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Abstract

The automatic extraction of the notes that were played
in a digital musical signal (automatic music transcrip-
tion) is an open problem. A number of techniques have
been applied to solve it without concluding results. This
work tries to pose it through the identification of the spec-
tral pattern of a given instrument in the signal spectro-
gram using time-delay neural networks. We will work
in the monotimbrical polyphonic version of the problem:
more than one note can sound at the same time but al-
ways played by just one instrument. Our purpose is to
discover wether a neural network fed only with an spec-
trogram can detect the notes of a polyphonic music score.
In this paper our preliminary but promising results using
synthetic instruments are presented.

1 Introduction

Tone perception is a complex phenomenon [5]. Hu-
man ear can detect musical tones even in presence of
noise. We can also hear a number of simultaneous tones
and detect subtle but expressive tonal deviations (vibrato,
microtonal intervals, ...). A problem related to this abil-
ity in computer science is the automatic score extraction
from digitized music or, for short, music transcription.

Music transcription is defined as the act of listening to
a piece of music and writing down music notation for the
notes that make up the piece [12]. The automatic tran-
scription of monophonic signals (only one note playing
simultaneously) is a largely studied problem. Several al-
gorithms have been proposed that are reliable, commer-
cially applicable, and operate in real time. Nevertheless,
automatic polyphonic music transcription is an open re-
search problem, because not even the perceptual mecha-
nisms involved in the isolation of different notes and in-
struments and their insertion in the corresponding musical
phrases are clear. This fact causes a lack of computational
models to emulate these processes.
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The first polyphonic transcription system dates back
to the 1970s, when Moorer [13] built a system for tran-
scribing two-voice compositions. Recent state-of-the-art
in music transcription has been discussed in [9]. There is
still not a method to solve completely this problem, but
there are mainly two pitch detection method groups: time
domain methods and frequency domain methods. Time
domain methods are useful for monophonic transcription,
but they have shown poorer results for polyphonic tran-
scription than frequency methods.

Most of time domain methods are based on autocorre-
lation [2], time domain peak and valley measurements, or
zero-crossing measurements. Frequency domain methods
look for fundamental frequencies, whose harmonics best
explain the partials1 in a signal [7].

In this paper we discusse a frequency domain method
based on dynamic neural networks. Connectionist ap-
proaches have been used in music for a long time [16, 17]
and they have been also used for music transcription [15],
recently with polyphonic piano music [11], and they
present a good alternative in building transcription sys-
tems. In the latter work, Marolt’s system (SONIC) tracks
groups of partials in piano music with 76 adaptive time-
delay neural networks (TDNN) and postprocessing, ob-
taining good results. TDNN have also been used earlier
in speech recognition problems [6, 10].

The spectral pattern of a given sound signals(t) is the
energy distribution that can be found in the constituent
partial frequencies of its spectrum,S(f). This pattern is
the most important parameter for characterizing the musi-
cal timbre. In this work, the music transcription problem
is posed through the identification of the spectral pattern
of the instrument, using a connectionist dynamic algo-
rithm like time-delay neural networks previously trained
with spectrograms computed from polyphonic melodies
played by the target instrument. We will only consider
tuned sound sources, those that produce a musical pitch,
leaving apart those produced by random noise or highly
inharmonic sources.

1A “partial” is any of the frequencies in a spectrum, being “har-
monic” those multiples of a privileged frequency called fundamental
that provide the pitch of the sounding note.



In constrast with Marolt’s work, we only use one neu-
ral network, and our aim is to use this single network to
detect notes sounding at each time, their beginnins and
ends. Input data of our network are spectrograms without
postprocessing, we don’t use any kind of auditory model.
The purpose of our work is to discover wether a neural
network by itself, with the only knowledge of spectra, can
detect notes in a polyphonic music score.

We will work only with smooth envelope timbres (i.e.
nearly stable timbres from the beginning to the end of
each note), and start and end times will be considered the
same way as the rest of the sounding note.

To achieve this goal, we need to build input and output
pairs formed by the spectra of the sound produced by a
source for different times around a given instantti. Input
is {S(f, ti+j)} for j ∈ [−m, +n] for each frequencyf ,
beingm andn the number of windows considered before
and after the central time,ti. Output consists in a coding
of the set of possible notesν(ti) that are active at that
moment in order to produce those spectra.

