
Computing the Expected Edit Distance from a
String to a PFA

Jorge Calvo-Zaragoza1, Colin de la Higuera2, and Jose Oncina1

1 DLSI, University of Alicante, Spain
{jcalvo,oncina}@dlsi.ua.es

2 LINA Lab, UMR 6241, University of Nantes, France
cdlh@univ-nantes.fr

Abstract. In a number of fields one is to compare a witness string
with a distribution. One possibility is to compute the probability of the
string for that distribution. Another, giving a more global view, is to
compute the expected edit distance from a string randomly drawn to the
witness string. This number is often used to measure the performance
of a prediction, the goal then being to return the median string, or the
string with smallest expected distance.

To be able to measure this, computing the distance between a hypothesis
and that distribution is necessary. This paper proposes two solutions for
computing this value, when the distribution is defined with a probabilis-
tic finite state automaton. The first is exact but has a cost which can
be exponential in the length of the input string, whereas the second is a
Fpras.

Keywords: Edit Distance, Probabilistic Finite State Automata

1 Introduction

The edit or Levenshtein distance is often used to measure how close one string
is to another [14]. This distance has given rise to many questions: if one is given
a set instead of a string, the question may be to compute rapidly the distance
between the set and a string or between two sets [28, 17]. In turn, a set defines
an empirical distribution which can be represented by a probabilistic finite state
automaton (Pfa), a hidden Markov model or a weighted automaton [17, 27].

If the set is used as a learning sample, the distribution may be more general,
again represented by the above machines, but these may now contain cycles and
therefore define a distribution over all possible strings.

The following questions are then posed: what is the expected distance be-
tween a given witness string and such a distribution? What could a representative
string be for this distribution? One possible answer to the second question is the
most probable string [10, 11]. Another is the median string which is the string
minimizing the expected distance to the distribution, which in turn contributes
to make the first question relevant. These questions have not only a precise

2

mathematical interest, but they have been posed in very different settings like
bio-informatics [7], pattern recognition [19] or computational linguistics [24].

Alternative distances have been studied, such as the minimum cost obtaining
by summing the weight of a string and its distance to the witness string [2]. Balls
of strings, Levenshtein automata and other finite state machines linking regular
languages and the edit distance have been introduced, discussed and studied [17,
4, 16, 23].

We prove in this paper two results.
The first is that the expected edit distance can be computed, and that if the

weights of the Pfa are rational, then the result itself is rational. The construction
involves building a multiplicity automaton which can be of size exponential in
the length of the string w, but only increases polynomially with the number of
states of the Pfa or the size of the alphabet.

The second result is that the problem admits a fully polynomial time ran-
domized schema (Fpras), that is, a randomized algorithm which will return a
probably approximatively correct value in time polynomial with the length of the
string, the size of the automaton representing the distribution, and the inverse
of the accepted error.

Each algorithm has its advantages and inconveniences, as we will show in
the experimental section: the method involving the multiplicity automaton will
give an exact result, but only for small witness strings. The Fpras, on the other
hand, can only build an approximate result, but there is a guarantee on the error
bound and the method can handle long witness strings and large Pfa.

After introducing notations and definitions (Section 2), we prove in Section 3
that the problem is decidable and provide an algorithm which gives the correct
result; Section 4 presents a polynomial randomized computation whose result is
probably approximately correct. Our experiments, described in Section 5, empir-
ically confirm the bounds in both error and complexity of the proposed strategies.
Section 6 concludes the present work.

2 Preliminaries

2.1 Basic Notations

An alphabet Σ is a finite non-empty set of symbols called letters. A string w
over Σ is a finite sequence w = w1 . . . wm of letters. Letters will be indicated by
a, b, c, . . ., and strings by u, v, . . . , z. Let |w| denote the length of w. In this case
we have |w| = |w1 . . . wm| = m. The empty string is denoted by λ.

We denote by Σ∗ the set of all strings, by Σm the set of those of length m.
A probabilistic language D is a probability distribution over Σ∗. The proba-

bility of a string w ∈ Σ∗ under the distribution D is denoted as PrD(w). The
distribution must satisfy

∑
w∈Σ∗ PrD(w) = 1.

