[grfia]
+ General Information
+ Members
+ Research
+ Intranet

2019 + pics

[]

14th workshop gRFIA

2nd International Workshop on Reading Music Systems

[]

Delft, November 2

12th international workshop on Machine Learning and Music

[]

Würzburg (Germany): September 16, 2019

Publications:

All

  1. Román, M.A., Pertusa, A., Calvo-Zaragoza, J.
    "Data representations for audio-to-score monophonic music transcription"
    Expert Systems with Applications, vol. 162, pp. 113769 (2020)
    : bibtex : URL
    Abstract:

    This work presents an end-to-end method based on deep neural networks for audio-to-score music transcription of monophonic excerpts. Unlike existing music transcription methods, which normally perform pitch estimation, the proposed approach is formulated as an end-to-end task that outputs a notation-level music score. Using an audio file as input, modeled as a sequence of frames, a deep neural network is trained to provide a sequence of music symbols encoding a score, including key and time signatures, barlines, notes (with their pitch spelling and duration) and rests. Our framework is based on a Convolutional Recurrent Neural Network (CRNN) with Connectionist Temporal Classification (CTC) loss function trained in an end-to-end fashion, without requiring to align the input frames with the output symbols. A total of 246,870 incipits from the Répertoire International des Sources Musicales online catalog were synthesized using different timbres and tempos to build the training data. Alternative input representations (raw audio, Short-Time Fourier Transform (STFT), log-spaced STFT and Constant-Q transform) were evaluated for this task, as well as different output representations (Plaine & Easie Code, Kern, and a purpose-designed output). Results show that it is feasible to directly infer score representations from audio files and most errors come from music notation ambiguities and metering (time signatures and barlines).

@article {
 author = "Román, M.A., Pertusa, A., Calvo-Zaragoza, J. ",
 title  = "Data representations for audio-to-score monophonic music transcription",
 issn = "0957-4174",
 journal = "Expert Systems with Applications",
 pages = "113769",
 volume = "162",
 year = "2020"
}
Resources associated with this publication
Valid XHTML 1.0!Valid CSS!