed by Klapuri (1998). There is still
no method to solve completely this problem, but

there are mainly two pitch detection method

groups: time domain methods and frequency do-

main methods.

Time domain methods are useful for monopho-

nic transcription, but they have shown poorer re-

sults for polyphonic transcription than frequency

methods. Most of time domain methods are based
on autocorrelation (Brown and Zhang, 1991), time

domain peak and valley measurements, or zero-

crossing measurements. Frequency domain

methods look for fundamental frequencies, whose

harmonics best explain the partials1 in a signal

(Hess, 1983).

In this paper, we present a frequency domain

method based on dynamic neural networks. Con-
nectionist approaches have been used in music

for a long time (Todd and Loy, 1991) and they

have been also used for music transcription (Shut-

tleworth and Wilson, 1993), recently with poly-

phonic piano music (Marolt, 2001), and they

present a good alternative in building transcription

systems. In the latter work, Marolt�s system (SO-

NIC) tracks groups of partials in piano music with
76 adaptive time-delay neural networks (TDNN)

and postprocessing, obtaining good results.

TDNN have also been used successfully earlier in

speech recognition problems (Hertz et al., 1991;

Lang et al., 1990).

Good results have been obtained for poly-

phonic transcription using human auditory models

and signal processing methods (Tolonen and Karj-
alainen, 2000; Klapuri, 2003). In the present work,

on the contrary, we aim to avoid any kind of audi-

tory model or signal processing method. Our

objective is to discover, in a simplified version of

the problem, whether a learning algorithm, with

the only input of spectral bands, can learn to de-
1 A ‘‘partial’’ is any of the frequencies in a spectrum, being

‘‘harmonic’’ those multiples of a privileged frequency called

fundamental that provides the pitch of the sounding note.
tect the notes that are sounding in a polyphonic

melody. A dynamic neural network is utilized for

detecting notes sounding at each time. No audio

or spectrum processing motivated by an auditory

model is performed before being entered into the
recognition system.

TDNN are considered as non-recurrent

dynamic networks (Hush and Horne, 1993),

although essentially are like static nets traversing

temporal series. This kind of nets are able to model

systems where the output y[t] has a dependence of

a limited time interval in the input u[t]:

yðtÞ ¼ F uðt � mÞ; . . . ; uðtÞ; . . . ; uðt þ nÞ½ �: ð1Þ
With this network, time series can be processed

as a collection of static input–output patterns,

related in short-term as a function of the width

of the input window. Due to the absence of feed-

back, the net architecture is the same as that of a

multilayer perceptron and it can be trained by a
standard backpropagation algorithm (Rumelhart

et al., 1986).

The spectral pattern of a given sound signal s(t)

is the energy distribution that can be found in the

constituent partial frequencies of its spectrum.

This pattern is the most important parameter for

characterizing the musical timbre.2

In this work, the music transcription problem is
posed through the identification of the pattern of a

target instrument, using a connectionist dynamic

algorithm, like time-delay neural networks, previ-

ously trained with spectrograms computed from

polyphonic melodies played by it. Only tuned

sound sources, those that produce a musical pitch,

are considered, putting aside those that produce

noises or highly inharmonic sounds. Also, smooth
envelope timbres (i.e. waveshapes with a nearly

stable amplitude from the beginning to the end

of each note) without volume changes are

considered.

To achieve this goal, input and output pairs are

needed. They are formed by the band-grouped

spectra of the sound and the information about

which notes are producing them. Each spectrum
2 In acoustics, timbre is defined as the quality of a sound that

permits to perceive it as different from other sounds of equal

pitch and amplitude.
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is grouped into 1/12 octave bands centered in the

musical pitches. This simplified representation

keeps the main structure of the spectral pattern

(if source is tuned), and makes the problem easier

for handling with a neural network. For each time
available in the training set, ti, the input is a set of

bands, {S(f, ti+j)} for j 2 [�m,+n], being m and n

the number of spectrum windows considered

before and after ti. The output consists of a binary

vector m(ti) coding the set of notes that are active at
that moment in order to produce those spectra.