If the distribution is modelled by some syntactic machine M, the probabil-
ity of x according to the probability distribution defined by M is denoted by
Prx∼M(x) or simply PrM(x).

3

2.2 Multiplicity Automata

An n-state Multiplicity Automata (MA) M (also known as recognizable se-
ries [5] or Stochastic Sequential Machines [20]) can be defined by a 4-tuple
〈Σ,S,M,F〉here: Σ is the alphabet, S ∈ Q1×n, M = {Ma ∈ Qn×n : a ∈ Σ},
and F ∈ Qn×1.
M realizes a function from Σ∗ to Q such that:

M(x1 · · ·xk) = S

k∑
i=1

MxiF

This machine can also be defined from a graph point of view as an n-state
machine 〈Σ,Q, S,F, δ〉 where Q = {q0, · · · , qn−1}, S : Q → Q are the initial
weights (S(qi) = S[i]), F : Q → Q are the final weights (F(qi) = F[i]), and
δ : Q×Σ ×Q→ Q are the transition weights (δ(qi, a, qj) = [Ma]i,j).

Given x ∈ Σ∗, ΠM(x) is the set of all paths accepting x: an accepting x-
path is a sequence π = qi0x1qi1x2 . . . xkqik where x = x1 · · ·xk, ai ∈ Σ, and
∀j ∈ [1, k] such that δ(qij−1 , aj , qij) 6= 0. Let π = qi0x1qi1x2 . . . xkqik , we denote

by δ(π) =
∏k
j=1 δ(qii−1

, aj , qij), α(π) = qi0 and ω(π) = qik .

M(x) =
∑

π∈ΠM(x)

S(α(π))δ(π)F(ω(π))

This can be computed efficiently using the Forward (or Backwards) algorithm.
Obviously, the two ways to compute M(x) are equivalent.

Probabilistic Finite Automata (Pfa) can be viewed as a special type of MA
that are restricted to describe probability distributions over sets of strings. Then
further restrictions should be applied. Let 1 ∈ Qn×1 : 1[i] = 1∀i, I ∈ Qn×n be
the identity matrix and MΣ =

∑
a∈ΣMa, then:

– the components of S, M and F are interpreted as probabilities, that is, they
should be in [0, 1]

– S1 = 1: the sum of the starting probabilities should add one
– MΣ1 + F = 1: for any state, the sum of the outgoing probability plus the

ending probability should add one
– (I −MΣ) should be non-singular: this is a sufficient condition to assure the

non existence of absorbing states (or set of states).

2.3 The Edit Distance

The edit distance between two strings de(x, y) is the minimum number of edition
operations needed to transform x into y [14].

We will make use of the following generous bounds for the edit distance:

de(x, y) ≤ max{x, y} ≤ |x|+ |y| (1)

The relative edit distance from x to y is dr(x, y) = de(x, y)− |y|. Notice that
this is not a metric.

4

It follows from (1) that for a fixed string x the set of values that dr(x, y) can
take is finite, with values ranging from −|x| to |x|, even though the set of strings
from which y is chosen is infinite.

We extend the definitions to distributions over strings (string-distribution
edit distance):

de(w,D) =
∑
y∈Σ∗

de(w, y)PrD(y) =
∑
y∈Σ∗

dr(w, y)PrD(y) +
∑
y∈Σ∗

|y|PrD(y) (2)

When D is given by a Pfa A, we can also write de(w,A).

2.4 Complexity Issues

Let us recall that a decision problem is one for which the possible answers are
true and false. Such a problem is in class P if there is a deterministic Tur-
ing machine solving any instance in polynomial time, in NP if this machine is
non-deterministic, NP-complete if it as hard as any of the other NP-complete
problems.

An optimization problem asks for a numerical value to be computed given
an instance. This value can sometimes be approximated by a polynomial-time
approximation scheme (Ptas) which can compute a value within a factor 1+ε
of the optimum in time polynomial in the size of the approximation scheme.
If the runtime also depends polynomially of 1/ε, the scheme is called a fully
polynomial-time approximation scheme or Fptas. For more about approxima-
tion algorithms, see [26].

