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Abstract. Due to its robustness to outliers, many Pattern Recognition
algorithms use the median as a representative of a set of points. A special
case arises in Syntactical Pattern Recognition when the points (proto-
types) are represented by strings. However, when the edit distance is
used, finding the median becomes a NP-Hard problem. Then, either the
search is restricted to strings in the data (set-median) or some heuristic
approach is applied. In this work we use the (conditional) stochastic edit
distance instead of the plain edit distance. It is not yet known if in this
case the problem is also NP-Hard so an approximation algorithm is de-
scribed. The algorithm is based on the extension of the string structure
to multistrings (strings of stochastic vectors where each element repre-
sents the probability of each symbol) to allow the use of the Expectation
Maximization technique. We carry out some experiments over a chromo-
somes corpus to check the efficiency of the algorithm.

Keywords: Median String, (Multi)string, Stochastic Edit Distance.

1 Introduction

Given a set of data points and a dissimilarity function, the median (also called
generalized median or geometric median) point is defined as the point, in the
whole space of the data points, that minimizes the sum of the dissimilarities with
respect to the points of the set. It is easy to see that the customary definition
used in statistics is a special case of this definition when the points are real
numbers and the dissimilarity function is the absolute value of their differences.
In a similar way, the mean can be defined as the point that minimizes the sum
of the squared dissimilarities.

Due to the fact that the median is less sensitive to outliers than the mean
(because of the squares), many Pattern Recognition techniques relies in com-
puting the median instead of the mean when robustness is required. A special
and very common case in Syntactical Pattern Recognition arises when the points
are strings of features (symbols) and the dissimilarity function is the edit dis-
tance [1]. Unfortunately, in this case, the problem becomes NP-Hard [2]. Then,
although some effectiveness is lost, it is customary to recur to the so called set
median [3], that is, the median is restricted to be a point in the data set.
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Kohonen, in 1985 [4], proposed an approximation algorithm to find the gen-
eralized median based on a process of perturbation of the set median in order to
modify it in the direction of the generalized median string. This results was im-
proved in 2000 by Mart́ınez-Hinarejos et al. [5][6]. Moreover, their experiments
showed that using the generalized median instead of the set median improved
their results.

In this work we are going to study the special case when the dissimilarity mea-
sure is the stochastic edit distance [7][8]. This distance is a reinterpretation of the
classical edit distance where the edition costs are interpreted as the probabilities
of inserting, deleting or substituting a symbol. The stochastic distance is then
the minus logarithm of the probability that a string is a transformation of the
other. The stochastic edit distance has the quality that the problem of learning
the costs can be stated as a maximum likelihood problem and then, the Expec-
tation Maximization technique [9] can be used [7] [8]. Unfortunately, although
it is an open problem there are strong evidences that the problem of finding the
median using the stochastic edit distance is also an NP-Hard problem.

In this work we propose an approximation algorithm to find the median.
The proposed algorithm relies on an extension of the string data structure (a
concatenation of symbols), to the multistring data structure, (a concatenation of
stochastic vectors where each element represents the probability of each symbol).
This pass to the continuum in the symbol space is seized to apply the expectation
maximization technique and find the multistring that minimizes the sum of the
distances to the set. After that, two possibilities are offered: the first is to recover
a string by thresholding the multistring and the second is to transform the
Pattern Recognition algorithm that uses the median to use multistrings instead
of strings. In this paper we are going to explore the second one.

In the experimental section, since, to our knowledge, no other technique to find
the generalized median string exists, our algorithm is compared with a straight
forward adaptation of the Mart́ınez-Hinarejos one.

2 Stochastic String Edit Distance

Let X = {a1, . . . , an} be a finite set (alphabet). A string x is any finite con-
catenation of symbols in X . Let X∗ denote the set of all the strings that can
be made using symbols in X and Xn the set of all the strings with exactly n
symbols. The empty string is represented by ε. Let x be a string, xi denotes the
i-th symbol of x, then x = x1 . . . xm where m = |x|. On the following we are
going to use a, b, . . . to denote symbols and x, y, . . . to denote strings.