After the learning phase of the spectral pattern, it is
expected that the net will be able to detect the notes in a
digitization of a melody produced by that sound source
by occurrences of the pattern. It would be desirable
a robustness of the method against overlapped patterns
(polyphony) and, hopefully, applicable to patterns pro-
duced by other instruments of similar timbres.

TDNN are usually considered as non-recurrent dy-
namic networks [8], although essentially are like static
nets traversing temporal series. This kind of nets are able
to model systems where the outputy[t] has a dependence
to a limited time interval in the inputu[t]:

y(t) = F [u(t−m), ..., u(t), ..., u(t + n)]

With this kind of network, time series can be processed
as a collection of static input-output patterns, related in
short-term as a function of the width of the input window.
Due to the absence of feedback, the net architecture is
the same as that of a multilayer perceptron and it can be
trained by a standard backpropagation algorithm [14]. We
have trained the network with different synthetic timbres
with promising results.

2 Methodology

2.1 Construction of the input-output pairs

The training set has to be formed by pairs
{{S(f, ti+j), j ∈ [−m,+n]}, ν(ti)}. We need to have a
set of music scores and synthesize sounds according to
the instructions in them in such a way that the correspon-
dence between the spectrum and the set of notes that have
produced it is kept at every moment. For this, we have
used MIDI files and a software synthesizer developed by
the Medialab at MIT named Csound [18, 1].

First we will get into the details of the input data con-
struction and then we will describe the training outputs.

2.1.1 Input data.

From the MIDI sequence, the digital audio file is syn-
thesized and the short-time Fourier transform (STFT) is
computed, providing its spectrogramS(f, t). The STFT
has been computed used a Hanning window, described at
instantτ by this expression:

w(τ) =
1
2

(
1− cos

2πτ

N

)

whereN = 2048 is the number of samples in the window.
Also an overlapping percentage ofS = 50% has been
applied in order to keep the spectral information at both
ends of the window. With these data, the time resolution
for the spectral analysis,∆t = ti+1−ti, can be calculated
as

∆t =
SN

100fs

In order to have less frequency bands and less compu-
tational load, divisors of the sampling rate can be used,
although this limits the useful frequency range. The orig-
inal sampling rate wasfs = 44, 100 Hz, nevertheless we
have used an operational sampling rate of44, 100/2 =
22, 050 Hz, thus the highest posible frequency isfs/2 =
11, 025 Hz. With this value, the equation above yields a
value of∆t = 46.4 milliseconds. This time establish the
precision in time for the onset and the end of the notes we
try to identify.

The STFT provides 1024 frequencies with a spectral
resolution of 10.77 Hz. For our analysis we will trans-
form the spectrum frequencies intob bands in a logarith-
mic scale of a twelfth of octave (a note) considering bands
beginning in frequencies ranging from 50 Hz (for a pitch
close to G]0 – G sharp of octave 0 – ) to 10,600 Hz (F8 in
pitch), almost eight octaves. This way, we obtainb = 94
spectral bands that correspond to 94 notes in that range
and they will be provided to each of the 94 neurons in the
net input layer.

The amplitude of the bands in the spectra is obtained
in dB as attenuations from the maximum amplitude. The
dynamic range is 96 dB, provided the 16 bits resolution of
the digital audio considered. Before providing the attenu-
ations to the net input they are normalized to the interval
[−1, +1], being the−1 value assigned to the maximum
attenuation (−96 dB) and+1 is assigned to the atten-
uation of 0 dB. Anyway, in order to remove noise and
emphasize the important components in each spectrum,
a low level threshold,θ, is applied in such a way that if
S(fk, ti) < θ thenS(fk, ti) = −1. See Fig. 1 for a pic-
ture of this scheme. This threshold has been empirically
established in−45 dB.

Usually, a note onset is not centered in the STFT win-
dow, so the bell-shape of the window affects the ampli-
tude if the note starts at this position and some important
amount of energy can be lost. A dynamic net as TDNN
becomes useful to solve this problem. The overlapping
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Figure 1. For each spectrum a low level
threshold is applied to remove noise.

adjacent positions of the spectrogram will provide this
dynamic information to the net. For each window posi-
tion considered,b new input units are added to the net, so
the total number of input neurons will beb× (n+m+1).
See Fig. 2 for a scheme of this architecture.
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Figure 2. Network architecture and data
supplied during training.