Sometimes, deterministic algorithms are unable to approximate, but random-
ized algorithms [18] can solve the problem in the following sense: an algorithm
A is a fully polynomial time randomized schema or Fpras if it can return a
solution which is at distance ε of the optimum, with confidence at least 1 − δ
and runs in time polynomial in the size of the instance, 1/ε and 1/δ.

The key problem in this work is called EDD:

Name: Computing the edit distance to a distribution (EDD)
Instance: A distribution D over an alphabet Σ. A string w over Σ.
Question: Compute de(w,D).

If we need to only consider the decision problem we will be also taking a
rational input r and asking if de(w,D) ≤ r. And the associated approximation
problem consists in computing a value x such |x− de(w,D)| < ε.

The exact status of EDD is an open question. We conjecture it is NP-hard.

3 EDD is Decidable

We first prove that there exists an algorithm which takes a string w and a
Pfa AD and computes de(w,AD). The computation cannot be bounded by a
polynomial, but it terminates. The construction we propose follows three steps:

5

1. We first (Sect. 3.1) build from w an MA Aw which can compute dr(w, x).
2. We next (Sect. 3.2) build from AD and Aw an MA AD,w which computes

the product of the relative edit distance and the probability of the string.
3. Using the matrix representation of AD,w and AD we are able to compute the

values of the infinite series
∑
x∈Σ∗ |x|PrAD (x) and

∑
x∈Σ∗ dr(w, x)PrAD (x).

3.1 Building a Multiplicity Automaton Computing the Edit
Distance to a String (Step 1)

Given a string w, we build (with Algorithm 1 MA Build) an MA, Aw, which
will allow to parse any other string x and in linear time obtain dr(w, x).

The states of the MA are the different columns one may obtain when running
the classical edit distance algorithm for strings w (used to index the lines) and
u (used to index the columns), and substracting, in each cell, the length u,
ie, computing dr(w, u), with w fixed and u being any string. The number of
states is finite, because dr(w, ·) ∈ [−|w|, |w|], so the number of possible columns
is bounded by (2|w|)|w|. Moreover, if we take into account that the difference
between two consecutive elements in a column is in {−1, 0, 1}, the number of
different columns, hence of states, is bounded by 3|w|.

There is a transition in the MA labelled by symbol a between the state
corresponding to the last column of dr(w, u) to the state corresponding to the
last column of dr(w, ua), for some string u.

There is no guarantee that the construction terminates in polynomial time.
We give an example of this construction in Appendix A (Fig. 4) and in Appendix
B of [6] we provide a counter-example, ie a parameterized string such that the
size of Aw increases faster than any polynomial in |w|.

Yet even when exponential, the construction does terminate, and the follow-
ing result can be given:

Proposition 1. Given any string x, dr(w, x) = Aw(x)

3.2 Computing the Product Automaton (Step 2)

We are now given a Pfa AD = 〈Σ,QD,SD,FD, δD〉 and a multiplicity automaton
Aw = 〈Σ,Qw,Sw,Fw, δw〉.

The new machine, denoted by AD,w has as states pairs 〈q, q′〉 with q ∈ QD,
q′ ∈ Qw. AD,w = 〈Σ,QD,w,SD,w,FD,w, δD,w〉:

– δD,w(〈q, q′〉, a, 〈s, s′〉) = δD(q, a, s)δw(q′, a, s′),
– SD,w(〈q, q′〉) = SD(q)Sw(q′),
– FD,w(〈q, q′〉) = FD(q)FD(q′).

By construction, AD,w(x) = dr(w, x)PrA(x).
An example is proposed in Appendix A, Fig. 6 of [6].

