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2 Departamento de Lenguajes y Sistemas InformátiosUniversidad de AlianteP.O. box 99, E-03080 Aliante, SpainAbstrat. In Pattern Reognition, there are problems where distintrepresentations an be obtained for the same pattern, and depending onthe type of lassi�ers (statistial or strutural) one type of representationis preferred versus the others. In the last years, di�erent approahes toombining lassi�ers have been proposed to improve the performane ofindividual lassi�ers. However, few works investigated the use of stru-tured pattern representations. In this paper ombination of lassi�ershas been applied using tree pattern representation in ombination withstrings and vetors for a handwritten harater lassi�ation task. In or-der to save omputational ost, some proposals based on the use of bothembedding strutured data and asade lassi�ers are provided.Key words: ombining lassi�ers, tree data representation, string datarepresentation, edit distane, k-NN rule1 IntrodutionMultiple lassi�er systems have reeived muh attention in the reent years. Itssuess is in the use of di�erent deisions to obtain a more aurate lassi�ationthan single lassi�ers. Classi�er ensemble has mainly two advantages: on the onehand, the reognition performane is higher in opposite of single lassi�ers. Onthe other hand, the behaviour of a multiple lassi�er system is more robust dueto the fat that a �nal deision is taken on the basis of several deisions (ritialindividual deision an be avoided) [1℄.As stated in a reent work by Duin [2℄, a onsistent set of di�erent lassi�ersshould be used, but also they should be omparable. In the same work di�erentsets of onsistent ombined lassi�ers are presented (using di�erent initializa-tions, parameters hoie, lassi�ation shemes, et) obtaining the best resultswhen di�erent feature sets have been used.While regular vetor-spae represented data are widely used for ombininglassi�ers, strutured data have been rarely used. The main reason is the widerange of di�erent lassi�ation methods that an be applied when patterns are



represented as vetors. However, the number of lassi�ers to use is drastiallyredued for strutural pattern representations. For example, in the ase of stru-tured data (strings, trees,graphs ...), if a dissimilarity measure is de�ned, a knearest neighbour (k-NN) lassi�er an be applied. Also, reently, the use ofkernel funtions based on edit distanes [3℄ or the use of embedding for stru-tured data in real vetor spaes [4℄ have enabled the use of alternative statistialmethods for lassi�ation.Strutural representation of data have been suessfully used in many reog-nition tasks. In fat, it is the more natural representation of data in many ap-pliations, as for example in omputational biology. The main advantages ofusing a strutural representation is that the number of features is not �xed andthe relationship between individual feature omponents appears expliitly in therepresentation (in ontrast with the feature vetor representation).In this work we analyse how the ombination of more than a struturalrepresentation an improve the lassi�ation error rate. As well as strings andvetors have been used previously in lassi�er ensembles, trees have not been usedever. The experiments performed show that the performane of the lassi�ationimproves when trees are used in ombination with vetors and strings. Moreover,experiments performed using embedding strings and vetors and a ��lter andre�ne� lassi�er show that a signi�ant speedup an be ahieved at the expenseof a derease in the rate of suess. In all the experiments, the lassi�er weadopted is the k-NN. As di�erent representations are used, di�erent dissimilaritymeasures are needed, assoiated to the type of data. For that reason, in this workthe Eulidean distane, the string-edit-distane and the tree-edit-distane havebeen used.In the following setions, feature extration methods for data and ensembleshemes used in this work are desribed. Then, the results for the ensemblesare presented for binary images of handwritten haraters from the NIST 3Database National Institute of Standards and Tehnology [5℄. Finally, the on-lusions drawn from the results are disussed, pointing the researh to furtherwork lines.2 Feature extration of the data set and distanesThree di�erent feature extration methods have been used in this work, twoof them are strutural representations (trees and strings) and the third is arepresentation in a real vetor spae. Given a pattern image, the key idea isthat eah representation gives some type of information about the pattern thatit is not given by the others. For example, strings represent the ontour of theimages, trees represent the skeleton, and eah dimension in a n-dimensionalvetor represents the ratio of blak pixels over the total in a region of the image.2.1 Tree data representationThe �rst step before obtaining a tree data representation of patterns is the use ofa thinning algorithm to eliminate redundant information in the image [6℄. The