2.1.2 Output data.

The net output layer is composed of 94 neurons (see
Fig. 2), one by each possible note that can be detected
(and the same number of spectral bands at each input).
Therefore, we have a symbolic output with as many neu-
rons as notes are in the valid range. We have coded the
output in a way that an activation value ofν(ti, k) = 1 for
a particular unitk means that thek-th note is active at that
time and 0 means that the note is not active. So we will
have 94 component vectors forν(ti). Usually the number
of zeros will be much larger than that of ones, because
only a few subset of possible notes will be active at each
moment.

The series of vectorsν(ti), ti = 1, 2, ... will be named
a binary digital piano-roll (BDP). A brief example can
be observed in Fig. 3. The vectors at each moment are
the training outputs shown to the net during the training
phase, while the corresponding spectra are presented to
the input.

The BDP is computed from the MIDI file, according to
the notes that are active at the times where the windows
of the STFT are centered.

time C 5 C6 C7

| | |
0.58: ...00000 10000000000000000 1000000...
0.63: ...00000 10000000000000000 1000000...
0.67: ...00000 1000000000000000000 10000...
0.72: ...00000 1000000000000000000 10000...
0.77: ...00000 100000000000000 100000000...

Figure 3. Binary digital piano-roll coding the
note activations (1’s) at each moment when
the spectrogram is computed. Each row
represents the activations of the notes for a
given time.

2.2 Network parameters

Different parameter values are free in any net. Some
of them have a special interest in this work:

Number of spectrum windows at the input(n+m+1).
The upper limit is conditioned by the fact that it has no
sense to have a number of windows so large that spec-
tra from different note subsets appear frequently together
at the net input, causing confusion both in training and
recognition. Moreover, the computational cost depends
on this number. A good contextual information is desir-
able but not too much.

Activation threshold(α). The output value for the neu-
rons areyk(t) ∈ [−1, +1]. The final value to decide
whether a note has been detected in the spectrogram at
time ti is computed as 1 ifyk(ti) > α and 0 otherwise.
The lowerα is the more likely a note is activated. This
value controls the sensitivity of the net.

These are the most influent parameters for the ob-
tained results, while others concerning to the training, like
weight initialization, number of hidden neurons, initial
learning rate, etc have shown to be less important. Dif-
ferent experiments have been carried out varying these
parameters and the results presented below are those ob-
tained by the best net in each case. After some initial
tests, a number of hide neurons of 100 has proven to be a
good choice for that parameter, so all the results presented
have been obtained with this number of hidden neurons.

2.3 Success assessment

A measure of the quality of the performance is needed.
We will assess that quality at two different levels: 1) con-
sidering the detections at each window positionti of the
spectrogram in order to know what happens with the de-
tection at every moment. The output at this level will
be named “event detection”; and 2) considering notes as
series of consecutive event detections or missings along
time. The output at this level will be named “note detec-
tion”.

At each timeti, the output neuron activations,y(ti),
are compared to the vectorν(ti). A successful detection
occurs wheny(ti, k) = ν(ti, k) = 1 for a given output



neuronk. A false positive is produced wheny(ti, k) = 1
and ν(ti, k) = 0 (something has been detected but it
was not actually a note), and a false negative is produced
wheny(ti, k) = 0 andν(ti, k) = 1 (something has been
missed). These events are counted over an experiment,
and the sums of successesΣOK , false positivesΣ+, and
false negativesΣ− are computed. Using all these quanti-
ties, the success rate in percentage for detection is defined
as:

σ =
100ΣOK

ΣOK + Σ− + Σ+

With respect to notes, we have studied the output pro-
duced according to the criteria described above and the
sequences of event detections have been analysed in such
a way that a false positive note is detected when a series
of consecutive false positive events is found surrounded
by silences. A false negative note is defined as a se-
quence of false negative events surrounded by silences,
and any other sequence of consecutive event detection
(without silences inside) is considered as successfully de-
tected notes. The same equation as above is utilized to
quantify the note detection success.

