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Abstract

Mic6, M.L., I. Oncina and E. Vidal, A new version of the Nearest-Neighbour Approximating and Eliminating
Search Algorithm (AESA) with linear preprocessing time and memory requirements, Pattern Recognition Letters
15 (1994)9-17.

The Approximating and Eliminating Search Algorithm (AESA) can currently be considered as one of the most
efficient procedures for finding Nearest Neighbours in Metric Spaces where distance computation is expensive.
One of the major bottlenecks of the AESA, however, is its quadratic preprocessing time and memory space require-
ments which, in practice, can severely limit the applicability of the algorithm for large sets of data. In this paper a
new version of the AESA is introduced which only requires linear preprocessing time and memory. The perform-
ance of the new version, referred to as ‘Linear AESA’ (LAESA), is studied through a number of simulation exper-
iments in abstract metric spaces. The results show that LAESA achieves a search performance similar to that of the
AESA, while definitely overcoming the quadratic costs bottleneck.
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1. Introduction

Nearest-Neighbours (NN} techniques have be-
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come increasingly popular in Pattern Recognition
(Fukunaga (1990), Dasarathy (1991) ). These tech-
niques become especially important if no reasonable
vector space exists where the objects or points can be
adequately represented, though a convenient proce-
dure is available for computing an appropriate dis-
similarity measure or distance between every pair of
points. In this case, there are many problems of
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(practical) interest in which the distance computa-
tion 1s particularly expensive. (Isolated) Word Rec-
ognition through Dynamic Time Warping (Rabiner
and Levinson (1984), Casacuberta and Vidal
(1987)), Attributed Graph Maitch Searching
(Sanfeliu and Fu (1983), Shapiro and Haralik
(19835)) or best-match String Edit searching (Marzal
and Vidal (1992)), to name but a few, are examples
of these problems. While Nearest-Neighbours tech-
niques are perhaps the only available in these cases,
the large costs of distance computing drastically limit
the size of the problems that can be afforded.
afforded.

In order to alleviate the computational burden in
these cases many techniques for fast Nearest-Neigh-
bour Searching have been proposed in the last few
years (Dasarathy {1991)). Particularly efficient is the
algorithm known as ‘Approximating and Eliminating
Search Algorithm’ (AESA), which achieves NN
search with an querage constant number of distance
computations, i.e., a number of distance computa-
tions that does not depend on the size of the set con-
sidered. This algorithm was introduced by Vidal
(1986) and has been very successfully applied since
then to moderately sized practical problems of Speech
Recognition (Vidal et al. (1988}, Vidal and Lloret
(1988)).

Given a set P of profotypes and a test sample x, the
AESA searches for a prototype in P which is a Near-
est Neighbour of x through a best-first Branch and
Bound strategy (Vidal (1994)). This strategy relies
on a tight, Triangle-Inequality-based, lower bound
function both for successively selecting candidate
prototypes for distance computation (‘Approximat-
ing’) and for pruning-out those prototypes with lower
bound values greater than the best (smallest) dis-
tance found so far (‘Eliminating’). The proposed
lower bound function relies on a direct application of
the Triangle Inequality that makes extensive use of
previously computed distances. In particular, all dis-
tances between every pair of prototypes need be
available during the search process. Obviously, this
entails quadratic memory space requirements for
storing these distances and a corresponding qua-
dratic preprocessing time for their computation, Un-
fortunately, these quadratic costs severely limit the
size of the problems the AESA can be practically ap-
plied to.
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While very satisfactory solutions to this problem
have been obtained by Ramasubramanian (1991)
and Ramasubramanian and Paliwal (1990, 1992) for
regular vector-space represented data, the problem
remained open so far in the most general (and inter-
esting ) setting of Metric-Space data representations.

In this paper a new Metric-Space NN Search algo-
rithm is introduced which definitely overcomes the
AESA quadratic bottleneck. This algorithm, called
‘Linear AESA’ (LAESA) (Micé etal. (1991)), only
requires preprocessing time and memory space that
grow linearly with the number of prototypes and
achieves a search efficiency which 1s very close to that
of the original AESA. It is based on similar (but in-
dependently developed ) ideas as in Ramasubraman-
ian and Paliwal {1990), but if offers the increased
generality of not requiring the data to be represented
in any vectorial form. The basic idea of LAESA is to
attempt an AESA-like search for NN's, while relying
only on the distances from a (small) subset of *Base
Prototypes’ 10 the remaining prototypes. For this pur-
pose, LAESA requires a preprocessing procedure that
not only computes the required distances, but also se-
lects the corresponding Base Prototypes in linear time.
The search procedure, on the other hand, consists of
a direct extension of the best-first Branch and Bound
formulation of the AESA (Vidal {(1994)), in which
only a subset of interprototype distances is available.
This entails the need for an appropriate Base-Proto-
type management policy since, in principle, these
prototypes are candidates for both selection (ap-
proximation) and pruning (elimination) like any
other non-Base Prototype.

