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ABSTRACT
This work presents a new spatial verification technique
for image similarity search. The proposed algorithm
evaluates the geometry of the detected local keypoints
by building segments connecting pairs of points and an-
alyzing their intersections in a 2D plane. We show that
these intersections remain constant with respect to dif-
ferent geometric transformations (translation, rotation,
similarity and affine). Evaluation has been performed
obtaining an initial image similarity ranking with a
BOF-based methodology, and then using the proposed
method for reranking. The presented algorithm (SIIP)
has been compared to the RANSAC spatial verification
method, showing that it is more efficient and obtains a
higher performance on three different datasets.

1 INTRODUCTION
Image similarity search methods aim to obtain a rank-
ing of the most similar images given a query. In general,
the goal is to get fast algorithms that are robust to scale,
rotation, noise and illumination. A classical method-
ology to face this task is to detect interest point de-
scriptors such as SIFT [6] or SURF [7] from the query
image, and match them to those of the images in the
dataset. Such mappings can be computed from cor-
respondences of salient regions between the candidate
and query images. In some studies these descriptors are
clustered into a bag of features (BOF) to increase the
efficiency for similarity search. One such approach is
TOP-SURF [4] which groups the visual features into a
histogram obtained by selecting the highest scored vi-
sual words (the top T visual words).

However, BOF models lack spatial information. In or-
der to consider it, spatial verification methods can be
added to rerank the BOF results to improve the perfor-
mance with respect to basic representations. This topic
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have been studied in [2], both in the transformations and
in the estimations required to perform the matching.

Several spatial verification methods can be found in the
literature. A well known technique is RANSAC [1],
which estimates a transformation between a query and
a prototype image based on how well its feature lo-
cations are predicted by the estimated transformation.
RANSAC-based spatial matching has been used in sev-
eral works [8] for image retrieval. A weak spatial ver-
ification alternative is proposed in [5], a fast spatial re-
ranking method is used in [11] with a vocabulary tree,
and in [10] the spatial information is obtained using a
BOF.

In this work we propose a simple and efficient spa-
tial verification algorithm to rerank the results returned
from a BOF method. This technique is based on the
comparison of the intersections between segments built
by pairs of interest points (keypoints) from two images.
The proposed approach is compared to RANSAC, ob-
taining better results with a smaller computational cost.

Next section describes the presented methodology.
Evaluation results are detailed in section 3, followed
by the conclusions and future work in section 4.

2 PROPOSED METHOD
Existing spatial verification methods can improve the
performance over a basic bag of features representa-
tion, but they tend to be computationally expensive.
We propose a new method based on the intersection
of segments between interest points or keypoints that
improves the performance of RANSAC with a smaller
computational burden.

In a preprocessing stage, given an image query we get
the most similar prototypes from a dataset using TOP-
SURF [4]. This algorithm extracts the keypoints from
the query image, clusters them into a BOF and com-
pares them to the dataset of prototypes, yielding a rank-
ing of the most similar prototypes. Then, we rerank the
top K results from this stage with the proposed spatial
verification algorithm.

The proposed spatial verification method consists of ex-
tracting the keypoints given a descriptor, match them
and evaluate the intersections between segments. Fig-
ure 1 shows an example to explain the motivation of the



Figure 1: The intersections of segments between inter-
est points are invariant to common transformations.

proposed approach. Given a set Pa of keypoints in an
image a, we get all the possible segments and calculate
their intersections. As it can be seen, the segment inter-
sections remain invariant to common geometric trans-
formations (scale, translation, rotation, affine, and sim-
ilarity). In the example of the first row, the segment
p1 p4 only intersects with the segment p2 p3 in all the
transformations of the same image.
Using the number of matching intersections as a mea-
sure of distance between two images is an efficient
method which is robust to 2D transformations since the
number of intersection remains constant. The proof of
this is trivial since the intersection points belong to the
segments, thus the transformation applied to the seg-
ments will also be applied to these points.

2.1 Notation and definitions
Consider a given set P = {p1, p2, . . . , pn} of keypoints,
where Pa denotes the set of points from the image a, and
p1 p2 the segment formed by points p1 and p2. Let’s
also denote P2(P) as the power set of P with cardi-
nality 2 which contains all the subsets of P with two
elements, or in other words, the set of all possible seg-
ments between two points in the set P.
The intersections of segments in a set P2(P) can be
calculated using different methods. In this study, we use
an efficient algorithm for line segment intersection from
Chazelle et al [12] that has a complexity of O(n logn+
k), where n is the number of segments in the set, and k
the number of intersections.
Given a set of segments Sa = {s1,s2, . . . ,sn} belonging
to an image a, we define I = s1 ∩ s2 as the intersec-
tion function between s1 and s2. This function returns
whether two segments intersect or not ( /0). Let also de-
note Ia as the set containing all the pairs of segments
which intersect each other:

