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t. In Pattern Re
ognition, there are problems where distin
trepresentations 
an be obtained for the same pattern, and depending onthe type of 
lassi�ers (statisti
al or stru
tural) one type of representationis preferred versus the others. In the last years, di�erent approa
hes to
ombining 
lassi�ers have been proposed to improve the performan
e ofindividual 
lassi�ers. However, few works investigated the use of stru
-tured pattern representations. In this paper 
ombination of 
lassi�ershas been applied using tree pattern representation in 
ombination withstrings and ve
tors for a handwritten 
hara
ter 
lassi�
ation task. In or-der to save 
omputational 
ost, some proposals based on the use of bothembedding stru
tured data and 
as
ade 
lassi�ers are provided.Key words: 
ombining 
lassi�ers, tree data representation, string datarepresentation, edit distan
e, k-NN rule1 Introdu
tionMultiple 
lassi�er systems have re
eived mu
h attention in the re
ent years. Itssu

ess is in the use of di�erent de
isions to obtain a more a

urate 
lassi�
ationthan single 
lassi�ers. Classi�er ensemble has mainly two advantages: on the onehand, the re
ognition performan
e is higher in opposite of single 
lassi�ers. Onthe other hand, the behaviour of a multiple 
lassi�er system is more robust dueto the fa
t that a �nal de
ision is taken on the basis of several de
isions (
riti
alindividual de
ision 
an be avoided) [1℄.As stated in a re
ent work by Duin [2℄, a 
onsistent set of di�erent 
lassi�ersshould be used, but also they should be 
omparable. In the same work di�erentsets of 
onsistent 
ombined 
lassi�ers are presented (using di�erent initializa-tions, parameters 
hoi
e, 
lassi�
ation s
hemes, et
) obtaining the best resultswhen di�erent feature sets have been used.While regular ve
tor-spa
e represented data are widely used for 
ombining
lassi�ers, stru
tured data have been rarely used. The main reason is the widerange of di�erent 
lassi�
ation methods that 
an be applied when patterns are



represented as ve
tors. However, the number of 
lassi�ers to use is drasti
allyredu
ed for stru
tural pattern representations. For example, in the 
ase of stru
-tured data (strings, trees,graphs ...), if a dissimilarity measure is de�ned, a knearest neighbour (k-NN) 
lassi�er 
an be applied. Also, re
ently, the use ofkernel fun
tions based on edit distan
es [3℄ or the use of embedding for stru
-tured data in real ve
tor spa
es [4℄ have enabled the use of alternative statisti
almethods for 
lassi�
ation.Stru
tural representation of data have been su

essfully used in many re
og-nition tasks. In fa
t, it is the more natural representation of data in many ap-pli
ations, as for example in 
omputational biology. The main advantages ofusing a stru
tural representation is that the number of features is not �xed andthe relationship between individual feature 
omponents appears expli
itly in therepresentation (in 
ontrast with the feature ve
tor representation).In this work we analyse how the 
ombination of more than a stru
turalrepresentation 
an improve the 
lassi�
ation error rate. As well as strings andve
tors have been used previously in 
lassi�er ensembles, trees have not been usedever. The experiments performed show that the performan
e of the 
lassi�
ationimproves when trees are used in 
ombination with ve
tors and strings. Moreover,experiments performed using embedding strings and ve
tors and a ��lter andre�ne� 
lassi�er show that a signi�
ant speedup 
an be a
hieved at the expenseof a de
rease in the rate of su

ess. In all the experiments, the 
lassi�er weadopted is the k-NN. As di�erent representations are used, di�erent dissimilaritymeasures are needed, asso
iated to the type of data. For that reason, in this workthe Eu
lidean distan
e, the string-edit-distan
e and the tree-edit-distan
e havebeen used.In the following se
tions, feature extra
tion methods for data and ensembles
hemes used in this work are des
ribed. Then, the results for the ensemblesare presented for binary images of handwritten 
hara
ters from the NIST 3Database National Institute of Standards and Te
hnology [5℄. Finally, the 
on-
lusions drawn from the results are dis
ussed, pointing the resear
h to furtherwork lines.2 Feature extra
tion of the data set and distan
esThree di�erent feature extra
tion methods have been used in this work, twoof them are stru
tural representations (trees and strings) and the third is arepresentation in a real ve
tor spa
e. Given a pattern image, the key idea isthat ea
h representation gives some type of information about the pattern thatit is not given by the others. For example, strings represent the 
ontour of theimages, trees represent the skeleton, and ea
h dimension in a n-dimensionalve
tor represents the ratio of bla
k pixels over the total in a region of the image.2.1 Tree data representationThe �rst step before obtaining a tree data representation of patterns is the use ofa thinning algorithm to eliminate redundant information in the image [6℄. The