3 Results

A number of different polyphonic melodies have been
used, containing chords, solos, scales, silences, etc. try-
ing to have different number of notes sounding at differ-
ent times, in order to have enough variety of situations
in the training set. The number of spectrum samples was
31,680.

The training algorithm converges quickly (tens of
epochs) and each epoch takes about 15 seconds in a 1.3
GHz PC.

In order to test the ability of the net with waves of
different spectral complexity, the experiments have been
carried out using different waveshapes for training dif-
ferent nets. The limitations for acoustical acquisition of
real data and the need of an exact timing of the emitted
notes have conditioned our decision for constructing these
sounds using virtual synthesis models.

Sinusoidal waveshape. This is the simplest wave that
can be analyzed. All its spectrum energy is concen-
trated in a single partial. This way, the frequency
band of maximum amplitude corresponds to the fre-
quency of the emitted note.

Sawtooth waveshape. This wave contains all the har-
monics with amplitudes proportional to1/p, being
p the number of partial. It presents high complexity
because the amplitude of its partials decrease slowly.
We have used only the first 10 partials to synthesize
this timbre.

Synthesized instrument waveshape. In addition to those
artificial waveshapes, a real instrument timbre has

been considered: a clarinet, although it has been
synthesized through a physical modelling algorithm.
Our aim is to obtain results with a complex wave of
a sound close to real instruments.

3.1 Network parameter tuning

According to the size of the input context, the best re-
sults were obtained with one previous spectrogram win-
dow and zero posterior windows. Anyway, these results
have not been much better than those obtained with one
window at each side, or even 2+1 or 1+2. The detection
was consistently worse with 2+2 contexts and larger ones.
It was also interesting to observe that the success rate was
clearly worse when no context was considered (around
20% less than with the other non-zero contexts tested).

In order to test the influence of the activation threshold,
α, some values have been tested. High values (namely,
above zero) have shown to be too high and a lot of small
good activations were missed. As the value ofα was get-
ting low the sensibility and precision of the net increased.
Valuesα ∈ [−0.8,−0.7] have shown to be the best.

Once these parameters have been tuned and their con-
sistency for different waveshapes tested (within a small
range of variation), we have performed a number of cross-
validation experiments in order to assess the capability of
the net to carry out this task with different timbres.

For training, each data set has been divided into four
parts and four sub-experiments have been made with 3/4
of the set for training and 1/4 of the set for test. The pre-
sented results are those obtained by averaging the 4 sub-
experiments carried out on each data set.

3.2 Recognition results

As expected, the sinusoidal waveshape has provided
the best results (around 95% for events and also 95% for
notes). Most of the event detection errors have occurred
in the onsets and offsets of the notes and the majority of
the errors in note detection correspond to missing notes
of less than 0.1 s of duration (just one or two window po-
sitions in the spectrogram). If we would not consider this
very short notes, almost a 100% of success is obtained.

For the sawtooth timbre, the success results are lower
due to the higher number of harmonics that the complex-
ity of the wave produces. Around 92% for events and for
notes were obtained. Again, most of the misdetections
ocurred in very short notes.

For the clarinet waveshape, the results were compara-
ble to those obtained for the synthetic waveshapes, giving
values of 92% for events and 91% for notes. All these
figures are summarized in the diagonal of tables 1 and 2.

These first results with real timbres suggest that the
methodology can be applied to other real instruments at
least in the wind family, characterized by being very sta-
ble in time. This makes the spectral pattern identification



sinusoidal sawtooth clarinet
sinusoidal 95 % 56 % 65 %
sawtooth 56 % 92 % 72 %
clarinet 56 % 50 % 92 %

Table 1. Event cross-detection results.
Rows correspond to the training timbres
and columns to the testing timbres.

sinusoidal sawtooth clarinet
sinusoidal 95 % 48 % 55 %
sawtooth 60 % 92 % 65 %
clarinet 60 % 49 % 91 %

Table 2. Note cross-detection results. Rows
correspond to the training timbres and
columns to the testing timbres.

easier than in other more evolutive timbres, like, for ex-
ample, percussive instruments.