image is sanned from left to right starting from the top looking for the �rstblak pixel. This �rst pixel is marked with label "0". Every tree node has somany desendents as unmarked neighbours has the seleted and marked pixel;eah of the new branhes is extended following their neighbourhood until: a) thebranh has a maximum size (parameter R of the algorithm 3), b) is a terminalpixel or ) is an intersetion pixel. After that, a new node is assigned to everyend of branh. The labels of the nodes (exept for the root) have values between�1� and �8� depending on the diretion of the branh (see �gure 1 on the left).More detailed information about this algorithm an be found in [7℄.
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6 7 8Fig. 1. On the left, example of a tree and a ontour string. On the right, symbols usedto enode strings and trees.

Fig. 2. Example of a vetorial data representation.3 in this work the parameter R=2, that means that the maximum length of eahbranh of the tree is 2 pixels



A general tree edit distane is de�ned by Shasha and Zhang in [8℄. Given trees
T1 and T2, a dynami programming algorithm with spae omplexity O(|T1| ×
|T2|) and O(|T1|×|T2|×min(depth(T1); leaves(T1))×min(depth(T2); leaves(T2))in time omplexity has been used in this work. For the edit basi operations(insertion, deletion and substitution of nodes) in the tree, the following weightswere used:� wi = wd = 1 (insertion and deletion weights)� wij = min(|i − j|; 8 − |i − j|) (substitution weights)The distane dt(T1, T2), is �nally normalized (to avoid the size invariane prob-lem) with the maximum size of the two trees 4:

dN (T1, T2) = dt(T1,T2)
max(|T1|,|T2|)2.2 String data representationFollowing the same strategy than in the previous method, the image is sannedfrom left to right starting from the top, searhing the �rst blak pixel 5. In thisase, the external ontour of the haraters (the string) is obtained going to theright (in the lokwise sense) until the �rst pixel is reahed again (see �gure 1in the middle). The symbols (diretions) in the strings are the same than in thease of trees.The edit distane between two strings S1 and S2, ds(S1, S2), is de�ned asthe minimum-ost set of transformation that must be done to turn a string intothe other. The edit basi operations are insertions, deletions and substitution ofindividual symbols in the string. The ost values for the operations are equalthat those used in tree edit distane.This distane an be omputed in time O(|x| × |y|) [9℄. As in trees, the dis-tane is �nally normalized with the maximum of the length of the strings toavoid the size invariane problem:

dN (S1, S2) = ds(S1,S2)
max(|S1|,|S2|)2.3 Vetorial data representationFirstly, to obtain a size invariane representation of haraters, the smallestsquared matrix that inludes the harater in the original image is seleted (seeFigure 2). The saled image is divided in n �xed squared windows, where n willbe the dimension of a vetor, and eah dimension of this vetor represents theratio of blak pixels in relation to the total number of pixels in eah window.After some preliminary experiments, the best results were obtained using 25-dimensional vetors.4 di�erent normalizations have been applied, but in this work only results with thebest behaviour are shown5 In order to redue the length of the strings, all the images were saled from 128×128to 64×64.



3 Classi�er ensemblesDesigning a suitable method of deision ombinations is a key point for theensemble's performane. In this paper, two di�erent ombination shemes havebeen employed, one of them is based on a on�dene voting sheme (sum rule) [10℄and the seond is a sheme based on the �lter-and-re�ne framework de�nedin [11℄.3.1 Con�dene voting approahIn on�dene voting methods, voters express the degree of their preferene for aandidate. This is done by assigning a value (alled the on�dene value) to theandidate. The higher the on�dene value, the more the andidate is preferredby the voter [1℄.Given a test sample x and C lasses, to measure the on�dene of one las-si�er in eah lass, we have used:
Ci(x) =

∑
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i : 1 . . . Cwhere the k-nearest distanes to the sample x have been used. In partiular∑
i

