
Classifying melodies using tree grammars

José F. Bernabeu, Jorge Calera-Rubio, and José M. Iñesta

Dept. Lenguajes y Sistemas Informáticos, Universidad de Alicante, Spain
{jfbernabeu,calera,inesta}@dlsi.ua.es

Abstract. Similarity computation is a difficult issue in music informa-
tion retrieval, because it tries to emulate the special ability that humans
show for pattern recognition in general, and particularly in the presence
of noisy data. A number of works have addressed the problem of what
is the best representation for symbolic music in this context. The tree
representation, using rhythm for defining the tree structure and pitch in-
formation for leaf and node labeling has proven to be effective in melodic
similarity computation. In this paper we propose a solution when we have
melodies represented by trees for the training but the duration informa-
tion is not available for the input data. For that, we infer a probabilistic
context-free grammar using the information in the trees (duration and
pitch) and classify new melodies represented by strings using only the
pitch. The case study in this paper is to identify a snippet query among
a set of songs stored in symbolic format. For it, the utilized method must
be able to deal with inexact queries and efficient for scalability issues.

Keywords: Music Modeling & Analysis, Stochastic Methods, Learning
with Structured Data, Music Similarity, Classification.

1 Introduction

One of the main concerns in music information retrieval (MIR) tasks is how to
assess melodic similarity in a similar way to how humans do. We are very good at
recognizing previously known patterns, even if our perceived inputs are distorted,
they are presented just partially, or in the presence of noisy data. This happens
in music comparison in a number of situations, for example, when comparing
different cover versions of a given melody or when searching in databases using
a query that will be, by its own nature, partial and can be distorted or even
wrong. Two issues are concerned to this problem: the similarity computation
and the representation structure.

In this paper, the problem of comparing symbolically encoded (any format
of digital scores) musical works is addressed. For it, we use probabilistic tree
grammars [12]. These grammars can be obtained from probabilistic k-testable
tree models [9]. The duration information implicit in the tree representation
is captured by the grammar and this is used for classifying the new melodies
represented by strings that only have the pitch information. This is a solution
when duration information is not available or unreliable for the input data.

2 José F. Bernabeu, Jorge Calera-Rubio, and José M. Iñesta

The results are compared with those obtained by Bernabeu [1] where input and
training data are trees.

2 Melody tree representation

For representing the note pitches in a monophonic melody s as a string, symbols
σ from a pitch representation alphabet Σp are used: s ∈ Σ∗p , s = σ1σ2...σ|s|.
In this paper, the interval from the tonic of the song modulo 12 is utilized as
pitch descriptor and the symbol ‘−’ to represent rests. Thus the alphabet used
is: Σp = {p ∈ N | 0 ≤ p ≤ 11} ∪ {‘−’}. This way, in ‘G Major’, any pitch ‘G’ is
mapped to 0 and the other pitches are represented by the number of semitones
mod 12 from ‘G’. This alphabet permits a transposition invariant representation
and keeps cardinality low (|Σp| = 13).

In the tree approach, each melody bar is represented by a tree, t ∈ TΣp . Bars
are coded by separated trees and then they are linked to a common root. The
level of a node in the tree determines the duration it represents. Each tree root
(level 1) represents the duration of the whole bar. For a binary meter, the two
nodes in level 2 represent the duration of the two halves of a bar, etc. In general,
nodes in level i represent duration of a 1/2i−1 of a bar for a binary meters
(1/3i−1 for ternary). Therefore, during the tree construction, nodes are created
top-down when needed and guided by the meter, to reach the appropriate leaf
level to represent a note duration. In that moment, the corresponding leaf node
is labeled with the pitch representation symbol, σ ∈ Σp (see [10] for details).

Fig. 1: Tree representation of a one-bar melody in a ternary meter with an ex-
ample of how pith labels are propagated.