The working hypothesis is that, after the learn-

ing phase of the structure of a sound source, the
net will be able to detect the notes as occurrences

of that pattern in the spectrogram of a melody

produced by that source.
2. Methodology

2.1. Construction of the input–output pairs

The training set is formed by pairs

{{S(f, ti+j),j 2 [�m,+n]},m(ti)}, being S(f, t) the

spectrum bands obtained from the target melody

at a given time t and m(t) a binary vector represent-

ing the notes that are sounding. The spectrum fre-

quencies are grouped into b bands in a logarithmic

scale of a twelfth of octave (a halftone), centered in
the well-tempered scale frequencies. For the out-

put, we need a set of music scores in digital format

and to synthesize sounds according to the instruc-

tions in them, in such a way that the correspon-

dence between the spectrum and the set of notes

that have produced it can be known at every mo-

ment. For this, MIDI files were used as digital

scores and a software synthesizer developed by
the Medialab at MIT named Csound (Vercoe,

1991; Boulanger, 1999) was used to generate the

music files.

First we get into the details of the input data

construction (S(f, t)) and then the training outputs

(m(t)) are presented.

2.1.1. Input data

From each MIDI sequence, a digital audio file

was synthesized and its short-time Fourier trans-

form (STFT) was computed, providing its spectro-
gram. For it, a Hanning window was utilized,

described at instant s by this expression:

wðsÞ ¼ 1

2
1� cos

2ps
N

� �
; ð2Þ

where N = 2048 is the number of samples in the

window. Also an overlapping percentage of

O = 50% was applied in order to keep the spectral
information at both ends of the window.

The time resolution for the spectral analysis,

Dt = ti+1 � ti, can be calculated as

Dt ¼ ð100� OÞN
100f s

: ð3Þ

In order to have less frequency bands and less

computational load, divisors of the sampling rate

can be used, although this limits the useful fre-

quency range. The original sampling rate of the

digital sound files was fs = 44,100 Hz, nevertheless

an operational sampling rate of 44,100/2 =
22,050 Hz was used. Thus, the highest possible fre-

quency is fs/2 = 11,025 Hz, which is high enough to

cover the range of useful pitches. With this value,

Eq. (3) yields Dt = 46.4 ms. This time establishes

the precision in time for detecting the onset and

the end of the notes.

With the parameter values described, the STFT

provides 1024 frequencies with a spectral resolu-
tion of 10.77 Hz that are grouped into b bands in

a logarithmic scale ranging from 50 Hz (for a pitch

close to G]0—G sharp of octave 0—) to 10,600 Hz

(pitch F8), almost eight octaves. This way, b = 94

spectral bands are obtained that correspond to

the 94 notes in that frequency range, and they will

be provided to each of the 94 neurons in the net

input layer.
The amplitudes of the bands in the spectra are

obtained in dB as attenuations from the maximum

amplitude. The dynamic range of the considered

digital audio signal is 96 dB, provided the 16 bits

resolution utilized. In order to remove noise and

emphasize the important frequency bands in each

window position, a low level threshold, h, is ap-

plied in such a way that for each band fk, if
S(fk, ti) < h then S(fk, ti) = h. See Fig. 1 for a pic-

ture of this scheme. This threshold was empirically

established at h = �45 dB.



Fig. 1. A low level threshold is applied to remove noise.

Fig. 3. Binary digital piano-roll coding in each row the notes

that are active (1�s) at each moment when the spectrogram is

computed.
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Usually, a note onset is not centered in the
STFT window, so the bell-shape of the window af-

fects the amplitude and some amount of energy

can be lost if the note starts or ends off-centered

in the window. A dynamic net as TDNN becomes

useful to minimize this problem. The overlapping

adjacent positions of the spectrogram provide this

context information to the net. For each window

position considered, b new input units are added
to the net, so the total number of input neurons

is b · (n + m + 1). See Fig. 2 for a scheme of this

architecture.

2.1.2. Output data

The net output layer is composed of 94 neurons

(see Fig. 2), one for each possible note (and the

same number of spectral bands at each input).
Therefore, a symbolic output is provided with as

many neurons as notes are in the valid range.