image is s
anned from left to right starting from the top looking for the �rstbla
k pixel. This �rst pixel is marked with label "0". Every tree node has somany des
endents as unmarked neighbours has the sele
ted and marked pixel;ea
h of the new bran
hes is extended following their neighbourhood until: a) thebran
h has a maximum size (parameter R of the algorithm 3), b) is a terminalpixel or 
) is an interse
tion pixel. After that, a new node is assigned to everyend of bran
h. The labels of the nodes (ex
ept for the root) have values between�1� and �8� depending on the dire
tion of the bran
h (see �gure 1 on the left).More detailed information about this algorithm 
an be found in [7℄.
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6 7 8Fig. 1. On the left, example of a tree and a 
ontour string. On the right, symbols usedto en
ode strings and trees.

Fig. 2. Example of a ve
torial data representation.3 in this work the parameter R=2, that means that the maximum length of ea
hbran
h of the tree is 2 pixels



A general tree edit distan
e is de�ned by Shasha and Zhang in [8℄. Given trees
T1 and T2, a dynami
 programming algorithm with spa
e 
omplexity O(|T1| ×
|T2|) and O(|T1|×|T2|×min(depth(T1); leaves(T1))×min(depth(T2); leaves(T2))in time 
omplexity has been used in this work. For the edit basi
 operations(insertion, deletion and substitution of nodes) in the tree, the following weightswere used:� wi = wd = 1 (insertion and deletion weights)� wij = min(|i − j|; 8 − |i − j|) (substitution weights)The distan
e dt(T1, T2), is �nally normalized (to avoid the size invarian
e prob-lem) with the maximum size of the two trees 4:

dN (T1, T2) = dt(T1,T2)
max(|T1|,|T2|)2.2 String data representationFollowing the same strategy than in the previous method, the image is s
annedfrom left to right starting from the top, sear
hing the �rst bla
k pixel 5. In this
ase, the external 
ontour of the 
hara
ters (the string) is obtained going to theright (in the 
lo
kwise sense) until the �rst pixel is rea
hed again (see �gure 1in the middle). The symbols (dire
tions) in the strings are the same than in the
ase of trees.The edit distan
e between two strings S1 and S2, ds(S1, S2), is de�ned asthe minimum-
ost set of transformation that must be done to turn a string intothe other. The edit basi
 operations are insertions, deletions and substitution ofindividual symbols in the string. The 
ost values for the operations are equalthat those used in tree edit distan
e.This distan
e 
an be 
omputed in time O(|x| × |y|) [9℄. As in trees, the dis-tan
e is �nally normalized with the maximum of the length of the strings toavoid the size invarian
e problem:

dN (S1, S2) = ds(S1,S2)
max(|S1|,|S2|)2.3 Ve
torial data representationFirstly, to obtain a size invarian
e representation of 
hara
ters, the smallestsquared matrix that in
ludes the 
hara
ter in the original image is sele
ted (seeFigure 2). The s
aled image is divided in n �xed squared windows, where n willbe the dimension of a ve
tor, and ea
h dimension of this ve
tor represents theratio of bla
k pixels in relation to the total number of pixels in ea
h window.After some preliminary experiments, the best results were obtained using 25-dimensional ve
tors.4 di�erent normalizations have been applied, but in this work only results with thebest behaviour are shown5 In order to redu
e the length of the strings, all the images were s
aled from 128×128to 64×64.



3 Classi�er ensemblesDesigning a suitable method of de
ision 
ombinations is a key point for theensemble's performan
e. In this paper, two di�erent 
ombination s
hemes havebeen employed, one of them is based on a 
on�den
e voting s
heme (sum rule) [10℄and the se
ond is a s
heme based on the �lter-and-re�ne framework de�nedin [11℄.3.1 Con�den
e voting approa
hIn 
on�den
e voting methods, voters express the degree of their preferen
e for a
andidate. This is done by assigning a value (
alled the 
on�den
e value) to the
andidate. The higher the 
on�den
e value, the more the 
andidate is preferredby the voter [1℄.Given a test sample x and C 
lasses, to measure the 
on�den
e of one 
las-si�er in ea
h 
lass, we have used:
Ci(x) =

∑
i

1
di(x)2

∑k

j=1
1

dj(x)2

i : 1 . . . Cwhere the k-nearest distan
es to the sample x have been used. In parti
ular∑
i