Once the tree has been built, a bottom-up propagation of the pitch labels is
performed to label all the internal nodes. The rules for this propagation are based
on a melodic analysis [6]. All the notes are tagged either as harmonic tones, for
those belonging to the current harmony at each time, or as non-harmonic tones
for ornamental notes. Harmonic notes have always priority for propagation and
when two harmonic notes share a common father node, propagation is decided
according to the metrical strength of the note (the stronger the more priority),
depending on its position in the bar and the particular meter of the melody. Notes
have always higher priority than rests (Fig. 1 shows an example). Eventually,

Classifying melodies using tree grammars 3

when all the internal nodes are labeled, all bar trees are linked to a common
forest root, labeled with the root of the first bar tree.

3 Stochastic k-testable tree models

Stochastic models based on k-grams predict the probability of the next symbol
in a sequence depending on the k − 1 previous symbols. They have been ex-
tensively used in natural language modeling and also in some music tasks [4].
k-gram models can be regarded as a probabilistic extension of locally testable
languages [13]. Informally, a string language L is locally testable if every string
w can be recognized as a string in L just by looking at all the substrings in w
of length at most k, together with prefixes and suffixes of length strictly smaller
than k to check near the string boundaries. These models are easy to learn and
can be efficiently processed.

Locally testable languages, in the case of trees, were described by Knuu-
tila [7]. The concept of k-fork, fk, plays the role of the substrings, and the
k-root, rk, and k-subtrees, sk, play the role of prefixes and suffixes. For any
k > 0, every k-fork contains a node and all its descendants lying at a depth
smaller that k. The k-root of a tree is its shallowest k-fork and the k-subtrees
are all the subtrees whose depth is smaller than k.

These kind of probabilistic tree languages can be defined using the formal-
ism of deterministic tree automata (DTA). The procedure to infer this kind of
automata from a training sample, can be done easily (see [9] for details). This
learning procedure can be extended to the case where the sample Ω is stochas-
tically generated, incorporating probabilities to the DTA.

As shown in [9], a probabilistic DTA (PDTA) incorporates a probability,
pm(σ, t1, ..., tm), for every transition in the automaton, with the normalization
that the probabilities of the transitions leading to the same state q ∈ Q must add
up to one. For this purpose, one should note that, in this kind of deterministic
models, the likelihood of the training sample is maximized if the stochastic model
assigns to every tree t in the sample a probability equal to its relative frequency
in Ω [8]. So, these probabilities must be calculated as the ratio of the number of
occurrences of a transition to the number of occurrences of the state to which this
transition leads. PDTA also incorporate a probability ρ(q) for every accepting
state, q ∈ F (F ⊆ Q). These probabilities are calculated as the ratio between
the number of occurrences of an accepting state and the number of trees in the
sample, |Ω|. It is useful to store the above probabilities as the quotient of two
terms. This way, if a new tree (or subtree) t is provided, the automaton can be
easily updated to account for the additional information. For this incremental
update, it suffices to increment each term with the partial sums obtained for
parsing t. Finally, the probability of the tree t is computed as the product of the
transitions utilized in the parsing of the tree (see [9] for details).

4 José F. Bernabeu, Jorge Calera-Rubio, and José M. Iñesta

4 Grammars

At this point, we can classify a new melody in a particular class. For this purpose,
we need to infer a PDTA for each class, Cj , from well classified melodies. Once
the PDTAs for the different classes have been inferred and the probabilities
estimated (see [9] for details), a melody M can be classified in the class Ĉ that
maximizes the likelihood (see [1]).

In order to do this, both training and new melodies must be represented
by trees. However, what happens if the new melodies are only represented by
strings? Moreover, what happens if a new melody string has the pitches but the
duration information is not available? This situation appears when a melody
query is given using only note pitches or when durations are not reliable. In
other words, we have a set of melodies represented by trees to train the system
but the target data are melodies represented by pitch strings. Therefore, we need
to transform the k-testable tree automata in context-free grammars [12] in order
to use them for parsing the input melody strings.