The output is coded in such a way that an activa-

tion value of y(ti,k) = 1 for a particular unit k

means that the kth note is active at that time,

and 0 means that the note is not active. The train-

ing vectors are, therefore, m(ti) 2 [0, 1]94. Usually

the number of zeros is much larger than that of
ones, because only a small subset of possible notes

are active at each moment.
Fig. 2. Network architecture and data supplied during training.

The arrows represent full connection between layers.
The series of vectors m(ti), ti = 1,2,. . . has been

named binary digital piano-roll (BDP). A brief
example can be observed in Fig. 3. The vectors

for each time are the training outputs shown to

the net during the training phase, while the corre-

sponding band values are presented to the input.

Each BDP is computed from a given MIDI file,

according to the notes that are active at the times

where the windows of the STFT are centered.

2.2. Network parameters

A time-delay neural network has been used,

trained with the standard backpropagation algo-

rithm. The network is implemented with bias and

without momentum. A standard sigmoid has been

used as transfer function. Before providing the

attenuations to the net input they are normalized
to the interval [�1,+1], being the �1 value as-

signed to the maximum attenuation (h dB). The

value +1 is assigned to the attenuation of 0 dB.

This way, the input data S(f, t) 2 [h, 0], are mapped

into the range [�1,+1] for the network input

through this function:

f ðxÞ ¼ 1

h=2
ðhþ xÞ � 1: ð4Þ

A number of parameter values are free in any

net. Some of them have a special interest in this

work.

Number of spectrum windows at the input

(n + m + 1). The upper limit is conditioned by

the fact that it has no sense to have a number of

windows so large that spectra from different note
subsets appear frequently together at the net input,

causing confusion both in training and recogni-

tion. Moreover, the computational cost depends
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on this number. A good contextual information is

desirable but not too much.

Activation threshold (a). The output value for

the neurons are yk(t) 2 [�1,+1]. The final value

to decide whether a note has been detected at time
ti is computed as 1 if yk(ti) > a and 0 otherwise.

The lower is a, the more likely a note is activated.

This value controls the sensitivity of the net.

These are the net most influent parameters,

while others concerning the training, like weight

initialization, number of hidden neurons, initial

learning rate, etc. have shown to be less important.

Different experiments were carried out varying
them and the results did not vary importantly.

After some initial tests, a number of hidden neu-

rons of 100 has proven to be a good choice for that

parameter, so all the results presented have been

obtained with this number of hidden neurons.

2.3. Success assessment

A measure of the quality of the performance is

needed. We will assess that quality at two different

levels: (1) considering the detections at each win-

dow position ti of the spectrogram. The output
at this level will be named ‘‘event detection’’; and

(2) considering notes as series of consecutive event

detections along time. The output at this level will

be named ‘‘note detection’’.

At each time ti, the output neuron activations,

y(ti), are compared to the vector m(ti). A success-

ful detection occurs when y(ti,k) = m(ti,k) = 1 for

a given output neuron k. A false positive is pro-
duced when y(ti,k) = 1 and m(ti,k) = 0 (something

has been detected but it was not actually a note),

and a false negative is produced when y(ti,k) = 0

and m(ti,k) = 1 (something has been missed). These

events are counted for each experiment, and the

sums of correct detections, ROK, false positives

R+, and false negatives R� are computed. Using

all these quantities, the success rate for detection
in percentage is defined as:

r ¼ 100ROK

ROK þ R� þ Rþ
: ð5Þ

With respect to notes, we have studied the out-
put produced according to the criteria described

above and the sequences of event detections have
been analysed in such a way that a false positive

note is detected when a series of consecutive false

positive events is found surrounded by silences.

A false negative note is defined as a sequence of

false negative events surrounded by silences, and
any other sequence of consecutive event detections

(without silences inside) is considered as a success-

fully detected note. Eq. (5) is also utilized to quan-

tify the note detection success.
3. Results

3.1. About the data

Polyphonic tracks of MIDI files were selected,

containing chords and scales, trying to have differ-

ent number of note combinations sounding at dif-

ferent times in order to have enough variety of

situations in the training set. 2377 different chords

appeared in it. The number of spectrum samples
was 31,680 (around 25 min of music).