1
di(x)2 is the sum of the inverse squared distan
es of the nearest neighboursbelonging to the 
lass i among the k nearest neighbours.Kittler et al. performed in [10℄ an experimental 
omparison of di�erent 
las-si�er 
ombination s
hemes. They show that the 
ombination rule 
alled sum ruleoutperforms others 
ombination s
hemes when di�erent pattern representationof data are used. For this reason in this work we have used this 
ombination(even so, others 
ombination s
hemes were also tested with worse results).Sum rule: ea
h voter has to give a 
on�den
e value for ea
h 
andidate. Next,all 
on�den
e values are added for ea
h 
andidate and the 
andidate (the
lass) with the highest value of the sum is sele
ted.3.2 Filter and re�ne s
hemesIn domains where the distan
e measure is 
omputationally expensive, di�erentapproa
hes to a

elerate the sear
h have been proposed. For example, approxi-mate 
as
ade 
lassi�ers 
an been used [12℄. In this s
heme normally ina

uratebut 
heap 
lassi�ers are 
onsidered, followed by the more a

urate and expensive,ie, the idea is to use at di�erent levels di�erent 
lassi�ers (starting by the less ex-pensive). The number of levels depends on the problem and di�erent possibilities
an be build for the same problem.On the other hand, embedding methods have been re
ently proposed forspeeding up the sear
h [11℄. These methods embed the strings or trees (or anystru
tural obje
t for whi
h a distan
e has been de�ned) in a ve
tor spa
e, sothe distan
es of the embedded obje
ts approximates the a
tual distan
es. Thus,



the sear
h 
an be performed on the embedded obje
ts using, for example, theEu
lidean distan
e.Embedding methods 
an be used in a ��lter and re�ne� s
heme to a

eleratethe sear
h [12℄. This method 
onsists on:� �rstly, the sample in the embedding spa
e is used as a ��lter�, where a smallset of 
andidates are sele
ted (the most promising);� se
ondly, a new 
lassi�
ation in the original spa
e is performed using onlythe sele
ted set to �re�ne� the result 6.In this work, two di�erent two-level ��lter and re�ne� s
hemes have beende�ned based on the use of these ideas.4 ExperimentsTo perform the experiments, binary images of handwritten segmented upper-
ase 
hara
ters from the NIST 3 Database National Institute of Standards andTe
hnology were used (see some examples in �gure 3):a) number of 
lasses in this task: 26b) types of representation: 25-dimensional ve
tors, strings and trees
) distan
es: Eu
lidean distan
e, string edit distan
e, and tree edit distan
e

Fig. 3. Some examples of upper handwritten 
hara
ters from the NIST Database 3.Ea
h experiment were repeated 10 times using training and test sets with1080 samples on average.To perform a 
ombination based on the 
on�den
e voting s
heme, the resultsof the k-NN rule of individual 
lassi�ers with di�erent representations of datahas been used as input. In parti
ular, the following 
ombinations have beenperformed:6 in pra
ti
e, this two steps 
an be interleaved



C1: strings and ve
torsC2: strings and treesC3: trees and ve
torsC4: strings, trees and ve
torsTable 1 shows the 
lassi�
ation error rate (in %) when the k-NN 
lassi�eris used for the three types of representation. The �rst three 
olumns show theresult of the individual 
lassi�ers for ea
h representation. In this 
ase, the bestresults are obtained when the k-NN 
lassi�er is used with k = 1, and stringsoutperforms signi�
antly trees and ve
tors. The four 
olumns on the right oftable show the 
lassi�
ation error rate for the ensembles. In this 
ase, it 
an beobserved that the 
lassi�
ation error rate is in�uen
ed by the number of nearestneighbours k, and depends on the 
ombination. Some interesting results are ob-tained: �rstly, depending on the 
ombination, the best results were obtained for
k values greater than 1; se
ondly, any 
ombination of two representation werestrings are represented (C1 and C2) improves the results of any individual 
las-si�er; thirdly, the best results are obtained using 
ombination C4 with k = 3(using the three representations).Table 1. Error rate using the k-NN rule with 
ontour strings, trees and ve
tors, andfour 
ombinations for a training set size of 1080 samples on average.individual 
lassi�ers 
lassi�er ensemblesk string trees ve
tor C1 C2 C3 C41 12.9 26.4 27.4 19.6 19.4 26.5 13.33 13.8 27.4 28.9 11.0 11.5 16.7 08.95 15.9 30.4 32.4 10.5 10.9 15.8 09.17 18.0 33.2 35.6 10.5 11.1 16.2 09.3As the use of edit distan
e with strings or trees is very time 
onsuming, otheralternatives have been analyzed trying to redu
e it. In parti
ular, experimentswith two s
hemes based on re�ne and �lter 
lassi�ers and embedding methodswere done.Embedding strings and trees. Strings and trees were embedded as ve
tors us-ing the edit distan
e to a sele
ted number of prototypes. That is, an obje
t (stringor tree) 
an be transformed into a ve
tor by 
al
ulating the edit distan
e to all thesele
ted obje
ts, where ea
h distan
e represents one ve
tor 
omponent. Formally,given a set of obje
ts P and a subset B = {b1, . . . , bn} ⊆ P , the transformation
tBn : P → R

n is de�ned as a fun
tion where tBn (x) = (d(x, b1), . . . , d(x, bn)), andwhere d(x, bi) is the edit distan
e between the obje
ts x and bi.