Context-free grammars may be considered to be the customary way of rep-
resenting syntactical structure in natural language sentences. In many natural
language processing applications, to obtain the correct syntactical structure for
a sentence is an important intermediate step before assigning an interpretation
to it. In our case, we use these grammars to obtain the correct structure for a
given melody represented by a string.

Treebank grammars - which are explained in detail in [12]- are probabilistic
context-free grammars in which the probability that a particular nonterminal is
expanded according to a given rule is estimated as the relative frequency of that
expansion by simply counting the number of times it appears in a manually-
parsed corpus.

Before transforming our k-testable tree automata in context-free grammars
we need introduce some changes in the melody tree representation. These changes
are necessary because if we use the alphabet described in section 2 then a tran-
sition in the automaton could be transformed in different grammar rules. This
happens because we can not distinguish between symbols that are terminals
or nonterminals. In order to solve these ambiguities we need to label tree nodes
adding the symbol ‘T ’ to that of Σp if it is a leaf node (terminal) and the symbol
‘N ’ if it is an inner node (nonterminal).

Therefore, if Ω = t1, t2, . . . , t|Ω| is a treebank, that is, a stochastic sample

of parse trees, the alphabet Σ can be safely partitioned into the subset s1(Ω̂)
of labels that may only appear at leaves (ΣpT = ‘T ’Σp) and its complementary

subset Σ − s1(Ω̂) (ΣpN =‘N ’Σp) of labels at internal nodes (propagated labels
in the trees).

Then, we can define a probabilistic k-testable grammar as G[k] = (V [k],
T, I, R[k], p[k]), where V [k] = I ∪ rk−1(fk(Ω) ∪ sk−1(Ω̂)) − s1(Ω̂) is the set of
nonterminals, T = s1(Ω̂) is the set of terminals, I is the start symbol, R[k] is
the set of production rules, and p[k] a probability function (see [12] for details).

Classifying melodies using tree grammars 5

N4

N4

N4

T4 T4

N2

T2 T2

T0

(1/1) I → N4
(1/3) N4→ N4 T0
(1/3) N4→ N4 N2
(1/3) N4→ T4 T4
(1/1) N2→ T2 T2

Fig. 2: Example of a probabilistic tree grammar for k = 2.

Figure 2 shows the corresponding probabilistic context-free grammars (PCFG)
(right) according to the tree in left. For this tree we have the sets (roots)
r1(t) = N4, (forks) f2(t) = {N4(N4 T0), N4(N4 N2), N4(T4 T4), N2(T2 T2)},
(subtrees) s1(t) = {T0, T2, T4}. Therefore, we can obtain k-testable grammars
with different values for k.

4.1 Smoothing

In general, k-testable grammars with larger values of k contain more specialized
rules and, therefore, are less ambiguous and allow for faster parsing. In contrast,
typical treebank grammars have 100 percent coverage (as remarked in [3]) un-
like with higher order grammars where sentences without a valid parse tree are
common. Therefore, the use of smoothing techniques becomes necessary if one
wants to use these models for parsing. Two classical techniques of this type are
linear interpolation and backing-off [8].

Smoothing through linear interpolation is performed by computing the prob-
ability of events as a weighted average of the probabilities given by different
models. This approach has a problem when the higher order models return a
zero probability due to unseen labels. Then, a new melody is classified only with
the more general and more ambiguous model discarding the entire more specific
model.

In contrast, backing-off allows to avoid lower-order parsing when possible.
In other words, backing-off tries to parse with the higher-order grammar unless
no parse tree is provided by this grammar. Only in such a case the lower-order
model is called, so backing-off is faster than linear interpolation. However, the
lack of a single rule in the sample can force the parser to use the lower-order
model, loosing all the higher-order information for a whole sentence.

