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Abstract

Given a Pattern Recognition task, Computer Assisted Pattern Recognition can be
viewed as a series of solution proposals made by a computer system, followed by
corrections made by a user, until an acceptable solution is found. For this kind
of systems, the appropriate measure of performance is the expected number of
corrections the user has to make.

In the present work we study the special case when the solution proposals have
a sequential nature. Some examples of this type of tasks are: language translation,
speech transcription and handwriting text transcription. In all these cases the output
(the solution proposal) is a sequence of symbols. In this framework it is assumed
that the user corrects always the first error found in the proposed solution. As a
consequence, the prefix of the proposed solution before the last error correction can
be assumed error free in the next iteration.

Nowadays, all the techniques in the literature relies in proposing, at each step, the
most probable suffix given that a prefix of the “correct” output is already known.
Usually the computation of the conditional most probable output is an NP-Hard
or an undecidable problem (and then we have to apply some approximations) or,
in some simple cases, complex dynamic programming techniques should be used
(usualy some variant of the Viterbi algorithm).

In the present work we show that this strategy is not optimum when we are
interested in minimizing the number of human interactions. Moreover we describe
the optimum strategy that is simpler (and usually faster) to compute.
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1 Introduction

Nowadays computers are increasingly applied to solve challenging Pattern
Recognition tasks. However, in some cases the results are not as good as desired
and human (user) supervision is mandatory. Most often this supervision is off-
line: the computer produces a possible solution to the proposed task and then,
the user corrects all the errors.

In the present work we are interested in Computed Assisted Pattern Recogni-
tion (CAPR) [Vidal et al., 2007]. This framework can be described as follow:

(1) the user proposes a task to solve,
(2) the computer proposes a solution
(3) if the user finds the solution good enough, it stops the process
(4) if not, the user makes a correction
(5) the computer, taking into account the correction, proposes a new solution
(6) return to step 3

Although the classical measure of performance is the Risk Minimization [Duda
et al., 2001] and usually simplified as minimizing the error rate, almost each
Pattern Recognition field has its own way to measure the performance: Bilin-
gual Evaluation Understudy (BLEU) [Papineni et al., 2002] in translation
tasks, precision and recall in information retrieval [Manning et al., 2008], Word
Error Rate (WER) in speech recognition [Jelinek , 1997] and so on. In CAPR,
as the most valuable resource is the time a user has to spend in the task, an
adequate measure of performance is the expected number of corrections the
user makes [Vidal et al., 2007].

In this work we restrict ourselves to the case when the solution has a se-
quential nature (can be expressed as a string). Moreover, we assume the user
always corrects the first error he finds. Then, the solution prefix before the
last correction can be assumed error free for the next iteration.

Let we see three examples of Sequential Computer Assisted Pattern Recogni-
tion tasks:

• Human language translation [Civera et al., 2006, Tomás and Casacuberta,
2006, Civera et al., 2004, Foster, 2002, Foster et al., 1997, Vidal et al.,
2006]: in this case, given an input sentence, we can assume the user reads
the proposed translation and always corrects the first word that does not
fit.
• Speech to text transcription [Rodŕıguez et al., 2007]: given a speech, the

user always corrects the first word that does not match with the listening.
• Handwriting text transcription [Romero et al., 2007, Toselli et al., 2007]:

given the image of the text, the user corrects the first wrong word.
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Translate: En un lugar de la Mancha, de cuyo nombre no quiero acordarme, ...

Computer: In a place of La Mancha, of whose name I do not want to decide to me, ...

User: In a village

Computer: In a village of La Mancha, of whose name I do not want to decide to me, ...

User: In a village of La Mancha, the

Computer: In a village of La Mancha, the name of which I do not want to decide to me, ...

User: In a village of la Mancha, the name of which I have

Computer: In a village of La Mancha, the name of which I have no desire to call to mind, ...

User: In a village of La Mancha, the name of which I have no desire to call to mind, ... [OK]

Fig. 1. Example of an hypothetical Computer Assisted Translation, italic text rep-
resents a computer guess, bold text represents user corrections.

