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ABSTRACT

A Locally Testable Language in the Strict Sense (LTSS) is a
language that is strictly k~Testable for some k. A k-Testable
Language in the Strict Sense (k-TLSS) is essentially defined by a
finite set of substrings of length k that are permitted to appear
in the strings of the language. This paper is concerned with the
inductive inference of automata that recognize LTSS's from
Samples of these languages. Given a positive sample R of strings
of an unknown language, an algorithm is proposed which cbtains a
deterministic finite automaton that recognizes the smallest k-
TLSS containing R. Moreover this algorithm can be implemented to
run in O(knlogm), where n is the sum of the lengths of all the
strings in R and m is the number of permitted segments of length
k. Also, for a given k, the proposed method is shown to actually
identify the source k-TLSS language in the limit, from only a
positive presentation of this language; furthermore, if it is
only known that the source language is a LTLSS language, then a
method is given which identifies this language in the limit, from
a complete presentation (both pesitive and negative samples).
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1. INTRODUCTION.

It is known that the class of regular languages remains
unidentifiable from positive data in the limit [11]. However, a
characterization of the classes that are identifiable from
positive presentation was established by Angluin [3]- Moreover,
she has proved the learnability of the class of k-Reversible
languages and proposed a polynomial time algorithm which

identifies such a class from positive data in the limit [4].

This paper deals with the inferability of an important family
of formal languages: the class of Locally Testable Languages in
the 8trict 8Sense (LTLSS). The family of Locally Testable
languages 1is a proper sub-family of Star Free languages of dot-
depth 1 [5]. Previocus works on the inference of the class of
LTLSS's can be found in [9] and more recently in [21]. Some
applications of learning of k-LTLSS's to Pattern Recognition {PR)
problems was developed in [10].

Informally speaking, a k-Testable Language in the S8trict Sense
(k-TLSS) 1is defined by a finite set of substrings of 1length X
that are allowed to appear in the strings of the language.
Concepts which are more or less related to k-TLSS's have been
widely used in Information Theory and, also in practical PR. K-
Testable stochastic Languages in the Strict Sense are directly
related to order-k Markov Sources ({see e.q. [1)), and the
frequencies (probabilities) of occurrence of substrings of
increasing lengths have been utilized as succesive approximations
to characterize natural languages {16], [17]}. On the practical
side, these concepts have led to quite useful computer programs
for spelling correction like the famous TYPO on UNIX (see e.q,
(13], and also to successful approaches to speech recognition
[6]), and phoneme to text (stenotype) transcription [7]. On the
other hand, the concept of "N-gram" (which also comes from the
terminology of Markov Scurces) has been successfully utilized in
other practical PR systems, many of which are also related with
speech and/or waveform recognition, (181, [19], [20].
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2. LOCALLY TEBTABLE BETS.

Let Zk=(Z,Ik,Fk,Tk) be a four-tuple, where 3 ig a

finite alphabet, Ik,st;E:zi are two sets of jnitial and final

is I s=slas
segments, respectively, and Tkg;zk is a set of forbhidden segments
of length k. & k-Testable Language in the Striet Sense (k-TLSS)

is defined by the regular expression
1(Zy) = (I}z*) n (z*Fy) - (z*1 n*) (2.2)

The strings in l(zk) can therefore be characterized ag
follows: they start with segments in Iy, they end with segments
in Fr, and they do not have any segment of length k which is
in Tg. An interesting subclass of k-TLSS is the class of 2-

TLSS's, which are 2lso referred to as Local Languages [157], [8].
On the other hand, the class of all k-TIsS'g for any k ig

referred to as the class of Locally Testable Languages in the
Strict Sense (LTLSS). The entire family of k-Testable Languages
is defined as the boolean clousure of Kk-TLSS's. The above
definitions of k-TLSs and LTLSS are quite similar to those of
[12] and [23), {5] though conveniently adapted to include Local
Languages as a natural k=2 case.

3. SBMALLEST X-TLSS CONTAINING A POBITIVE BAMPLE.

Let R be a learning set (positive sample) and k21. We can
uniquely associate 2 four-tuple Zk(R)=(Z(R),Ik(R),Fk(R),Tk(R))
with R as follows:

Z(R): set of the symbols that appear in the words of R.

Ix(R) = {ul uver, |u|=k-1, VEZ(R)*} U (xeR| [x[<k-1}
(initial segments of length at most k-1 of
the strings in R).

Fe(R) = (v| uveRr, [v|=k-1, ueZ(R}*} U (xeR| | x| <k-1}
{final segments of length at most k-1 of
the strings in R).
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T (R) = £(RYK-(v] uvweRr, |v]|=k, u,weS(R)*}
(segments of 1length k not appearing in the

strings of R). (3.1)

In the sequel, a k-TLSS 1(2y(R)) will be denoted as 1y (R}.
The following results establish some important relations between

R and 1y (R) [9].
Lemma 3.1. R €13 (R) vk=21.