The training algorithm converges quickly (tens

of epochs) and each epoch takes about 15 s in a

1.3 GHz PC.

In order to test the ability of the net with waves

of different spectral complexity, the experiments

have been carried out using different waveshapes

for training different nets. The limitations for
acoustical acquisition from real instruments

played live by musicians and the need of an exact

timing of the emitted notes have conditioned our

decision for constructing these sounds using vir-

tual synthesis models.

A number of different timbres were considered.

Some of them were synthetic waveshapes (sounds

that cannot be found in any real sound source).
In addition to those artificial waveshapes, real

instrument timbres were utilized. They were syn-

thesized through physical modelling algorithms

using Csound. These methods of sound synthesis

use a model of the instrument sound production

instead of a model of the sound itself.

After performing some initial experiments with

this set of sounds, two timbres from the first class
and two from the second one were selected as rep-

resentatives of the behaviour of our system with

them. Those timbres were:



Table 1

Detection results (r in Eq. (5)) in percentages

Sine

(%)

Sawtooth

(%)

Clarinet

(%)

Hammond

(%)

Events 93.6 92.1 92.2 90.7

Notes 95.0 91.7 91.7 91.9

1814 A. Pertusa, J.M. Iñesta / Pattern Recognition Letters 26 (2005) 1809–1818
Sinusoidal waveshape. This is the simplest wave

that can be analyzed. All its spectrum energy is

concentrated in a single partial. This way, the fre-

quency band of maximum amplitude corresponds

to the frequency of the emitted note.
Sawtooth waveshape. This wave contains all the

harmonic partials with amplitudes proportional to

1/p, being p the number of partial. It presents high

complexity because the amplitude of its partials

decrease slowly. We have used only the first 10

partials to synthesize this timbre.

Clarinet waveshape. We wanted to use an imita-

tion of an acoustic instrument. Different ones that
had the desired properties of stability in volume

were tested and finally a physical model of a clar-

inet that produces good imitating synthesis was

selected.

Hammond organ waveshape. We also tried to in-

clude a timbre from an electronic instrument. A

Hammond organ was selected. This is an instru-

ment that produces sound through a mechanism
based on electromagnetic induction. Here, this

mechanism has been simulated by software with

the Csound synthesizer.

3.2. Network parameter tuning

According to the size of the input context, the

best results were obtained with one previous spec-
trogram window and zero posterior windows.

Anyway, these results have not been much better

than those obtained with one window at each side,

or even 2 + 1 or 1 + 2. The detection was consis-

tently worse with 2 + 2 contexts and larger ones.

It was also interesting to observe that the success

rate was clearly worse when no context was con-

sidered (around 20% less than with any of the
other non-zero contexts tested).

In order to test the influence of the activation

threshold, a, some values have been tested. High

values (namely, above zero) have shown to be

too high and a lot of small good activations were

missed. As the value of a gets low, the sensitivity

and precision of the net increases. Values of

a 2 [�0.8,�0.7] have shown to perform the best.
Once these parameters have been tuned and

their consistency for the different waveshapes

tested (within a small range of variation), a num-
ber of cross-validation experiments were per-

formed in order to assess the capability of the

net to carry out this task with different timbres.

For training, the whole data set was divided

into four parts and four sub-experiments have
been made with 3/4 of the set for training and

1/4 of the set for test. The presented results are

those obtained by averaging the four sub-experi-

ments carried out on each data subset.

3.3. Recognition results

In Table 1, the best results of note and event
detection for the timbres described in Section 3.1

are presented. As expected, due to the simplicity

of its spectral pattern, the sinusoidal waveshape

has provided the best results (around 94% for

events and 95% for notes). Most of the event

detection errors were false negatives in the onsets

and ends of the notes and the majority of the

errors in note detection corresponded to notes of
less than 0.1 s of duration (just one or two window

positions in the spectrogram) that were not

detected.

For the sawtooth timbre, the success results are

lower due to the higher number of harmonics of its

spectral pattern. Around 92% for events and also

for notes were obtained. Again, most of the false

negatives occurred in very short notes.
Concerning to the instrument timbres, both

for the clarinet and the Hammond organ the

results were comparable to those obtained for

the synthetic waveshapes, giving values around

92% for notes and ranging from 90% to 92% for

events.