Figure 1 shows an hypothetical application example of this scheme in a Spanish
to English translation task. It should be noted that the correction of an error
may lead to automatic correction of subsequent errors. Then, although in the
first attempt there were eleven translation errors, the text was satisfactorily
translated making only three corrections.

There exists some systems that work using this scheme. Most of them (con-
ceptually) work as follows: given the task (i.e. the whole sentence to translate)
and the already known error free solution prefix, on each iteration, first they
build a a probabilistic representation (typically a word-graph) of all the pos-
sible solutions that begin with the error free prefix. In a following step, they
propose the most probable solution.

Although this seems a very sensible strategy, in this work we show that it is
not optimum if the objective is to minimize the number of human interactions.
In fact, we are going to describe the optimum one.

Moreover, depending on the probabilistic representation (i.e. smoothed n-
grams), in order to find the most probable solution one has usually to face
NP-Hard or undecidable problems (and then, use approximations) or to re-
sort to complex Dynamic Programming techniques in the most simple cases
(ussually some variants of the Viterbi algorithm). Our algorithm is a greedy
technique and, if any of the usual probabilistic representations is used, is free
of those inconveniences.

2 The algorithm

As stated in the introduction, the problem can be reduced to find a strategy
that, given an input (i.e. a sentence to translate), given a probabilistic model
(i.e. a word-graph describing the probabilities of all the possible translations of
the sentence), and given the evidence (the error free prefix), provides a solution
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that will minimize the expected number of interactions when the strategy is
applied repeatedly.

Given that the solutions in our framework have a sequential structure, we are
going to represent them by strings where each symbol represents a word (i.e.
in a translation task), a character (i.e. in a handwriting transcription task),
a note (i.e. in a score transcription task), or some more complex structure
depending on the task.

Let Σ be a set of symbols (vocabulary) 1 , let Σ∗ be the set of all the strings
that can be formed concatenating symbols of Σ and let us denote the empty
string by λ. In the following, the letters a, b, . . . ∈ Σ will denote individual
symbols and letters x, y, . . . strings in Σ∗. As usual, xa (xy) will denote the
concatenation of string x with the symbol a (string y). The probabilistic model
will be represented by a probability distribution over the strings (p : Σ∗ →
[0, 1]), that is, a function that assigns to each string a probability. Of course,

∑
x∈Σ∗

p(x) = 1

Then, the problem can be stated as follows: suppose a hidden string has been
drawn from the probability distribution p (i.e. given a sentence to translate,
the “correct” translation that the user has into his mind and the system
has to guess), we have to devise an algorithm that could guess which string
is. To obtain information, the algorithm can resort to a function (oracle)
O : Σ∗ → Σ∗ ∪ {YES}, such that, given a string x, O(x) returns:

• YES: if x is the hidden string.
• Otherwise, the longest prefix of x that is also prefix of the hidden string,

concatenated with the next symbol of the hidden string. (That is, the error
free prefix of x concatenated with the correction made by the user.)

Note that each use of the O(·) function represents an interaction with the user.

The objective is to find the hidden string making as fewer uses of the O(·)
function as possible.

1 In order to simplify the notation, to mark the end of strings we are going to assume
that, in every vocabulary, it exists an special symbol (‘#’) that only appears at the
end of every string.
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x = λ // x is the error free prefix
repeat

y = S(x) // y is the proposed solution using evidence x
x = O(y) // x is the new error free prefix

until x == YES

Fig. 2. Interaction scheme

2.1 The Scheme

Let us define a strategy as a function S : Σ∗ → Σ∗ such that, given a string
(the error free prefix or evidence) it returns another string that represents
a possible solution. The guessing process can be described by the schema in
figure 2.

The problem now is to compute the expected number of interactions and to
find the strategy that minimizes it.