1
di(x)2 is the sum of the inverse squared distanes of the nearest neighboursbelonging to the lass i among the k nearest neighbours.Kittler et al. performed in [10℄ an experimental omparison of di�erent las-si�er ombination shemes. They show that the ombination rule alled sum ruleoutperforms others ombination shemes when di�erent pattern representationof data are used. For this reason in this work we have used this ombination(even so, others ombination shemes were also tested with worse results).Sum rule: eah voter has to give a on�dene value for eah andidate. Next,all on�dene values are added for eah andidate and the andidate (thelass) with the highest value of the sum is seleted.3.2 Filter and re�ne shemesIn domains where the distane measure is omputationally expensive, di�erentapproahes to aelerate the searh have been proposed. For example, approxi-mate asade lassi�ers an been used [12℄. In this sheme normally inauratebut heap lassi�ers are onsidered, followed by the more aurate and expensive,ie, the idea is to use at di�erent levels di�erent lassi�ers (starting by the less ex-pensive). The number of levels depends on the problem and di�erent possibilitiesan be build for the same problem.On the other hand, embedding methods have been reently proposed forspeeding up the searh [11℄. These methods embed the strings or trees (or anystrutural objet for whih a distane has been de�ned) in a vetor spae, sothe distanes of the embedded objets approximates the atual distanes. Thus,



the searh an be performed on the embedded objets using, for example, theEulidean distane.Embedding methods an be used in a ��lter and re�ne� sheme to aeleratethe searh [12℄. This method onsists on:� �rstly, the sample in the embedding spae is used as a ��lter�, where a smallset of andidates are seleted (the most promising);� seondly, a new lassi�ation in the original spae is performed using onlythe seleted set to �re�ne� the result 6.In this work, two di�erent two-level ��lter and re�ne� shemes have beende�ned based on the use of these ideas.4 ExperimentsTo perform the experiments, binary images of handwritten segmented upper-ase haraters from the NIST 3 Database National Institute of Standards andTehnology were used (see some examples in �gure 3):a) number of lasses in this task: 26b) types of representation: 25-dimensional vetors, strings and trees) distanes: Eulidean distane, string edit distane, and tree edit distane

Fig. 3. Some examples of upper handwritten haraters from the NIST Database 3.Eah experiment were repeated 10 times using training and test sets with1080 samples on average.To perform a ombination based on the on�dene voting sheme, the resultsof the k-NN rule of individual lassi�ers with di�erent representations of datahas been used as input. In partiular, the following ombinations have beenperformed:6 in pratie, this two steps an be interleaved



C1: strings and vetorsC2: strings and treesC3: trees and vetorsC4: strings, trees and vetorsTable 1 shows the lassi�ation error rate (in %) when the k-NN lassi�eris used for the three types of representation. The �rst three olumns show theresult of the individual lassi�ers for eah representation. In this ase, the bestresults are obtained when the k-NN lassi�er is used with k = 1, and stringsoutperforms signi�antly trees and vetors. The four olumns on the right oftable show the lassi�ation error rate for the ensembles. In this ase, it an beobserved that the lassi�ation error rate is in�uened by the number of nearestneighbours k, and depends on the ombination. Some interesting results are ob-tained: �rstly, depending on the ombination, the best results were obtained for
k values greater than 1; seondly, any ombination of two representation werestrings are represented (C1 and C2) improves the results of any individual las-si�er; thirdly, the best results are obtained using ombination C4 with k = 3(using the three representations).Table 1. Error rate using the k-NN rule with ontour strings, trees and vetors, andfour ombinations for a training set size of 1080 samples on average.individual lassi�ers lassi�er ensemblesk string trees vetor C1 C2 C3 C41 12.9 26.4 27.4 19.6 19.4 26.5 13.33 13.8 27.4 28.9 11.0 11.5 16.7 08.95 15.9 30.4 32.4 10.5 10.9 15.8 09.17 18.0 33.2 35.6 10.5 11.1 16.2 09.3As the use of edit distane with strings or trees is very time onsuming, otheralternatives have been analyzed trying to redue it. In partiular, experimentswith two shemes based on re�ne and �lter lassi�ers and embedding methodswere done.Embedding strings and trees. Strings and trees were embedded as vetors us-ing the edit distane to a seleted number of prototypes. That is, an objet (stringor tree) an be transformed into a vetor by alulating the edit distane to all theseleted objets, where eah distane represents one vetor omponent. Formally,given a set of objets P and a subset B = {b1, . . . , bn} ⊆ P , the transformation
tBn : P → R

n is de�ned as a funtion where tBn (x) = (d(x, b1), . . . , d(x, bn)), andwhere d(x, bi) is the edit distane between the objets x and bi.