These results with the clarinet and the Ham-

mond suggest that the methodology can be applied
to other instruments characterized by being nearly

stable in time along the duration of each note. This

applies, for example, to the wind and bowed
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strings instrument families. For more evolving

timbres, like for example plucked strings, more

context information is needed.

The errors have been analyzed considering note

length, pitch and number of training samples.
Errors produced by short notes (less than 0.1 s)

represent the 31% of total errors. Using a time res-

olution Dt = 46.4 ms, these notes extend along one

or two events. Since most of the false negatives

occurred in the onsets and ends of the notes, it is

easy to understand that these very short notes

can be missed by the net.

Most of pitch errors correspond to very high
(higher than C7) and very low (lower than C3)

pitches. In Fig. 4(top) the recognition percentage

is represented as a function of the pitch. Note that
Fig. 4. Top: recognition rate as a function of pitch. Bottom:

correlation between recognition rates for each pitch and the

amount of events in the training set for that pitch.
the system performs well in the central band of

pitches. This is motivated by two main problems

that are discussed next.

Firstly, very low frequencies are harder to ana-

lyse due to the linear nature in frequency of the
Fourier analysis, in contrast to the logarithmic

nature of pitch. When constructing the higher

bands, tens or even hundreds of frequency bins

are provided by the STFT, but the lowest pitches

use just one or few bins. This fact makes low

pitches to appear fuzzy in the spectrogram. On

the other hand, the highest harmonics are very

close to the high limit in frequency in the digital
domain (the Nyquist frequency = fs/2) and this

motivates a reflection of some of their partials (ali-

asing effect) that introduces confusion in the

training.

Secondly, it has to be noted that the training set

was composed of actual musical data, and there-

fore the usual octaves in which the music concen-

trates are the central band of pitches represented
in Fig. 4(top). In fact, there exists a clear correla-

tion of recognition success for a given pitch to

the amount of events in the training set for that

pitch. In Fig. 4(bottom) each dot represents a sin-

gle pitch. Abcises represent the amount of data for

that pitch in the training set and the ordinates rep-

resent the recognition percentage. An exponential

curve has been adjusted to the data showing the
clear non-linear correlation between training data

and performance.

3.4. Changing waveshapes for detection

The results for the different waveshapes consid-

ered were very similar. It seems that the perfor-

mance is not highly conditioned by the selected
timbre. Thus, the doubt arose about how specific

the net weights were for the different timbres

considered. For this, to test the net performance,

melodies played with a given waveform were pre-

sented to a net trained with band-grouped spectro-

grams from a different waveform. Nets for the four

waves were trained and tested. The event and note

detection results are displayed in Tables 2 and 3,
respectively.

The success rates range from 8% to 70% for

transcription of sounds different from those used



Table 2

Event cross-detection results

Sine

(%)

Sawtooth

(%)

Clarinet

(%)

Hammond

(%)

Sine 93.6 56.6 70.2 29.6

Sawtooth 48.0 92.1 68.8 26.3

Clarinet 46.0 62.6 92.2 34.2

Hammond 8.3 16.9 14.4 90.7

Rows correspond to training timbres and columns to testing

timbres.

Table 3

Note cross-detection results

Sine

(%)

Sawtooth

(%)

Clarinet

(%)

Hammond

(%)

Sine 95.0 45.6 60.5 27.0

Sawtooth 50.7 91.7 65.4 28.6

Clarinet 56.8 55.5 91.7 33.7

Hammond 8.9 16.4 14.0 91.9

Rows correspond to training timbres and columns to testing

timbres.
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to train the net, so they are clearly worse for this

experiment, showing the specificity of the nets.
Fig. 5. Evolution in time of the note detection for a given melody usin

as displayed in a sequencer piano-roll; down: the piano-roll obtaine

Notation: �o�: successfully detected events, �+�: false positives, and �-�:
3.5. Evolution in time for note detection

A graphical study of the net output activations

along time has been carried out in order to analyze

the kind of errors produced when compared to the
desired output (see Fig. 5). In the plot, the active

neurons at each moment may have either a �o� if
they successfully detected an event, or a �+� if the
activation corresponded to a false positive event.

If there was no activation for a given neuron at a

time where the corresponding note was actually

sounding, a �-� was displayed, corresponding to a

false negative. Where neither notes nor activations
appeared, nothing was displayed.