The proposed algorithms and experiments assess-
ing their good performance will be presented in the
following sections.

2. Selection of base prototypes

Since the search strategy will fully rely on the dis-
tances from all the prototypes to those selected as the
set of Base-Prototypes (BP), making a good choice
of this set is of particular concern. Obviously, search
efficiency will depend not only on the amount of BPs
selected, but also on their actual location with respect
to the other prototypes. This last issue was already
discussed in an early work by Shapiro (1977) with
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regard to a previous NN (best-match file) search al-
gorithm {Burkhard and Keller {1973) ). The results
of this work suggest that certain improvements could
be achieved by locating reference points far away from
data clusters, Following such a suggestion, a greedy
procedure can be proposed that attempts finding BPs
which are maximally separated.

Starting with an arbitrarily selected BP, the pro-
posed procedure computes the distances to ail the re-
maining prototypes. The computed distances are re-
stored in an array for their future use by the search
procedure and are also accumulated in an accumula-
tor array. The next BP is selected as that for which
the (accumulated) distance is the largest. The pro-
cedure continues computing the distances from the
successively selected BPs to the other prototypes,
storing the computed distances, accumulating them
into the accumulator array, and selecting the next BP
as the one for which the accumulated distance to the
other already selected BPs is maximum. The stop
condition is reached when a prespecified number of
BPs and the corresponding distances have been ob-
tained. A formal description of this procedure is given
as the BP-Selection Algorithm below.

Algorithm BP-Selection

Input. Pc E; melN; {finite set of prototypes and
number of BPs}
Output: B P, |B|=m; {set of m Base Prototypes
(BPs)}

DeR/PIxI81. 1 P|-| B| interprototype distances}
Function: d: EXE—R; {distance function}
Variables: AeR'"; {distance accumulator array}

b, b’ eP, maxelR;

begin
b’ =arbitrary_element{P); B:={b"}; 4=[0];
while |B| <mdo
max =0; b:=b";
for every pe P— B do
D[b, pl:=d(b,p);
A[p)=A[p]+DI[b, pl;
if (4[p]>max) then b’ =p; max=A[p]; endif
endfor

B:=Bu{b'},
endwhile
end
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The computational burden of this algorithm is
clearly seen 10 be n-m steps (each involving one dis-
tance computation and other elementary unit-cost
operations), where n=|P| is the number of proto-
types and m=| 8| is the given number of Base Pro-
totypes. It should be noted, however, that this pro-
cedure does not guarantee a strict optimality
(maximum separation of BPs). Nevertheless, as will
be shown later, good results are obtained with BPs
selected in this way, therefore making fairly unnec-
essary the {otherwise probably infeasible) search for
a truly optimal set of BPs.

3. The searching algorithm

Once a matrix of distances from BPs to the remain-
ing prototypes is available, the Lincar AESA
(LAESA) NN searching strategy is similar to that of
the original AESA. More specifically, the LAESA can
be derived as a Branch and Bound algerithm quite in
the same way as AESA was in Vidal (1994). The main
difference is that, now, the bounding function ¢an no
longer rely on the whole set of interprototype dis-
tances and it should rather be based on BPs distances
alone.

Let P be the set of prototypes and B< P the set of
BPs. Let x be a test sample and @< Pbe a set of pro-
totypes g for which d(x, g) has already been com-
puted (and stored) in previous steps of the search
procedure. Then for every pe P, the following lower
bound estimation g,(p) of the distance from x to p
can be easily derived from the triangle inequality of
d(s, ) (Vidal (1992)):

d{x,p)>go(p)
0 if QnB=0,

max |d(p, ¢)—d(x,g)] otherwise.
YgeP@nB

(1}

This lower bound can be cheaply computed since both
d(p, q) YpeP, VgeB and d(x, q) Vqe( are readily
available (in constant time). Therefore, we can di-
rectly and efficiently eliminate every prototype, p, for
which the lower-bound {optimistic) estimation (1)
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