Theorem 3.1. 1, (R} is the smallest k-TLSS that contains R.

Proof. Let }' be a k-TLSS such that R<1l'. We have to prove
that, for any such 1', 1y(R) & 1°'.

For every xex® and k=1, let us define a k-test vector
(i (%), I (X)), Ep(x)) as follows:
x if |x|<x

ig-1(x) =
u if x=uv, |u|=k-1, vest
x if |x|<k
fr-a1(x) =
v if x=uv, |v|=k-1, uez’
tr(x) = {v| x=uvw, lvli=k, u,vez™)

By contradiction, let us assume that lk(R)~l'%¢. Then, there
exist an xeT® such that xely(R), and x¢1':

ixeq (X)€ Ix(R) and fy_q(x)€Fi(R) and ty (x) € SX-T (R) .
If (x,I1I',F',T') is the four-tuple defining 1', then:

iyop (X) 410 or £y 1(x)¢F' or ty (x)¢TK-T'. But then }yeR such that
y¢l', and therefore R& 17, -

Theorem 3.2. Let R'< R. Then 1y(R')E1y(R).
Theorem 3.3. Let k21. Then 1lyk.,(R)<1y(R) [9].

Corollary 3.1. Let k>max,.glx|. Then 1y (R)=R.

328 Alporithmic Learning Theory



4. INFERENCE ALGORITHM.

Based on the above construction, we propose the k-T8S8I

algorithm for the inference of k-TLSS's:

k-TSSI algqorithm // Obtains a DFA which accepts the smallest
k-TSSL containing R//
Input: k22, R: set of training strings.
// the case k=1 is trivial since VR Z,(R)=(Z(R),{e},{e},¢) and

1, (R)=Z(R)*// b
utput: DFA Ag= (Q,%,6,dg,0f)  //Q < j%p EL,  qgeQ, Qf € 0,
§ < (QXExQ)//
Method
(z,I,F,T):= (Z(R), Iy(R), FR(R), Tr(R));
Q:= {e}; &:= ¢ (ggi= e; // e 1s the symbol for the null
string //
V aj...a, €I for j:=1 tom
Q:= QU {a...a4};
d:= & U {(al...ajﬁl,aj,al...aj)}: //ai...aj = e 1iff
jeis/

end for end ¥
Voa;...ap e(Ek—T}
Q:= QU {az...ak}:
§:= 4§ U {(al...ak_l,ak,az...ak)}:
end ¥V
Qf:= F; Ak:= (Q:zl6lq01Qf);
and k-T88I

The following examples illustrate the proposed learning
algorithm:

Example 1. Let R = {abba, aaabba, bbaaa, bba} and k = 2.
Then Z,(R} = ({a,b}, (a,b}), {a}, ¢). Also if k = 3, then
Z5(R)=({a,b}, {aa,ab,bb}, {aa,ba}, {a,b}?-({aaa,aab,abb,baa,bba}).
From Z,(R) and Z3(R) and following the k-TSSI algorithm, we
obtain the automata A, and A4 show in Fig. 4.1
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Fig. 4.1: Inferred automata for k=2 and k=3.

The correctness of the k-TSSI algorithm is established by the
following theorem (9]:

Theorem 4.1. Let an R be a positive sample, and let Ap (k22)
be the automaton obtained from R by the k-TSS5I algorithm. Then

lk(R)=L(Ak).

Proof.
1. lk(R) < LAy} .

Let x=a1...amslk(R)

a) Let mzk. Then:
al...ak_lelk(R); am_k+2...ameFk(R):

aj...aj+k_162k(R)-Tk(R), 3=1,...,m-k+1.
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From the k=-TSSI algorithm
§(ay--.2a5-1,25) = ap...a5, J=1,--. k-1, //aga07e//

S$(aj . @i 4k=2,3i4k-1) = @i41-+-854k-1+ i=1,...,m=k+1
An-k+2- - -An€Qf
We can now conclude that é6(e,a;...ap) = ay...ap€0¢, and xeL(Ay).

b} Let m<k. Then: al...ameIk(R)an(R).

From the above construction 6(a1...aj“1,aj) = ai---a4,
j=i,...,m, and ay...ap€Qs.
But then s{(e,ay...ap) = a;...a,€Qf, and xeLy (R) .