In order to do so, an equivalent problem is defined. The idea is to move
forward symbol by symbol and count, as interaction, only when a mistake is
committed. Then the strategy for this new problem is defined as a function
Ss : Σ∗ → Σ such that given the evidence (the error free prefix of the last
iteration) it returns a guess for the next symbol.

Note that an strategy for the former problem can be easily defined in base to
the new strategy function as:

S(x) = xa1 . . . an where ai = Ss(xa1 . . . ai−1) and an = ’#’ (1)

To adapt the oracle to this scheme it is redefined as a function Os : Σ∗ →
Σ ∪ {YES} ∪ {PREF}. Given a string x, Os(x) returns:

(1) YES: if x is equal to the hidden string
(2) PREF: if x is a prefix of the hidden string
(3) a symbol a: if x is not a prefix of the hidden string, but when the last

symbol of x is replaced by a it becomes a prefix of the hidden string (this
case models the correction of an error.)

Figure 3 depicts the symbol to symbol schema.

Note that, in this schema, since x is the previous error free prefix concatenated
with the proposed symbol, the only place where an error can appear is in the
last symbol and then, no other possibilities should be taken into account in
the definition of Os(·).
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x = λ // x is the error free prefix
loop

a = Ss(x) // a is the proposed new symbol using evidence x
b = Os(xa)
if(b ==YES) exit loop // we have the correct answer
if(b ==PREF) x = xa // we have guessed the next symbol
else x = xb // we made a mistake; xb is the next error free prefix

end loop

Fig. 3. Symbol to symbol interaction schema

Now the objective is to minimize the expected number of times that the Os(·)
function returns a symbol (corrects an error). Obviously, the number of inter-
actions in this case and in the previous one are exactly the same.

Suppose now that, when considering prefix x, the strategy says that a should
be the next symbol (that is Ss(x) = a). Let us denote by AS(x) the expected
number of error corrections when using strategy S and evidence x, and let
us denote by p(a|x) the probability that the symbol that follow the (error
free) prefix x is a. When computing AS(x), if a is the next correct symbol
(probability p(a|x)), then all the error correcting operations will be performed
while guessing the symbols of the remaining hidden string (AS(xa)). If the
correct next symbol is b 6= a (probability p(b|x)) we have to count an error
plus the errors committed guessing the rest of the symbols of the hidden
string (1 +AS(xb)) (Note that the symbol # is used as an end-of-string mark;
evidently, AS(x#) = 0 for any strategy S.) Then, the expected number of
error corrections can be computed as:

AS(x) = p(a|x)AS(xa) +
∑
b 6=a

p(b|x) (1 + AS(xb)) (2)

=
∑
b6=a

p(b|x) +
∑

b

p(b|x)AS(xb) (3)

= (1− p(a|x)) +
∑

b

p(b|x)AS(xb) (4)

It can be seen that the second term of equation 4 does not depends of which
symbol the strategy selects when considering evidence x, and the first term
is minimized if the strategy consists in choosing the symbol a that maximizes
the probability p(a|x).

Then, returning to the original problem and using equation 1, given an evi-
dence x the optimum choice is the strategy

S(x) = xa1 . . . an where ai = argmax
a∈Σ

p(a|xa1 . . . ai−1)
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instead of the classical one

S(x) = xy where y = argmax
y∈Σ∗

p(y|x)

2.2 Complexity issues

The complexity of both algorithms depends on the representation of the prob-
abilistic model. The complexity of the classical algorithm is exactly the com-
plexity of computing y? = argmaxy∈Σ∗ p(y|x) and the complexity of the opti-
mum algorithm is n times the complexity of computing p(a|x), where usualy
n ∼ |y?| and, in the practice, n is bounded by the maximum number of symbols
that can be presented to the user at the same time.