Here, we use an alternative approach: the rule-based backing-off [12]. Using
this rule-based backing-off requires the implementation of specific parsers since
building the whole grammar is unfeasible due to the large number of implicit
rules (even if only those assigning a strictly positive probability in the last case of
[5] are considered). An alternative scheme that requires only minor modifications
is to use a quasi-equivalent grammar G′ built as in [12].

However, we need to define a universal grammar because some labels in Σp
for the leaves of the trees do not appear in the training data for the grammars.
Then, if a particular new melody contains an unseen label, the parser will return

6 José F. Bernabeu, Jorge Calera-Rubio, and José M. Iñesta

a zero probability. For solving this problem we only have to introduce the rules of
the form Nσ1 → Tσ2 (where σ1, σ2 ∈ Σp) (updating the corresponding counters)
if the rule did not appear during training. Introducing these rules the grammar
assigns a non zero probability for each string even if the label does not appear
in the training data.

4.2 Classification

As explained before, we want to study if the proposed approach can be used to
classify new melodies represented by strings. After a grammar Gj is inferred for
each class Cj we need an algorithm for obtaining the probability that a given
string s is generated by a grammar Gj . For this purpose, we have used the Stolcke
algorithm [11] and the CYK+ algorithm [2] for string parsing. These parsing
algorithms are able to give the probability p(s|G) that a string s is generated
by a probabilistic Context-free grammar G without requiring conversions to
Chomsky Normal Form (CNF). Then, a melody M is classified in the class Ĉ
that maximizes the likelihood

Ĉ = arg max
j

l(M |Cj) (1)

We can calculate this likelihood two ways: splitting the melody (SplitBars)
in bars or computing the whole melody (Whole).

In SplitBars, the melody string is split in |M | (number of bars in a melody
M) bar strings s1, . . . , s|M |. Therefore we are able to compute the probability
of each bar string to belong to a particular class (grammar). Suppose we have
a finite number of classes and we have computed the membership probability of
each bar string si to each of these grammars, p(si|Gj). These probabilities can be
combined to give a decision for the whole song. For the combination of bars the
geometric mean has been used. The geometric mean is less sensitive to outliers
than the arithmetic one. For our purposes is enough to multiply all bar strings
probabilities of the whole melody. Calculating the |M |-th root of the resulting
product is not needed for classification because, given a particular melody M to
classify, |M | is the same for all classes. Therefore,

l(M |Cj) =

|M |∏
i=1

p(si|Gj) (2)

On the other hand, in the Whole strategy we only need the probability of
the melody string (now M = s). Then

l(M |Cj) = p(s|Gj) (3)

For calculating this probability we need to introduce the start rules S → IS
and S → I which define a melody recursively (melody is formed by a bar and a
melody) (I is the initial symbol for a bar as explain in section 4). Therefore, the
grammars allow to recognize a whole melody instead of melodies split in bars.

Classifying melodies using tree grammars 7

5 Results

In our experiments, we try to identify a problem melody using a set of different
variations played by musicians for training. For that, we use a corpus consisting
of a set of 420 monophonic 8-12 bar incipits of 20 worldwide well known tunes
of different musical genres1. For each song, a canonic version was created using
a score editor and synthesized. The audio files were given to three amateur and
two professional musicians who listened to the songs (to identify the part of the
tune) and played them on MIDI controllers (real-time sequencing them) 20 times
with different embellishments and capturing performance errors. This way, for
each of the 20 original scores, 21 different variations have been built.

A 3-fold cross-validation scheme was carried out to perform the experiments,
obtaining average success rates and dispersions ((max−min)/4).

Table 1: Success rates with the different approaches used.

Approach Success rate

PDTA 87.3± 0.7
StringBars 92.4± 1.1

Whole 86.9± 1.3

Table 1 shows the results of classification using the approaches explain in
section 4.2. These results are compared with the results using the approach
of probabilistic deterministic tree automata used in [1] but using the notation
change described in section 4.