Ia = {(sn,sm) : sn,sm ∈ Sa,sn∩ sm 6= /0,n 6= m}

Spatial verification is performed by comparing the set
of intersections. We define the distance d(a,b) between
two images a and b as the number of common intersec-
tions divided by the maximum number of intersections
from both images:

d(a,b) = 1− (|Ia∩ Ib|)/(max(|Ia|, |Ib|))

2.2 Algorithm

Data: Images a, b
Result: Distance da,b
Pa = SURF(a); Pb = SURF(b);
Ma,b = maxN{(pa, pb) : pa ∈ Pa, pb ∈ Pb,

dist(pa, pb)< ε};
for each image i in a,b do

P′i = {pi : pi ∈ fi(Ma,b)};
Ii = {(sn,sm) : sn,sm ∈P2(P′i ),sn∩ sm 6= /0,n 6= m};

end
d(a,b) = 1− (|Ia∩ Ib|)/(max(|Ia|, |Ib|));
return d(a,b)

Algorithm 1: Distance between two images a and b.

Algorithm 1 describes the proposed spatial verification
method that calculates the distance between two images
a and b. We first extract the sets of keypoints Pa and Pb
from the input images. Then, these sets are matched
to get the subset of related points Ma,b that are com-
mon to both images. Matching is performed using the
Euclidean distance between the feature vectors of each
keypoint, defined as dist(pa, pb). For efficiency, these
sets are ordered by relevance using the inverse of the
Euclidean distance between each pair of matched points
in order to keep as a maximum only the first (the most
correlated) N points to build segments between them.

It is important to note that adding keypoints makes the
number of possible intersections to increase. In general,
for a set of n segments, there can be up to n2 intersec-
tions in the worst case. This is the reason to keep as
a maximum only the N keypoints that are most similar
from both images.

From the initial sets of keypoints Pa and Pb, the algo-
rithm selects the subsets of keypoints P′a and P′b that
are present on the set of corresponding pairs Ma,b in
order to keep only the matching points for the next
stage. Mathematically, we define a bijective function
fa : Ma,b→ Pa which given an element of the matching
set Ma,b returns the corresponding point of the set Pa.
Analogously, we define fb for the set of keypoints Pb.

Then, the segments between all filtered keypoints P′a
and P′b are independently built for images a and b re-
spectively. Finally we calculate the intersections be-
tween these segments in both images, and we define a
distance d(a,b) that takes into account the number of
common intersections.

For instance, consider the first and last rectangles from
the first row in Figure 1, denoted as image a and im-
age b respectively. The interest points p1, p2, p3 and
p4 from image a are matched to the points p1, p2, p3
and p4 from image b. The segment intersections in a
are p1 p3 ∩ p2 p4, that are common to the intersections
p1 p3∩ p2 p4 in b. Therefore, as there is only one com-



Figure 2: Top interest points and their segments from
two images in the MirBot dataset.

mon intersection and each image only contains one in-
tersection, their distance is d(a,b) = 0.

Figure 2 shows an example of the segments between
matching keypoints of two images. The perspective
change is well approximated by a 2D affine transfor-
mation and occlusion has little importance.

2.3 Regularization term
The distance d(a,b) was used to perform a fair com-
parison with RANSAC, which only considers matching
keypoints. However, this distance does not take into ac-
count the number of unmatched points, which can be a
problem in some cases; for example, in Figure 1, if the
rectangle is compared to the pentagon, as their geome-
try is coherent their distance will be 0.

This is the reason to add a regularization term to the
original distance in order to consider the proportion be-
tween matched and unmatched keypoints. The modi-
fied distance d′(a,b) is defined as:

d′(a,b) = d(a,b)
|Ma,b|

max(|Pa|, |Pb|)

3 EVALUATION
This section describes the experimental results. To
serve the purpose of comparison, we have evaluated the
performance with three datasets commonly used in spa-
tial verification tasks:

Mirbot [3] contains photographs taken by users using
smartphones, so they are low-medium quality with vari-
able dimensions (max. 640× 640px). The dataset ver-
sion from October 2014 has been used, with 16327 im-
ages distributed in more than 1000 classes.

Oxford 5K [8] contains 5062 high resolution (1024×
768px) images divided in 11 classes. Images are as-
signed to four possible labels: Good, OK, Junk or Bad.
We have used only the pictures labeled as Good or OK
as positive results, discarding the Junk images, and us-
ing the Bad images as negative results.

Paris [9] contains 6300 high resolution (1024×768px)
images collected from Flickr with Paris landmarks.

Similarly to Oxford, images are divided in 11 classes.
Labels are assigned as in Oxford dataset: Good, OK,
Junk or Bad. We have also ignored those images
labeled as Junk.