6

Algorithm MA Build(w)
Data: w = w1 . . . wm of length m
Result: a multiplicity automaton Aw = 〈Σ,Q, S,F, δ〉
q0 ← [0, 1, 2, . . . ,m]; Q← {q0}; S(q0)← 1; F(q0)← m;
unmarked← {q0};
while unmarked 6= ∅ do

Choose q in unmarked ;
unmarked← unmarked− {q};
for a ∈ Σ do

q′[0]← 0;
for i = 1 to m do

if wi = a then x← 0 ;
else x← 1 ;
q′[i]← min{q[i], q[i− 1] + x− 1, q′[i− 1]};

if q′ ∈ Q then δ(q, a, q′)← 1 ;
else

Q← Q ∪ {q′}; δ(q, a, q′)← 1; F(q′);← q′[m]; S(q′)← 0;
unmarked← unmarked ∪ {q′};

Algorithm 1: Algorithm MA Build(w) computing, given a string w, the
deterministic MA Aw such that on input x, dr(w, x) is computed as Aw(x).

3.3 Computing the Distance (Step 3)

We have to compute de(w,AD) =
∑
x∈Σ∗ |x|PrA(x) +

∑
x∈Σ∗ dr(w, x)PrA(x).

Let (Σ,
D

S,
D

M,
D

F) be the matrix representation of the Pfa AD. Since (I−
D

M)
is non-singular by definition of Pfa, the average length of the strings generated
by AD can be computed as in [11]:

∑
x∈Σ∗

|x|PrA(x) =

∞∑
i=0

i PrA(Σi) =

∞∑
i=0

i
D

S
D

MΣ
i
D

F =
D

S
D

MΣ(I −
D

MΣ)−2
D

F

Let (Σ,
w

S,
w

M,
w

F) be the matrix representation of AD,w. Each addend of the
series

∑
x∈Σ∗ dr(w, x)PrA(x) can be computed as:

∑
x∈Σ∗

dr(w, x)PrA(x) =
∑
x∈Σ∗

w

S
w

Mx

w

F =

∞∑
i=0

w

S
w

Mi
w

F =
w

S(I −
w

M)−1
w

F

One point to check is that the matrix (I −
w

M) is non-singular.

By construction, [
w

M]i,j ≥ 0. Moreover, in any adjacency matrix, [Mk]i,j
is the sum of the weights of all the paths of length exactly n that goes from

node i to node j. In our case, by construction, [
D

Mk]i,j =
∑
q,s[

w

Mk]<i,q>,<j,s>

hence [
D

Mk]i,j ≥ [
w

Mk]<i,q>,<j,s>. We also know that (I −
D

M) is non-singular so

7

limk→∞[
D

Mk]i,j = 0. Summarising, we have that, 0 ≤ limk→∞[
w

Mk]<i,q>,<j,s> ≤

limk→∞[
D

Mk]i,j = 0, so limk→∞[
w

Mk]i,j = 0 and then, (I −
w

M) is non-singular.

Therefore, de(w,AD) =
D

S
D

MΣ(I −
D

MΣ)−2
D

F +
w

S(I −
w

M)−1
w

F. It follows:

Theorem 1. EDD is decidable and the edit distance between a witness string
and a Pfa with rational weights is rational.

The construction described here is not polynomially bounded. The final com-
putation is (with arbitrary precision and unit computation time for all arithmetic
operations) cubic in the size of the product finite state machine. In turn, the size
of this machine essentially depends on the length of the input string.

4 An FPRAS for EDD

As can be seen in the experiments (or in the theoretical analysis from Appendix B
of [6]), the method described in Sect. 3 may lead to a combinatorial explosion
during the construction of Aw. In this section we propose an Fpras to approx-
imate the value of de(w,AD).

Alternatively, the result can be seen as a Probably Approximate Correct
(PAC) algorithm [25]. The goal of this framework is to learn (in this case, to
compute) a concept for which, with high probability, we obtain a sufficiently
good approximation of it.

We are given a Pfa AD, a string w and two values ε > 0, δ > 0.

An Fpras would be an algorithm which, in time polynomial in |AD|, |w|, 1ε ,
1
δ

computes a value v such that, with probability at least 1− δ,∣∣∣∣v − de(w,AD)

∣∣∣∣ ≤ ε
Theorem 2. There exists an Fpras computing the expected distance between a
string and a distribution given by a Pfa.