Spillman et al. proposed in [4℄ some prototype sele
tion methods to use 7.The method used in this work was the following: the �rst one, b1, is randomlysele
ted and then, for i = 2, 3 . . . n

bi = argmaxp∈(P−Bi)

i−1
min
k=1

d(p, bk),where Bi = {b1, . . . , bi−1}.The edit distan
e from these n obje
ts to the training set P are 
omputed,and these n distan
es are used as the n 
oordinates of ea
h obje
t in a n-dimensional ve
tor.The experiment presented in Table 2 were performed to sele
t the dimen-sionality in the transformed ve
tor spa
e.Table 2. Classi�
ation error using di�erent number of referen
e points in the embed-ding. dimensionType 50 100 150 200strings 21.2 19.8 18.9 18.7trees 31.1 30.1 30.3 30.0The 
ombination with the best behaviour in Table 1 (C4: 
ombining strings,trees and ve
tors) were repeated using the embedding of trees and strings (for
n = 300). The results 
an be shown in Table 3. Ex
ept for k = 1, for the othervalues of k we found a similar result using the new 
ombination (
alled C5) thanthe better individual 
lassi�er with the di�eren
e that now the 
lassi�
ation isfaster that in the individual 
lassi�ers.Table 3. Error rate using the k-NN rule with strings, trees and ve
tors, and 
ombina-tions of embedded strings, trees with ve
tors.individual 
lassi�ers 
ombining 
lassi�ersk Emb_string Emb_trees ve
tor C51 22.2 31.4 27.4 18.03 21.4 30.5 28.9 12.65 21.2 30.0 32.4 12.17 21.5 30.3 35.6 12.4
Re�ne and �lter 
lassi�ers. Two s
hemes were applied:7 these methods are similar than the used in some fast nearest sear
h algorithms basedon prototype sele
tion [7℄



EmbS-OrS: Firstly, a k-NN rule is used with the embedded strings in a 300-dimensional ve
tor spa
e using the Eu
lidean distan
e. Se
ondly, the 200nearest samples to the test were used as training set for the se
ond 
lassi�er.For this se
ond 
lassi�er, the original strings using the string edit distan
ewere used.Ve
-OrS: Firstly, a k-NN rule is used with the 25-dimensional ve
tor represen-tation obtained in se
tion 2.3 using the Eu
lidean distan
e. Se
ondly, the 200nearest samples to the test were used as training set for the se
ond 
lassi�er.For this se
ond 
lassi�er, the original strings using the string edit distan
ewere used.Table 4 shown results with both s
hemes. It 
an be observed that the bestresults are obtained when the embedding method is used in the �rst 
lassi�er.Table 4. Classi�
ation error for �lter and re�ne frameworkSe
ond 
lass. EmbS-OrS Ve
-OrS Contour string1 13.2 13.6 12.93 12.3 14.5 13.85 12.4 16.5 15.97 12.9 18.5 18.0In this work, the main goal for using re�ne and �lter 
lassi�ers were the re-du
tion of the time 
omplexity. Table 5 shows this redu
tion (see the last two
olumns) were for the Ve
-OrS s
heme, slightly in
reases in error rate 
lassi�-
ation is obtained in relation to the 
ontour string, but redu
ing up to 18.37%the 
lassi�
ation time. However, if our main goal is to redu
e the error rate, the
ombination C4 
an be used. In our experiments, we have redu
ed the error from12.9% to 8.9%.Table 5. Classi�
ation error and time for all 
ombinations. Contour string error rateand time is used as baseline.Contourn string C4 C5 EmbS-OrS Ve
-OrSError (%) 12.9 8.9 12.1 12.3 13.6Time (%) 100 158 8 13.9 18.375 Con
lusionsIn this work 
lassi�er ensembles using stru
tural information of data have beenapplied in a handwritten 
hara
ter re
ognition task. Di�erent ensembles havebeen evaluated, some of them to improve the 
lassi�
ation rate and others toredu
e the time 
omplexity. The proposed s
hemes improve the 
lassi�
ationrate or the time 
onsuming in relation to the individual 
lassi�ers. To redu
e the



time 
omplexity a s
heme based on the use of a re�ne and �lter framework anembedding methods have been used, redu
ing this time until a 18% maintainingsimilar error rate that the best individual 
lassi�er. The 
ombination of trees,strings and ve
tors redu
e the error rate from 12.9% to 8.9% when a trainingset of 1080 samples on average is used (but at expense of 
onsuming more time).In future work, new s
hemes using alternative embedding methods and fastapproximated nearest neighbours algorithms will be analyzed to redu
e boththe error rate and the time 
omplexity.A
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