Classic String Edit Distance [1] is a dissimilarity measure between strings
defined as the minimum number of edit operations needed to transform one string
into the other, where an edit operation is an insertion, deletion, or substitution
of a single symbol. This distance can be extended to use edit operations costs
instead of simple edit operation counts. The edit distance can also be viewed as
a model of the modifications suffered by a sequence of symbols when traversing
a noisy channel.
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More formally, let X (Y ) be the alphabet of the input (output) strings. Let
Ed = {(a, ε) : a ∈ X}, Ei = {(ε, b) : b ∈ Y }, Es = {(a, b) : a ∈ X, b ∈ Y }
represent the deletion, insertion and substitution edit operations, and let E =
Ei ∪ Es ∪ Ed. The string Edit Distance is defined by a triple (X, Y, ce) where
ce : E → R is the primitive cost function. This structure induces a dissimilarity
function d over pairs of strings d : X∗ × Y ∗ → R as:

d(x, y) = min

⎧
⎪⎨

⎪⎩

[ce(a, b) + d(x′, y′)]x=x′a∧y=y′b

[ce(a, ε) + d(x′, y)]x=x′a

[ce(ε, b) + d(x, y′)]y=y′b

(1)

Where [x]p returns x if predicate p is true and zero otherwise. (Note that d(x, y)
can be computed in O(|x| · |y|) time using dynamic programming techniques.)

Following the noisy channel model, if it is assumed the edit operations are
based on a random phenomenon, a dissimilarity edit distance like measure can
be defined as the probability of having string y in the output provided string x
is in the input of the channel (p(y|x))[8]1

Suppose the edit operations are independent. Let c : E → R the cost function
where:

– c(a, ε) is interpreted as the probability of deleting the symbol a provided the
symbol a is the next symbol in the input string.

– c(ε, b) is interpreted as the probability of inserting the symbol b
– c(a, b) is interpreted as the probability of substituting the symbol a by b

provided the symbol a is the next symbol in the input string.

In this framework, a new probability should be introduced to represent the prob-
ability of stopping making insertions at the end of the string. Let we call γ this
probability.

Then the probability of obtaining the string y provided the string x is in the
input of the noisy channel, is the sum of the probabilities of all the possible ways
of transforming the string x into y.

More formally, given a pair of strings (x, y) ∈ X × Y , we denote by E(x, y)
the set of all the edit operation sequences that can transform x into y, that is
E(x, y) = {(x1, y1) . . . (xn, yn) : (xi, yi) ∈ E, x1 . . . xn = x, y1 . . . yn = y}.

Let z = (x1, y1) . . . (xn, yn) be a sequence of edit operations, we define

p(z) =
n∏

i=1

c(xi, yi)

the probability of generating y given x is defined as:

p(y|x) =
∑

z∈E(x,y)

p(z)γ

1 A similar approach was previously used by Ristad et al. [7] but based in a joint
probability distribution. The results in this paper can be easily extended to the
Ristad et al. approach.



434 C. Olivares-Rodŕıguez and J. Oncina

This can be computed by means of an auxiliary function α as:

α(x, y) = [1]x=ε∧y=ε

+ [c(a, b) · α(x′, y′)]x=x′a∧y=y′b

+ [c(a, ε) · α(x, y′)]x=x′a

+ [c(ε, b) · α(x′, y)]y=y′b

And then,

p(y|x) = α(x, y)γ

Of course, in order to have a well defined probability we have to assure the
normalization condition:

∑

y∈Y ∗

p(y|x) = 1 ∀x ∈ X∗

It can be seen [8] that the following condition over the cost function assures
that the stochastic edit distance is well defined:

γ > 0, c(a, b), c(a, ε), c(ε, b) ≥ 0 ∀a ∈ X, b ∈ Y
∑

b∈Y

c(ε, a) +
∑

b∈Y

c(a, b) + c(a, ε) = 1 ∀a ∈ X

∑

b∈Y

c(ε, b) + γ = 1

Finally, in order to have a dissimilarity measure, the stochastic edit distance
is defined as:

d(x, y) = − log p(y|x)

Oncina and Sebban, in 2006 [8], proposed an expectation-maximization based
algorithm [9] to learn the probabilities of the cost function from a training set.

3 Median String and Set Median

Given a set S ⊂ M and a dissimilarity function d : M ×M → R. The (geometric
or generalized) median element of the set S is defined as the point in M that
minimizes the sum of distances to the elements in S. That is,

m = argmin
y∈M

∑

x∈S

d(y, x) (2)

When the set M is an Euclidean space there exists fast iterative algorithms,
like the Weiszfeld’s algorithm, to find it.
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Given an alphabet X , when the set M is X∗ and the dissimilarity function
is the edit distance it has been show that the problem becomes NP-Hard[2]. In
such cases it is costumary to restrict ourself to search the median in the set S,
the obtained element is then called the set-median.