Proof. A full description of Algorithm Compute Bounds is given in Appendix
C of [6]. This algorithm returns L which is the length at which the generation pro-
cess of the Pfa should be stopped. The goal is to have a polynomial limit to the
length of the strings without this impacting the quality of the result. Then, for
this L a value N , also polynomial, is computed. These numbers are used by Al-
gorithm Build Sample which with high probability and complexity in O(NL)
is going to return a correct sample. The main Algorithm Expected Distance
uses this sample and computes the distance.

The complexity of Algorithm Build Sample is in O(NL). There is a (non
null, but lower than δ

2) probability that the number of generated samples is less
than N . 2

8

Algorithm Build Sample(AD, L, N)
Data: a Pfa AD
Result: a sample S which, with probability > 1− δ

2
, contains N strings

S ← ∅;
for i : 1 ≤ i ≤ N do

generate a string of length at most L, using AD and add it to S. If
during the generation the string becomes too long, generate nothing

return S

Algorithm 2: Algorithm Build Sample(AD)

Algorithm Expected Distance(w, AD, ε, δ)
Data: a string w, a Pfa AD, ε, δ
Result: the expected distance between w and AD

〈N,L〉 ← Compute Bounds(AD, ε, δ, w) ;
S ← Build Sample(AD, L, N);
Res← 0;
for x ∈ S do Res← Res+ de(w, x);
return Res/N

Algorithm 3: Algorithm Expected Distance(w, AD, ε, δ)

5 Experiments

As a preliminary evaluation, we ran our Fpras with a fixed value of δ = 0.01
and varying values of ε on 100 pairs of Pfa and strings w. In all cases, the differ-
ence between the real value and the one computed with the Fpras was always
less than ε, which confirms that the values computed by Compute Bounds
represent a pessimistic lower bound.

In the series of experiments we want to empirically confirm the time com-
plexity of the algorithms. We showed that the MA-based method grows with
the size of the witness string, whereas the Fpras is bounded by N , the number
of necessary samples, which is closely related to the expected length of a string
from the Pfa. In order to focus these experiments on the most relevant issues,
we are using the small Pfa shown in Fig. 1. Parameter pf ∈ (0, 0.9) allows us
to tune the expected lengths nicely: the lower pf , the higher the length.

The first experiment examines the time complexity using the method de-
scribed in Sect. 3. Parameter pf varies so that the expected lengths of the strings
are 6.22, 7.75, 9.71, 12.33, and 16. For this experiment, we generate strings ran-
domly and uniformly of lengths ranging from 1 to 13 from an alphabet of size 2.
Then, we measure the execution time consumed to compute the distance between
the string and the Pfa, including the construction of the Aw. The experiment
is repeated 100 times for each Pfa and each witness string length considered.
Average results are shown in Fig. 2.

As expected, the complexity of the procedure grows very fast as the length
of the witness string is increased. Note that the y-axis is shown in logarithmic

9

q0 : pfstart q1 : 0

a : 0.1

b : 0.9− pf

a : 0.8

b : 0.2

Fig. 1. Parametrizable Pfa used in the experiments.

0.01

0.1

1

10

100

1000

10000

100000

1e+06

2 3 4 5 6 7 8 9 10 11 12 13

C
om

pu
ta

tio
n

tim
e

in
 m

s
(lo

g
sc

al
e

)

|w|

E[|X|] = 6.22
E[|X|] = 7.75
E[|X|] = 9.71
E[|X|] = 12.33
E[|X|] = 16

Fig. 2. Average execution time in milliseconds needed for the method based on a MA
to compute the distance between a witness string w and a Pfa.

scale, so the curve suggests an exponential growth. According to the empirical
curve shown in these experiments, computing the distance of a witness string
of length 50 would mean an execution time in the order of 107 years. Another
thing to remark is that this method is not dependent upon the configuration of
the Pfa, as long as its number of states does not change.

On the other hand, the same experiments is repeated using the Fpras for
ε and δ fixed to 0.01. The length of the witness strings are 4, 7, 10, 13 and 16.
The parameter pf is configured so that the expected length of the strings of the
Pfa are 7.75, 12.33, 16, 21.5, 30.66, 36.31, 44, and 49. Figure 3 illustrates the
average results of these experiments.