For the experiments we first use the TOP-SURF method
[4] with the default dictionary of 100k words to get a
list of the most similar images to a query. Then, only
the top K images are taken to be reranked, both using
RANSAC and the proposed spatial verification tech-
nique for comparison.

In the reranking stage, keypoints could be obtained us-
ing any local descriptor. We have chosen SURF [7] to
evaluate both RANSAC and the proposed SIIP method.

Performance is assessed using leaving-one-out cross-
validation with values of K between 20 and 50. Then
the accuracy and the Mean Average Precision at k
(MAP@k) are computed. Accuracy (Top-1) measures
the ratio between true positives TP and the number of
images in the dataset Q:

Acc =
1
|Q| ∑q∈Q

TP(q)

To calculate the Mean Average Precision at k
(MAP@k) we first calculate the Average Precision at k
(AP@k) for a query q, and then the MAP is obtained
as the mean of the APs for all queries:

AP@k(q) =
1

NR

NR

∑
n=1

Pk(q)

MAP@k(Q) =
1
|Q| ∑q∈Q

AP@k(q)

where NR is the minimum between k and the total num-
ber of retrieved results, and Pk(q) is the precision at cut-
off k in the results list.

3.1 Results
The table 1 shows the results after reranking the K =
20 most similar images from the Mirbot dataset with
RANSAC and the proposed method (Segment Intersec-
tion of Interes Points, SIIP). Different values of N were
evaluated to measure the impact on the performance
of the maximum number of keypoints, but changing
N does not alter significantly the accuracy neither in
RANSAC nor with SIIP with the distance function d.
A value N = 24 has been chosen in the following as it
obtains the best MAP@10 and a good accuracy.

The table 2 shows the results obtained in the Mirbot,
Oxford 5K and Paris datasets. The accuracy using only
TOP-SURF without rerank is shown as the baseline.
Then, RANSAC and SIIP (both using SURF features)
accuracy and MAP@10 are obtained with N = 24. SIIP
results are given with the distance function d and also
adding the regularization term d′. As it can be seen,
SIIP outperforms RANSAC in all the experiments.



N=8 N=16 N=24 N=32

SIIP (d) Accuracy 0.3140 0.3148 0.3149 0.3150
MAP@10 0.1782 0.1786 0.1786 0.1781

RANSAC Accuracy 0.3018 0.3017 0.3022 0.3023
MAP@10 0.1770 0.1774 0.1776 0.1776

Table 1: Results in the MirBot dataset reranking the
K = 20 first images varying the number of keypoints N.

Accuracy MAP@10
DB K RANSAC SIIP (d) SIIP (d′) RANSAC SIIP (d) SIIP (d′)

[3]

20 0.302 0.315 0.305 0.178 0.179 0.177
30 0.304 0.319 0.306 0.177 0.177 0.175
40 0.305 0.322 0.305 0.176 0.176 0.174
50 0.304 0.319 0.305 0.176 0.175 0.173

[8]

20 0.920 0.923 0.928 0.823 0.826 0.830
30 0.922 0.925 0.931 0.826 0.829 0.835
40 0.920 0.925 0.933 0.827 0.831 0.836
50 0.917 0.925 0.933 0.825 0.830 0.837

[9]

20 0.796 0.806 0.812 0.621 0.631 0.633
30 0.800 0.811 0.817 0.629 0.638 0.644
40 0.803 0.814 0.826 0.631 0.640 0.649
50 0.803 0.816 0.828 0.631 0.643 0.652

Table 2: Accuracy and MAP@10 with MirBot [3], Ox-
ford 5K [8] and Paris [9] datasets. The baseline (only
TOP-SURF) accuracy without reranking is 0.247 in
MirBot, 0.896 in Oxford 5K, and 0.744 in Paris.

In MirBot the function d′ did not improve the results
of d, but in the other datasets it was consistently bet-
ter. Contrary to Paris and Oxford, in MirBot each class
contains different objects of the same type, instead of
the same object from different perspectives. This fact,
along with the very large number of classes, explains
these accuracy differences.

Besides each image had a very different runtime that
depends on the number of keypoints and intersections,
SIIP is consistently 3 times faster than RANSAC for all
the images, independently of the dataset.

4 CONCLUSIONS
This work presents a new algorithm (SIIP) for image
spatial verification based on the comparison of the in-
tersections between segments built by pairs of interest
points from two images. It can be used for reranking a
subset of images already ranked with a similarity search
algorithm such as a BOF.

Evaluation has been performed by obtaining the most
K similar images with TOP-SURF, and then reranking
the filtered prototypes using SURF interest points. SIIP
has been compared to RANSAC, given both superior
efficiency (3 times faster) and performance on the three
datasets evaluated: Oxford 5K, Paris and MirBot.

As a future work, the proposed methodology could be
applied with other descriptors such as SIFT [6], differ-
ent equations for the distance d(a,b) could be explored,
and a comparison with more recent spatial verification
methods should be made.
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