Unfortunately, Mart́ınez-Hinarejos et al. [5] [10] showed that the median string
is better representative of a given set than the set median. In their work [11], they
proposed several approximation methods to find the median. These methods are
based on an iterative process of perturbation (see [4]) over an initial string. The
most successful one, the joined iterative approach, applies each possible edit
operation to each position of a string u (initially ε). From these strings, the one
that minimizes the sum of the distances to the elements of S is selected, for the
next iteration. The process is repeated until no changes are obtained.

In our case we are interested in the stochastic distance. It is not known if,
using this distance, the problem of finding the median string of a set is also a
NP-Hard problem.

In the next section an Expectation Maximization based method to found the
median is proposed. In the experiments section it is compared with a straight for-
ward adaptation to stochastic distances of the Mart́ınez-Hinarejos et al.
technique.

4 Stochastic Approach to Median String

Given an alphabet X of size n we are going to represent a multisymbol a =
(a1, . . . ,an) as a stochastic vector in Rn, that is, 0 ≤ ai ≤ 1 and

∑n
i=1 ai = 1. A

multisymbol associates a probability to any symbol of X . Let X = {a1, . . . , an}
and a multisymbol a we say that ai is the probability associated to the symbol
ai ∈ X (pa(ai) = aai).

Let MX = {(a1, . . . ,an) : |X | = n, 0 ≤ ai ≤ 1,
∑n

i=1 ai = 1} be a multisymbol
alphabet. In the same way as in the case of symbol strings, a multisymbol string is
any finite concatenation of elements in MX . We are going to represent by xi the i-
th multisymbol in the string x and by xi,j the j-th component of the multisymbol
xi. On the following we are going to use a,b, . . . to denote multisymbols, and
x,y, . . . to denote multisymbol strings.

Note that a multistring x of length n (|x| = n) defines a distribution proba-
bility px over Xn (where ∀x ∈ Xn, p(xi) = xi,xi). That is, px(x) ≥ 0 ∀x ∈ Xn

and
∑

x∈Xn px(x) = 1.
Like in the plain string case, The (conditional) stochastic edit distance is

given by a 4-tuple (X, Y, c, γ) where X and Y are the input and output alphabet
respectively, c : E → R is the cost function and γ ∈ R.

The probability of generating the multistring y from the multistring x is
defined as:

p(y|x) =
∑

y∈Σ|y|

∑

x∈Σ|x|

py(y)px(x)p(y|x)
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Note that the distance in plain string is a special case of this one when all
the probabilities of each multisymbol are zero except the corresponding to the
actual symbol in the string.

Similarly to the string case, this probability can be computed recursively as
follows:

p(y|x) = α(x,y)γ

where

α(x,y) = [1]x=ε,y=ε (3)
+ [c(a,b) · α(x′,y′)]x=x′a∧y=y′b

+ [c(a, ε) · α(x′,y)]x=x′a

+ [c(ε,b) · α(x,y′)]y=y′b

and where

c(a, ε) =
n∑

i=1

c(ai, ε)ai (4)

c(ε,b) =
n∑

j=1

c(ε, bj)bj (5)

c(a,b) =
n∑

i=1

n∑

j=1

c(ai, bj)aibj (6)

This probability can be computed in O(|x||y|) using dynamic programming
techniques.

In a symetric way p(y|x) can be recursively computed by means of an auxi-
liary function β as:

p(y|x) = β(x,y)γ

where

β(x,y) = [1]x=ε,y=ε (7)
+ [c(a,b) · β(x′,y′)]x=ax′∧y=by′

+ [c(a, ε) · β(x′,y)]x=ax′

+ [c(ε,b) · β(x,y′)]y=by′

The stochastic edit distance can be extended to multistrings as:

d(x,y) = − log p(y|x)

Given a set of strings S we are interested in finding the median multistring
x, that is:
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x = argmin
x∈MX

∑

y∈S

d(x, y)

= argmin
x∈MX

−
∑

y∈S

ln p(y|x)

= argmax
x∈MX

∏

y∈S

p(y|x)

Then the problem of finding the median multistring can be stated as a maxi-
mum likelihood problem.