The example melody of Fig. 5 was neither in the

training set nor in the recognition set. It was down-

loaded from the Internet and synthesized using the

clarinet timbre. It is a difficult melody to be tran-

scribed because tempo is 120 beats per minute

and, therefore, quarter notes last for 0.5 s, eighth

notes last for 0.25 s and 0.125 s for sixteenths.
The total duration of the melody is 7.5 s. The event

detection rate was 94.3%, the proportion of false
g the clarinet timbre. Top: the original score; center: the melody

d from the net output compared with the original piano-roll.

false negatives.
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positives to the number of events detected was

2.3%, and for false negatives was 3.4%. For notes,

all of them were detected and just three very short

false positive notes appeared.

Note that most of the errors were produced in
the transition events between silence and sound

or vice versa for some notes. This is due to the time

resolution that causes the presence of energy when

a note is not coded in the BDP as sounding or a

lack of energy when it is already sounding accord-

ing to the BDP. Also, interferences among fre-

quency partials lead to errors like it seems to

happen in the first beat of the second measure,
where a new short note causes a false negative of

a higher note already sounding.
4. Discussion and conclusions

This work has tested the feasibility of an ap-

proach based on time-delay neural networks for
polyphonic monotimbral music transcription. A

TDNN is fed with 1/12 octave band spectrograms

of melodies played from MIDI files by both syn-

thetic waveshapes and synthesized real instruments

using a physical modelling virtual synthesizer.

The results suggest that the neural network is

learning the pattern of the timbre and then is able

to find complex mixtures of it in the spectrograms.
The detection success was around a 92% in average

and was somewhat independent of the complexity

of the pattern. This seems to be one of the points

in favour of the nets. Other pattern recognition ap-

proaches (like k-nearest neighbours or a 94 Bayes-

ian ensembles) were tested and their performance

worsen as the complexity of the spectral pattern in-

creased. For example, a 90% was achieved for sine
waveshape by simply thresholding the bands spec-

trogram looking for the fundamental frequency of

each note. This same procedure provided only a

23% for the Hammond organ.

When the test waveshape was different from

that used to train the net, the recognition rate de-

creased dramatically, showing the high specializa-

tion of the net.
Errors concentrated in very low-pitched notes,

where the spectrogram provides less precision,

and in very high notes, where their higher partials
are folded by the Nyquist frequency, distorting

their spectra. Also, this success for the central

band of pitches is due to the higher presence of

notes of these pitches in the training set. This sug-

gests that increasing the size and variety of the
training set would improve the results.

Most of the errors are concentrated in the tran-

sitions, at both ends of the note activations. This

kind of situations can be solved applying a post-

processing stage over the net outputs along time.

In a music score not every note onset is equally

probable at each moment. The onsets and ends

of the notes occur in times that are conditioned
by the musical tempo, that determines the position

in time for the rhythm beats, so a note in a score is

more likely to start in a multiple of the beat dura-

tion (quarter note) or some fractions of it (eighth

note, sixteenth note, etc.). The procedure that

establishes tight temporal constraints to the dura-

tion, starting and ending points of the notes is usu-

ally named quantization. From the tempo value
(that can be extracted from the signal) a set of pre-

ferred points in time can be set to assign begin-

nings and endings of notes. This transformation

from STFT timing to musical timing should cor-

rect some of these errors.

False positive and negative notes are harder to

prevent and it should be done using a musical

model. Using stochastic models, a probability
can be assigned to each note in order to remove

those that are little probable. For example, in a

melodic line it is very unlikely that a non-diatonic

note two octaves higher or lower than its neigh-

bours appears.

The capability of a net trained with a given tim-

bre for transcribing audio generated by a different,

but similar, waveform should be studied more dee-
ply, but it seems more reasonable to provide the

system with a first timbre recognition stage, at

least at a level of timbral families. Different weight

sets could be loaded in the net according to the

decision taken by the timbre recognition algorithm

before starting the transcription.

A number of issues have to be still faced to have

a robust and powerful system, like evolving tim-
bres, noise, and volume variations, but the promis-

ing results presented are encouraging enough to

keep on researching in this technique.
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