Spillman et al. proposed in [4℄ some prototype seletion methods to use 7.The method used in this work was the following: the �rst one, b1, is randomlyseleted and then, for i = 2, 3 . . . n

bi = argmaxp∈(P−Bi)

i−1
min
k=1

d(p, bk),where Bi = {b1, . . . , bi−1}.The edit distane from these n objets to the training set P are omputed,and these n distanes are used as the n oordinates of eah objet in a n-dimensional vetor.The experiment presented in Table 2 were performed to selet the dimen-sionality in the transformed vetor spae.Table 2. Classi�ation error using di�erent number of referene points in the embed-ding. dimensionType 50 100 150 200strings 21.2 19.8 18.9 18.7trees 31.1 30.1 30.3 30.0The ombination with the best behaviour in Table 1 (C4: ombining strings,trees and vetors) were repeated using the embedding of trees and strings (for
n = 300). The results an be shown in Table 3. Exept for k = 1, for the othervalues of k we found a similar result using the new ombination (alled C5) thanthe better individual lassi�er with the di�erene that now the lassi�ation isfaster that in the individual lassi�ers.Table 3. Error rate using the k-NN rule with strings, trees and vetors, and ombina-tions of embedded strings, trees with vetors.individual lassi�ers ombining lassi�ersk Emb_string Emb_trees vetor C51 22.2 31.4 27.4 18.03 21.4 30.5 28.9 12.65 21.2 30.0 32.4 12.17 21.5 30.3 35.6 12.4
Re�ne and �lter lassi�ers. Two shemes were applied:7 these methods are similar than the used in some fast nearest searh algorithms basedon prototype seletion [7℄



EmbS-OrS: Firstly, a k-NN rule is used with the embedded strings in a 300-dimensional vetor spae using the Eulidean distane. Seondly, the 200nearest samples to the test were used as training set for the seond lassi�er.For this seond lassi�er, the original strings using the string edit distanewere used.Ve-OrS: Firstly, a k-NN rule is used with the 25-dimensional vetor represen-tation obtained in setion 2.3 using the Eulidean distane. Seondly, the 200nearest samples to the test were used as training set for the seond lassi�er.For this seond lassi�er, the original strings using the string edit distanewere used.Table 4 shown results with both shemes. It an be observed that the bestresults are obtained when the embedding method is used in the �rst lassi�er.Table 4. Classi�ation error for �lter and re�ne frameworkSeond lass. EmbS-OrS Ve-OrS Contour string1 13.2 13.6 12.93 12.3 14.5 13.85 12.4 16.5 15.97 12.9 18.5 18.0In this work, the main goal for using re�ne and �lter lassi�ers were the re-dution of the time omplexity. Table 5 shows this redution (see the last twoolumns) were for the Ve-OrS sheme, slightly inreases in error rate lassi�-ation is obtained in relation to the ontour string, but reduing up to 18.37%the lassi�ation time. However, if our main goal is to redue the error rate, theombination C4 an be used. In our experiments, we have redued the error from12.9% to 8.9%.Table 5. Classi�ation error and time for all ombinations. Contour string error rateand time is used as baseline.Contourn string C4 C5 EmbS-OrS Ve-OrSError (%) 12.9 8.9 12.1 12.3 13.6Time (%) 100 158 8 13.9 18.375 ConlusionsIn this work lassi�er ensembles using strutural information of data have beenapplied in a handwritten harater reognition task. Di�erent ensembles havebeen evaluated, some of them to improve the lassi�ation rate and others toredue the time omplexity. The proposed shemes improve the lassi�ationrate or the time onsuming in relation to the individual lassi�ers. To redue the
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