Note that PDTA uses the duration information implicit in tree representa-
tion, however the grammar approaches use less information (only pitch) for clas-
sifying. From the results, it is observed that the new approach using the strings
through the StringsBars method improves significantly the PDTA results. The
Whole approach did not improve the results because it is more sensitive to vari-
ations in the data than the geometric mean of the bar probabilities.

6 Conclusions

In this paper, we applied probabilistic tree grammars constructed from stochastic
k-testable tree-models showing that this approach can be used for classifying new
melodies represented by strings using the information captured in the grammar
rules. This approach allows avoiding the duration information in the input data
(strings with pitch only), making easier querying a music database. Our goal was
to identify a melody from a set of different variations. The results overcame those

1 The MIDI data set is available upon request to the authors.

8 José F. Bernabeu, Jorge Calera-Rubio, and José M. Iñesta

previously obtained using probabilistic deterministic tree automata for the same
corpus. According to the results, we can say that the classification is improved
splitting the melody in bars. Also the results keep in good performance taking
the string of the whole melody, which is important since not always the bar
information is available. We are persuaded that these promising results can be
improved by defining a more complex universal grammar for unseen labels and
removing some rules that make the grammars more ambiguous.

Acknowledgements This work is supported by the Spanish Ministry project
TIN2009-14247-C02-02, TIN2009-14205-C04-C1, and the program Consolider
Ingenio 2010 (CSD2007-00018).

References

1. J. F. Bernabeu, J. Calera-Rubio, J. M. Iñesta, and D. Rizo. A probabilistic ap-
proach to melodic similarity. In Proceedings of MML 2009, pages 48–53, 2009.

2. Jean-Cédric Chappelier and Martin Rajman. A generalized cyk algorithm for
parsing stochastic cfg. In TAPD, pages 133–137, 1998.

3. Eugene Charniak. Tree-bank grammars. In In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence, pages 1031–1036, 1996.

4. J. Stephen Downie. Evaluating a Simple Approach to Music Information Retrieval:
Conceiving Melodic n-grams as Text. PhD thesis, University of Western Ontario,
1999.

5. Lyn Frazier and Keith Rayner. Making and correcting errors during sentence
comprehension: Eye movements in the analysis of structurally ambiguous sentences.
Cognitive Psychology, 14(2):178 – 210, 1982.

6. Plácido R. Illescas, David Rizo, and José M. Iñesta. Harmonic, melodic, and
functional automatic analysis. In Proc. of the 2007 International Computer Music
Conference, volume I, pages 165–168, 2007.

7. T. Knuutila. Inference of k-testable tree languages. In Bunke (Ed.), Advances in
Structural and Syntactic Pattern Recognition (Proc. of the S+SSPR’92), World
Scientific, Singapore, 1993.

8. Hermann Ney, Ute Essen, and Reinhard Kneser. On the estimation of small proba-
bilities by leaving-one-out. IEEE Trans. Pattern Anal. Mach. Intell., 17(12):1202–
1212, 1995.

9. J. R. Rico-Juan, J. Calera-Rubio, and R. C. Carrasco. Smoothing and compression
with stochastic k-testable tree languages. Pattern Recognition, 38(9):1420–1430,
2005.

10. D. Rizo, K. Lemström, and J. M. Iñesta. Tree representation in combined poly-
phonic music comparison. Computer Music Modeling and Retrieval. Genesis of
Meaning in Sound and Music. Lecture Notes in Computer Science, 5493:177–195,
2009.

11. Andreas Stolcke. An efficient probabilistic context-free parsing algorithm that
computes prefix probabilities. Computational Linguistics, 21:165–201, 1995.

12. J. L. Verdu-Mas, R. C. Carrasco, and J. Calera-Rubio. Parsing with probabilistic
strictly locally testable tree languages. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(7):1040–1050, 2005.

13. Yechezkel Zalcstein. Locally testable languages. J. Comput. Syst. Sci., 6(2):151–
167, 1972.