Errors have been analyzed considering note length,
pitch and number of training samples. Errors produced
by short notes (less than 0.1 s) constitutes the 31% of to-
tal errors. Most of pitch errors correspond to very high
(higher thanC7) and very low (lower thanC3) pitches.
Our experiments also suggest that increasing the size and
variety of the training set could improve the results.

3.3 Changing waveshapes for detection

We have posed the problem of how specific the net
weights are for the different timbres considered. For this,
spectrograms of a given waveform are presented to a net
trained with spectrograms from a different waveform. We
have trained and tested nets for the three wave forms. The
event and note detection results are displayed in tables 1
and 2.

The success rates range from 48% to 72% so they
are clearly worse for this experiment although not catas-
trophic. It could be said that from two to three out of each
four notes have been detected. Probably, if the net were
trained with mixed spectrograms from different wave-
shapes, these results could be improved, but this is yet
to be tested.

3.4 Evolution in time for note detection

A graphical study of the net output activations along
time has been carried out in order to analyze the kind
of errors produced when compared to the desire output
(see figure 4). In the plot, the active neurons at each mo-
ment can have either a ‘o’ if they successfully detected
an event, or a ‘+’ if the activation corresponded to a false

positive event. If there were no activation for a given neu-
ron at a time were the corresponding note was actually
sounding, a ‘- ’ is displayed, corresponding to a false neg-
ative. If there were no notes and no activations, nothing
would be displayed.

The example melody of Fig. 4 was neither in the train-
ing set nor in the recognition set, and it has been synthe-
sized using the clarinet timbre. For this melody, the event
detection rate was 94.3%, the proportion of false positives
to the number of events detected was 2.3% and for false
negatives was 3.4%. For notes, all of them were detected
and just 3 very short false positive notes appeared.

As it is observed, most of the errors were produced in
the transition events between silence and sound or vicev-
ersa for some notes, due to the time resolution and the
excess of energy in a lapse were a note is not coded as
sounding in the BDP or the lack of energy were it is al-
ready sounding according to the BDP.

4 Discussion and conclusions

This work has tested the feasibility of an approach
based on time-delay neural networks for polyphonic
monotimbric music transcription. We have applied them
to the analysis of the spectrogram of polyphonic melodies
of synthetic timbres generated from MIDI files using a
physical modelling virtual synthesizer.

The detection success has been about a 94% in aver-
age when the test timbre was the same as the one used
for training the net. The success rate has decreased (to
around 60%) when a net trained with a given waveshape
has been tested with spectrograms of different timbres,
showing the high specialization of the net.

Errors concentrate in very low-pitched notes, where
the spectrogram is computed with less precision and for
very high notes, where the higher partials in the note spec-
trum are cut off by the Nyquist frequency, or, even worse,
folded into the useful range, distorting the actual data, due
to the aliasing effect caused by cutting down the sampling
rate by a factor of two.

As it has been said above, most of the errors are con-
centrated in the transitions, at both ends of the note ac-
tivation. This kind of situations can be solved applying
a post-processing stage over the net outputs along time.
In a music score not every note onset is equally probable
at each moment. The onsets and offsets of the notes oc-
cur in times that are conditioned by the musical tempo,
that determines the position in time for the rhythm beats,
so a note in a score is more likely to start in a multiple
of the beat duration (quarter note) or some fractions of it
(eighth note, sixteenth note, etc.). The procedure that es-
tablishes tight temporal constraints to the duration, start-
ing and ending points of the notes is usually named quan-
tization. From the tempo value (that can be extracted from
the MIDI file) a set of preferred points in time can be set to
assign beginnings and endings of notes. This transforma-
tion from STFT timing to musical timing should correct
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most of these errors.
False note positives and negatives are harder to prevent

and it should be done using a musical model. This is a
complex issue. Using stochastic models, a probability can
be assigned to each note in order to remove those that
are really unlike. For example, in a given melodic line is
very unlike that a non-diatonic note two octaves higher or
lower than its neighbors appears.

The capability of a net trained with a given timbre for
transcribing audio generated by a different, but similar,
waveforms should be studied more deeply, but it seems
more reasonable to provide the system with a first tim-
bre recognition stage [4, 3], at least at a level of timbric
families. Different weight sets could be loaded in the net
according to the decision taken by the timbre recognition
algorithm before starting the transcription.
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