Let us see some examples:

• If the probabilistic model is implemented as a finite set of words (like in
the experiment in section 4.1), both probabilities can be precomputed and
then, both algorithms have the same complexity (O(1)).
• If the probabilistic model is implemented as a Stochastic Deterministic Fi-

nite Automaton or similar (i.e. n-grams) the probability of the next symbol
is just the probability that labels each edge and then it can be computed
in constant time, but to find the most probable suffix one has to recur to
some variant of the Viterbi algorithm (O(|y?||E|) where |E| is the number
of edges in the automaton).
• If the probabilistic model is implemented as a Nondeterministic Stochastic

Finite Automaton or similar (i.e. some smoothed n-grams models), the most
probable next symbol can be computed in O(|E|) (where |E| is the number
of edges in the automaton) but finding the most probable suffix becomes
an NP-Hard.

3 Examples

3.1 Three strings example

Suppose, as shown in figure 4, we have only three strings with non-zero prob-
ability.

Let us compute the expected number of iterations in both cases, using the
classical strategy and using the optimum one.
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string probability

aa 0.36

ab 0.24

b 0.4

Fig. 4. Probability distribution

In the classical strategy the algorithm, at the beginning, when no hidden
string prefix is known, proposes the most probable string, that is, the string b
(p(b) = 0.4). In using this proposal it guesses correctly the hidden string for
the 40% of the cases, with no corrections. When the hidden string is not b
the user makes one correction and returns a as prefix (the two other possible
strings begins by a). In this case, the most probable string that begins by a is
aa (p(aa) = 0.36) then the algorithm tries aa and guesses correctly the 36%
of times making one mistake. In the remaining 24% of the cases, when the
hidden string is ab, it makes two mistakes.

Then, the expected number of mistakes is:

A = 0 · p(b) + 1 · p(aa) + 2 · p(ab)
= 0 · 0.4 + 1 · 0.36 + 2 · 0.24

= 0.84

If the optimum strategy is used, we have first to compute:

p(a|λ) =
p(aa) + p(ab)

p(aa) + p(ab) + p(b)
= 0.6

p(b|λ) =
p(b)

p(aa) + p(ab) + p(b)
= 0.4

p(a|a) =
p(aa)

p(aa) + p(ab)
= 0.6

p(b|a) =
p(ab)

p(aa) + p(ab)
= 0.4

Following this strategy, the first string to try is aa (p(a|λ) > p(b|λ) and
p(a|a) > p(b|a)). Then it guesses correctly the hidden string 36% of the times
with no mistakes. Now, if the hidden string is not aa, there are two possibili-
ties:

• if the hidden string is ab (24% of the times) the user makes a correction and
returns ab.
• if the hidden string is b (40% of the times) the user makes one correction

and returns b.
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Stochastic Regular Grammar

0.9 S → aS

0.1 S → λ

p(λ) = 0.1

p(a) = 0.09

p(aa) = 0.081

· · ·

p(λ) = 0.1

p(a|λ) = 0.9

p(a|a) = 0.9

· · ·

Fig. 5. Stochastic Regular Grammar and some string probabilities

In both cases the process ends at next iteration.

The expected number of error corrections can be computed as:

A = 0 · p(aa) + 1 · p(ab) + 1 · p(b)
= 0 · 0.36 + 1 · 0.24 + 1 · 0.4
= 0.64

As can be checked, the expected number of error corrections is lower than
using the classical strategy.

3.2 Infinite string length example

When building a string by concatenating the most probable next symbol,
depending on the probabilistic model, it is possible to fall in an infinite loop.
Let we see an example.

Suppose the probabilistic model is implemented as the Stochastic Regular
Grammar depicted in fig 5.

It is easy to see that, using the classical strategy, the algorithm will guess
correctly the string λ (p(λ) = 0.1) with no corrections, the string a (p(a) =
0.09) with one correction, the string aa (p(aa) = 0.081) with two corrections,
and so on.

Then the expected number of corrections can be computed as:

A =
∞∑
i=0

p(ai) i = 9

Using the optimum algorithm, the algorithm first proposes an infinite length
string of a’s 2 . As such string has a zero probability the algorithm will fail
to guess the hidden string in its first attempt, but the only way to make a

2 Note that this is not a problem from a practical point of view, it is enough to
return a string sufficiently long
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correction is by providing the end-of-string point. Then, the algorithm guesses
correctly the hidden string with just one error.