2. L(Ag)ES1i(R)
Since, by construction, Ay is deterministic, and consequently
unambiguous, thig can be easily proved by following the steps of
the previous part of the proof in reverse order. =

From this theorem and 3.1, we see that the automaton Ay
inferred from R for a given value of k22, accepts the smallest k-
TLSS containing R. Also, using theorem 3.3 and corollary 3.1, we
can see that, for a given sample R, increasing values of k,
produce increasingly restricted languages. Therefore, the
proposed GI algorithm permits a variety of solutions to a
given inference problem to be obtained by changing the value of
k from 2 to the length of the 1longest string in R. These
solutions supply languages which span from the smallest Local
Language (2-TLSS) containing R, to exactly R (Fig 4.2),
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\.

Fig.4.2. Range of languages which can be inferred with the X-TSSI

algorithm from a given positive sample (m>maxx€R|x|).

5. IDENTIFICATION IN THE LIMIT OF LOCALLY TESTABLE LANGUAGES 1IN
THE STRICT BENSE

A characterization of the classes of languages that are
identifiable from only positive samples in the limit is given in
[3). In particular, every finite collection of 1languages is
identifiable in the 1limit from positive presentation. For
instance, given a finite class of languages, an algorithm with
input R which obtains the smallest language in the class

containing R, identifies such a class in the limit.

Theorem 5.1. The k-TSSI Algorithm identifies any k-TLSS in the

limit from positive data.

Proof. Given a finite alphabet ¥ and a positive integer k,
the number of different k-TLSS's over X is finite. Theorems 4.1
and 3.1 suffices for proving that the k-TSSI algorithm identifies
the clasg of k-TLSS's. =
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Note that, despite this result, the class of Locally
Testable Languages 1in the Strict Sense (LTLSS) (k-TLSS for any
k}, as a whole, remains unidentifiable in the limit from only
positive presentation sequences. However, the proposed inference
algerithm can be effectively used to identify any language from
this class in the limit through a complete (both positive and
negative) presentation sequence of the language [11]. From
Theorems 3.3, 4.1, and 5.1, this can be accomplished by starting
with k=2 and using successive positive samples to infer
progressively larger (less restricted) 2-TLSS's until a négative
sample, which is incompatible with the current language, appears.
Then k is increased by one, and the process continues in the same
way with the successive samples. Eventually, the correct value of
k will be reached and then, following Theorems 3.1 and 3.2, no
other negative sample will ever be incompatibkle. The inferred
language will then grow progressively with the successive
positive samples until the source k-TLSS is exactly identified,
thus effectively stopping the changes of the output automaton,
which is precisely the condition assessing the identification in
the 1limit [11].

6. BIZE OF THE INFERRED AUTOMATA AND COMPLEXITY OF THE
INFERENCE ALGORITHM

Let Zy=(Z,Iy,Fy,Ty) be the four-tuple which defines a k-TLSS
from which R has been drawn, and let T'=Ek-Tk. It follows from
the k-TSSI algorithm that the maximum total number of transitions
of Ay is [§|=]Igyl+|T*|, where I = (uez*: uvely, vez*y.

Therefore, since for non-trivial k-TLSS's |I4|<{T'|, and since

for every finite automaton |Q|<|§|, we can write:
sl =oclTry:  [el =o¢t'y: B=o0(z]) (6.1)

where B is the maximum number of transitions associated with any
state of Ay ("Branching factor"). These bounds are given in
terms of the complexity of the language which 1is being
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inferred. This complexity c¢an in turn be bounded for given k
and = as |T'| < |g|X, yielding:

K-l
161 = oclzl®y lel = Juztl+i=(Izl*-1/dzi-1 = o(zI*™h);
B =o(|z]) (6.2)

In practice, however, the scurce language is not often (well)
known and one would prefer the growing rate of the inferred
automaton to be given as a function of only the size of the given
positive sample. In this case, following (3.1) one can readjly
verify that, if 2 (R)=(Z(R),Ix(R),Fk(R),T(R)) is the four-tuple
associated with R, then |Ek(R)-Tk(R)| £n-= xeRlxl, and from
(6.1}, we have:

| §]=0(n) ; |Ql=0(n); B=O(lZ(R)]);: (6.3)

It should be noted, however, that if the source language is
really a k-TLSS, the bounds (6.3) (and also (6.2)) can becone
rather pessimistic. This is because, as n gets larger, all the
elements of 3, I, Fy, and T' will eventually have already
appeared in the strings of R, and then the inferred automaton
will in fact stop growing, whilest the above bounds will not.

The time and space complexities of the inference procedure
defined by (3.1) and the k-TSSI algorithm, are established by the
following theorem.