It can be noticed that the configuration of the Pfa is the most relevant
factor for the Fpras. As might be expected by the relationship between the size
of the Pfa measured by cA and the expected length of the strings, the empirical
growth seems to be polynomial [3]. It is also observed that the length of the
witness string is a factor that can vary the time complexity since the distances
to compute are more expensive. Nevertheless, it is important to emphasize that
the Fpras scales relatively well: for a Pfa whose expected length of strings is
100 and a witness string of length 100, the result (89.3235) was computed in
around 25 minutes fixing both ε and δ to 0.01.

10

0

10000

20000

30000

40000

50000

60000

70000

80000

7.75 12.33 16 21.5 30.66 36.31 44 49

C
om

pu
ta

tio
n

tim
e

in
 m

s

E[|X|]

|w| = 4
|w| = 7
|w| = 10
|w| = 13
|w| = 16

Fig. 3. Average execution time in milliseconds needed for the Fpras method to com-
pute the distance between a witness string w and a Pfa.

6 Conclusion

Two algorithms have been proposed to deal with the question of computing the
expected edit distance from a witness string to a distribution given by a Pfa.
Whereas one is able to compute this value exactly, it is limited to cases where
the length of the witness string is short, as the construction involves building
a multiplicity whose size can increase in an exponential way with the length of
this string. The first one also shows that the question is decidable and that the
solution can be expressed with rational weights.

On the other hand we have a Fpras which will return with high confidence
a value (ε)-close to the correct result. It has been shown that its complexity
essentially depends on the expected length of the strings of the distribution.

The above results raise several extra questions:

– Computing the expected edit distance between two Pfa. In [17] a technique
is proposed for the special cases where these Pfa correspond to finite lan-
guages, or can be determinized. A randomized technique in which strings
are drawn from both distributions is likely to work.

– The exact status of EDD remains unclear. The (decision) problem is decid-
able, as witnessed by Theorem 1. But is it in NP?

– A more technical puzzling question concerns the size of the multiplicity au-
tomaton built in Sect. 3. The experiments and the construction proposed in
Appendix B of [6] shows that polynomial bounds are not going to be met.
But the proof relies on an alphabet whose size increases with the length
of string w. Having a construction with a fixed size (ideally 2) is an open
question.

More importantly, the really crucial question is that of computing the median
string, given a Pfa.

11

When given a distribution, a prediction system will often attempt to return
the most probable string in order to minimize the empirical risk by following a
maximum a posteriori probability (MAP) criterion.

Nevertheless, while this may be applicable in a large number of applications,
other loss functions can be better suited than the 0/1 loss. For instance, very of-
ten the final goal is to reduce the number of post-processing corrections required
to transform a hypothesis. This is usually counted by means of the Levenshtein
or edit distance (de), or a related metric like the Word Error Rate (WER). Then,
the empirical risk becomes

R(w|x) =
∑
v∈Σ∗

Pr(v|x)de(w, v)

In which case, the optimum string is the median string. Yet most often the
most probable string (or an approximation of it) is proposed instead of the me-
dian string, whose search is related to a NP-hard problem [9] even in a finite
case. This inconsistency is well known [12], and there have been a number of
studies addressing this issue [8, 21], with recently a specific analysis of the rela-
tionship between 0/1 loss functions and other discrete loss functions [22]. Other
approaches include the introduction of heuristics to approximate the median
string [13, 15, 1].

This constitutes of course a real challenge.

Acknowledgements. The authors wish to acknowledge the help of Borja Balle
in establishing the proof of Theorem 2, and the comments of the 3 anonymous
reviewers of this paper. Also the financial help of the Spanish Ministerio de
Educación, Cultura y Deporte through a FPU grant (Ref. AP2012-0939) and
the Spanish Ministerio de Economı́a y Competitividad through Project No.
TIN2013-48152-C2-1-R (supported by UE FEDER funds). This work was partly
done while the second author was supported by the University of Kyoto.