Now, we are going restrict the problem to search the multistring x of a fixed
length that maximizes the likelihood and then iterate for each possible length.
To do that the standard expectation maximization algorithm is used.

It is easy to see in equation 3 that the parameters of x are only used when
deleting (eq. 4) and substituting (eq. 6). Then the expectation x̄i,j of each pa-
rameter of x can be computed as:

x̄i,k =
|y|∑

j=1

α(x1...i, y1...j)xi,kc(ak, ε)β(xi+1...n, yj...|y|)γ
p(y|x)

+
|y|∑

j=1

α(x1...i, y1...j)xi,kc(ak, yj)β(xi+1...n, yj+1...|y|)γ
p(y|x)

And the maximization consists in renormalizing. That is,

xi,j =
x̄i,j

∑|X|
k=1 x̄i,k

As usual, both steps are repeated until a convergence criterion is reached.

5 Experiments and Results

5.1 Copenhagen Corpus

The database used to develop the experiments is the Copenhagen chromosome
dataset. Each chromosome is depicted by a digitized image which was automati-
cally transformed into a string through the procedure illustrated in figure 1. This
procedure begins with the transformation of the images into its idealized profiles.
Then, each profile is mapped into strings over the alphabet {1,2,3,4,5,6}. After
that, these strings are coded in order to represent signed differences of successive
symbols over the alphabet Σ = {e,d,c,b,a,=,A,B,C,D,E}. Taking into account
that “a” correspond to difference of -1, “A” of +1, “=” of 0, and so on. For a
complete reference to this procedure see [12].

The dataset has 200 strings per class and there are 22 non-sex chromosome
types, so the dataset is formed by 4400 samples. Moreover, the behavior of the



438 C. Olivares-Rodŕıguez and J. Oncina

Fig. 1. Image of the chromosomes preprocessing

algorithms is evaluated based on a two-fold cross-validation. Accordingly, each
class is divided into two equal-size sets with 100 samples each, then the Fj folds
are formed by 2200 samples, where j ∈ {1, 2}.

5.2 Experiment 0: Learning the Stochastic Edit Distance

In order to use the stochastic edit distance we need to fix the edit operation
probabilities. A similar approach to the one used in [8] was followed. Let Pj be a
set of (x, NN(x)) chromosomes pairs. Where each pair into the Pj set is formed
by a sample x from Fl and its nearest neighbor NN(x). The Pj set was used as
training set to learn Stochastic Distance. A different stochastic edit distance was
learned for each set Pj .

5.3 Experiment 1: Clustering with k-Medians

Following the guidelines made in Mart́ınez-Hinarejos et al. work we begin by
making some experiments to know how much better are our medians with respect
to the set-median and the medians found by the algorithm of Martinez-Hinarejos
et al.. To do that the k-medians clustering algorithm along with the minmax
initialization was use [13].

In the experiments, the median computation in k-medians was replaced by
each of the three median computation algorithms that we are comparing. The
number of clusters was increased from 1 to 100. As a quality measure the sum
of the distances from medians to the elements in its cluster was used.

It can be observed in figure 2 that the worst results are obtained when the
set-median is used. Of course, the sum of distances for the three algorithms
converges as the number of prototypes grows.

5.4 Experiment 2: Classification with k-Nearest Neighbor

The main goal of this experiment is the evaluation of the k-Nearest Neighbor
(k-NN) classification algorithm. According to this, the three versions of the c-
medians algorithms were applied to each class to obtain c representative of the
class (c varying from 1 to 100). Then the k-NN classification algorithm (for
k ∈ {1, 3, 6}) was applied to classify the prototypes of an independent fold.

The classification error rates for each algorithm plus the k-NN using the whole
set of prototypes are shown in figure 3.
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Fig. 3. Error rate of classification using 1-NN (a), 3-NN (b) and 6-NN (c)

Of course, using the whole set of prototypes obtains the lowest error rates,
but, among the algorithms that are performing a prototype selection the one
based in multistring obtains the lowest error rates.

6 Conclusions

In this work we have used the concept of a multistring in order to compute the
median of a set of strings when using the stochastic edit distance. We have show
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that the problem can be stated as a maximum likelihood search and then, we
used the Expectation Maximization algorithm.

In the experimental section we have shown that this approach is quite effective
when comparing to it the set median or the generalized median.
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