Theorem 6.1.- Let Zy=(Iy,Iy,F),Ty) be a four-tuple defining

a k-testable language 1(Zy), let R<£1(2Zy) be a positive sample,

and let Zy(R) be the four-tuple associated with R. An automaton

Ay such that L(Ag) = 1(Z(R)) can be inferred in O(knlogm)

time, and represented using o(m|Z|) space, where n={j|x| and
m=|zK-7 | .

These bounds come from the fact that, by using the

appropriate linear data structures to represent the different
sets involved in the construction of Zy(R) and Ay, the required

set find-insert operations can be carried out in at most O(klogm)
time [2],[9].
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Several facts should be pointed out concerning the above
bounds. First, if the source language is not known, but it is
known to be a k-TLSS over the alphabet %, one may realize that
ws|=]¥,  which leads to an inference time bound in 0O(k2nlog|z|).
On the other hand, if nothing is known about the source language,
one may see that |Ek—Tk(R)| £ n to obtain an inference time
bound in O({knlogn). 1In this case, however, the same remarks that
have been made above about the bounds (6.3) apply.

7. LOCALLY TESTABLE LANGUAGES IN THE BSTRICT SENSE AND
REVERSIBLE LANGUAGES.

Recently, Angluin has proposed so called k-RI algorithm which
allows the identification of the class of k-Reversible {k-R)
languages, (k20) from positive data [4]. Following Angluin, a
reqular language L is said to be k-R iff whenever Uy Vw, u,vwelL
and |v| = k, then (uyv)~l(n) = (u;v)~1(L) where, for every xex*,
x"1(L) = (ye=*| xyel}

Theorem 7.1. Let L be a regular language. If L is (k+1)-TLSS,
then L is k-Reversible.

Proof

One may verify that for every u,v,wez® and |v|=k, the
following relation hold:
ig(uvw) = iy (uvy, fp(uvw) = fy (vw), and
tk‘l‘l(uw) = tk+1(UV) u tk+l(W).

Let L be a (k+1)-TLSS, and Uy vw,u,vwel, |v|=k. Then:
(ik(ulv) U ik(u2v))c:Ik+1; fr(vw) ¢ Frs1

(1 (Uyv) U g (uyv) U tk+1(V‘“))C:Ek+1‘Tk+1

We now show that for every zez*, ugvzel iff u,vzeL.

Let u,vzelL.. Then fyp(vz) € Fr+1 and tk+1(vz)c:2k+1-Tk+1. But
then uyvzel. The reciprocal follows analegously. L

Theorem 7.1 implies that the methods proposed in {4] could
be seen as applicable for the inference of k-TLSS's. However, the
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time complexity of Angluin‘'s inference algorithm is 0(kn3), and
then, if the languages of interest can be assumed to belong to
the class of LTLSS's, the methods propesed here can be chosen
with certain advantage over the (most general) methods available
for Reversible Languages. It should be noted that although the
automata inferred by the k-~TSSI algorithm are not minima, their
size is bounded; then, from a practical point of view efficient
recognition algorithms can be applied [10). Furthermore, even
taking intoc account the work required for minimizing these

-

automata, the overall cost remains advantageous.

8. RELATED WORKS

Recently an algorithm wich is essentialy the same that our
k-TSSI has been presented, although from one point of view
slightly different [21]. The more original aspect of this work is
the study of the polynomial identifiability of the algorithnm
considered in the way of Pitt [14]; 1i.e. a identifiable class of
languages C is identifiable in polynomial time wusing a given
class of representations iff there exist an algorithm identifying
¢ such that: 1) it has the polynomial update time property, and
2) there exist a polynomial p such that for any n, and for any
LeC that has a correct representation of size n, and for every
presentation of L, the number of implicit errors of prediction
made by the learning algorithm is at most p(n). Yokomori proved
in his version of the k-TSSI algorithm that the number of
implicit errors of prediction is bounded by |Z|n, where n is the
number of states of the cannonical acceptor of the unknown k-TLSS
[22].

8. CONCLUDING REMARKS

As it has been discussed in section 1, k-Testable Languages in
the Strict Sense can be adeguately used to modelize certain
interesting Pattern Recognition problems [10]. Furthermore,
following the representation theorem that establishes that every
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regular set is the homomorphic image of a 1local language, the
inference of k-TLSS's can be used as the basis of a general
methodolegy for the inference of regqular languages [8]. An
extension of these results to the inference of the most general
class of (non-strict) k-Testable Languages from positive data
does not seem easy. It can be easily shown from [3] that this
class is also identifiable. The dquestion remains as to whether an
efficient procedure for carrying out the inference exists. While
a straighforward linear-time algorithm is proposed in [21] for
obtaining the sets of k-test vectors that represent the k-
Testable Language desired, whether a standard language
representation (grammar or automaton) for this language can be
efficiently obtained from these sets remains to be done,
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