References

1. Abreu, J., Rico-Juan, J.R.: A new iterative algorithm for computing a quality
approximate median of strings based on edit operations. Patt. Rec. Letters 36,
74–80 (2014)

2. Allauzen, C., Mohri, M.: Linear-Space Computation of the Edit-Distance between
a String and a Finite Automaton. CoRR abs/0904.4686 (2009)

3. Balle, B.: Learning Finite-State Machines: Algorithmic and Statistical Aspects.
Ph.D. thesis, Universitat Politécnica de Catalunya (2013)

4. Becerra-Bonache, L., de la Higuera, C., Janodet, J.C., Tantini, F.: Learning balls of
strings from edit corrections. Journal of Machine Learning Research 9, 1841–1870
(2008)

5. Berstel, J., Reutenauer, C.: Rational Series and their Languages. Springer-Verlag
(1988)

12

6. Calvo-Zaragoza, J., de la Higuera, C., Oncina, J.: Computing the expected edit
distance from a string to a pfa. Complete version with appendices. (2016), https:
//hal.archives-ouvertes.fr/hal-01308549

7. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis:
Probalistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge, UK (1998)

8. Ehling, N., Zens, R., Ney, H.: Minimum Bayes risk decoding for BLEU. In: In Proc.
45th Annual Meeting of the Assoc. for Computational Linguistics (ACL) (2007)

9. de la Higuera, C., Casacuberta, F.: Topology of strings: median string is NP-
complete. Theoretical Computer Science 230, 39–48 (2000)

10. de la Higuera, C., Oncina, J.: Computing the Most Probable String with a Prob-
abilistic Finite State Machine. In: Proceedings of Fsmnlp (2013)

11. de la Higuera, C., Oncina, J.: The most probable string: an algorithmic study.
Journal of Logic and Computation 24(2), 311–330 (2014)

12. Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge,
MA, USA (1997)

13. Kruzslicz, F.: Improved Greedy Algorithm for Computing Approximate Median
Strings. Acta Cybernetica 14(2) (Dec 1999)

14. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Doklady Akademii Nauk SSSR 163(4), 845–848 (1965)

15. Mart́ınez-Hinarejos, C.D., Juan, A., Casacuberta, F.: Median strings for k-nearest
neighbour classification. Patt. Rec. Lett. 24(1-3), 173–181 (2003)

16. Mihov, S., Schulz, K.U.: Fast Approximate Search in Large Dictionaries. Compu-
tational Linguistics 30(4), 451–477 (2004)

17. Mohri, M.: Edit-Distance Of Weighted Automata: General Definitions and Algo-
rithms. Int. J. Found. Comput. Sci. 14(6), 957–982 (2003)

18. Motwani, R., Raghavan, P.: Randomized algorithm. Springer, Berlin (1995)
19. Navarro, G., Raffinot, M.: Flexible pattern matching. Cambridge University Press,

Cambridge, UK (2002)
20. Paz, A.: Introduction to probabilistic automata. Academic Press, New York (1971)
21. Schluter, R., Nussbaum-Thom, M., Ney, H.: On the Relationship Between Bayes

Risk and Word Error Rate in ASR. Audio, Speech, and Language Processing, IEEE
Transactions on 19(5), 1103–1112 (July 2011)

22. Schluter, R., Nussbaum-Thom, M., Ney, H.: Does the Cost Function Matter in
Bayes Decision Rule? Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on 34(2), 292–301 (2012)

23. Schulz, K.U., Mihov, S.: Fast string correction with Levenshtein automata. IJDAR
5(1), 67–85 (2002)

24. Stolcke, A., Konig, Y., Weintraub, M.: Explicit Word Error Minimization in N-
Best List Rescoring. In: 5th. European Conference on Speech Communication and
Technology (1997)

25. Valiant, L.: A theory of the learnable. Communications of the ACM 27(11), 1134–
1142 (1984)

26. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2003)
27. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Prob-

abilistic Finite State Automata – Part I and II. Pattern Analysis and Machine
Intelligence 27(7), 1013–1039 (2005)

28. Wagner, R.A.: Order-n correction for regular languages. Communications of the
ACM 17(5), 265—-268 (1974)