4 Experiments

In order to check experimentally the correctness of our approach, two sets of
experiments were designed.

4.1 Pool of words experiment

In the first set of experiments a finite distribution of probability was built as
follows: first a database of 100,000 strings of length 20 were randomly gener-
ated by concatenating symbols extracted with equal probability from a finite
vocabulary. Then a probability was assigned randomly (uniform distribution)
to each string.

In the experiment, strings were extracted using this distribution and three
different strategies were tested: the classical, the optimum and a base line
strategy that consisted on proposing the first suffix, found in the databases
that is consistent with the evidence.

For each database the number of mistakes were counted and averaged for
1000 extractions. The experiment was repeated for 10 different databases and
the standard deviations were computed. The experiments were repeated for
increasing size vocabularies from 2 to 1024. The results are summarized in
figure 6.

As expected, it can be observed that in all cases our strategy commits, in
average, less mistakes than other strategies. It can also be observed that, in this
setting, the expected values of the three strategies decreases as the vocabulary
size increases. The reason for this is that the chance to have overlapping strings
decreases very quickly as the vocabulary increases, provoking that a strings
can be identified by just seeing a few initial symbols.

4.2 Feldman task

The algorithm has been also tested with an extension [Castellanos et al., 1998,
1994] of a pseudo-natural task proposed by Feldman et al. [Feldman et al.,
1990]. The original task consisted of descriptions of simple two-dimensional
visual scenes involving a few geometric objects with different shape, shade and
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Voc Base line Classical Optimum Classical / Greedy

avrg dev avrg dev avrg dev

2 8.49 0.09 7.90 0.05 7.53 0.07 95.23

4 6.48 0.03 6.09 0.02 5.86 0.05 96.25

8 5.17 0.04 4.89 0.02 4.75 0.02 97.00

16 4.25 0.02 4.04 0.03 3.96 0.03 97.89

32 3.63 0.01 3.45 0.02 3.40 0.02 98.62

64 3.09 0.02 2.99 0.01 2.95 0.01 98.59

128 2.83 0.01 2.72 0.01 2.71 0.01 99.54

256 2.48 0.01 2.35 0.01 2.34 0.01 99.76

512 2.16 0.01 2.10 0.01 2.09 0.01 99.48

1024 2.04 0.00 2.01 0.01 2.00 0.01 99.40

Fig. 6. Pool of words experiment

a large square and a large circle are far to the right of a

medium dark triangle and a circle

the dark circle which is bellow the circle and the triangle

is removed

a small dark circle is added far above the medium dark

circle and the medium circle

Fig. 7. Some sentences from the Extended Feldman task.

size, and located in different relative positions. The original language of this
task was extended to cover the possibility of adding or removing objects to or
from a scene (see fig. 7 for some examples).

The Context Free Grammar that describes the language was transformed in
a probabilistic one by distributing the probability mass uniformly over all the
rules sharing the same left-hand non terminal.

From the probability distribution induced by the Probabilistic Context Free
Grammar 1000 random sentences where extracted and both strategies, the
classical and the optimum one, where used to guess the strings.

The average number of corrections for both strategies is shown in figure 8.

Once more the experiments show the superiority of the optimal strategy.
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Strategy Corrections

Classical 8.03

Optimum 6.39

Fig. 8. Feldman task experiment, average number of corrections over 1000 sentences

5 Conclusions and future work

We have proposed an optimum strategy to minimize the expected number of
interactions in Sequential Computer Assisted Pattern Recognition tasks. In
this work, two different sets of experiments where also performed to illustrate
the validity of the theoretical work.

The proposed algorithm, as well as being optimum, can be implemented as
a simple greedy algorithm. The classical strategy usually involves complex
dynamic programming techniques or should recur to approximations when
the probability model is complex.

In the future we plan to apply this strategy on more complex tasks.
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