
A Tabular Pruning Rule in Tree-Based Fast
Nearest Neighbor Search Algorithms

Jose Oncina1, Franck Thollard2, Eva Gómez-Ballester1, Luisa Micó1,
and Francisco Moreno-Seco1

1 Dept. Lenguajes y Sistemas Informáticos
Universidad de Alicante, E-03071 Alicante, Spain

{oncina,eva,mico,paco}@dlsi.ua.es
2 Laboratoire Hubert Curien (ex EURISE) - UMR CNRS 5516
18 rue du Prof. Lauras - 42000 Saint-Étienne Cedex 2, France

thollard@univ-st-etienne.fr

Abstract. Some fast nearest neighbor search (NNS) algorithms using
metric properties have appeared in the last years for reducing computa-
tional cost. Depending on the structure used to store the training set,
different strategies to speed up the search have been defined. For in-
stance, pruning rules avoid the search of some branches of a tree in a
tree-based search algorithm. In this paper, we propose a new and simple
pruning rule that can be used in most of the tree-based search algorithms.
All the information needed by the rule can be stored in a table (at pre-
processing time). Moreover, the rule can be computed in constant time.
This approach is evaluated through real and artificial data experiments.
In order to test its performance, the rule is compared to and combined
with other previously defined rules.

1 Introduction

Nearest Neighbor Search (NNS) techniques aim at finding the nearest point of
a set to a given test point using a distance function [4]. The naïve approach is
some times a bottleneck due to the large number of distances to be computed.
Many methods have been developped in order to avoid the exhaustive search
(see [3] and [2] for a survey). Tree-based structures are very popular in most
of the proposed algorithms [6,5,10,1,9], as this structure provides a simple way
to avoid the exploration of some subsets of points. Among these methods, only
some of them are suitable for general metric spaces, i.e., spaces where the objects
(prototypes) need not to be represented as a point, and only require a properly
defined distance function. The most popular and refereed algorithm of such a
type was proposed by Fukunaga and Narendra (FNA) [6]. This algorithm is very
suitable for studying new tree building strategies and new pruning rules [7,8] as
a previous step for extending the new ideas to other tree-based algorithms.

In this paper a new pruning rule is presented. The two keypoints in favor of
this rule are its simplicity (only a table of "distances" is stored) and its efficiency
(it allows a constant time pruning). The new rule may be used with the FNA

J. Martí et al. (Eds.): IbPRIA 2007, Part II, LNCS 4478, pp. 306–313, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Tabular Pruning Rule in Tree-Based Fast NNS Algorithms 307

algorithm in any metric space (even in a vector space with an appropiate distance
metric). In a classical way, the FNA algorithm will serve as a baseline for the
comparison with other techniques.

The paper is organized as follow: we will first introduce the basic algorithm
(section 2). We introduce the different pruning rules that were used in the ex-
periment in section 3 and 4. We will provide a comparative experiment on either
artificial and real world data (section 5). We then conclude suggesting some
future works (section 6).

2 The Basic Algorithm

The FNA is a fast search method that uses a binary tree structure. Each leaf
stores a point of the search space. At each node t is associated St, the set of the
points stored in the leaves of t sub-tree. Each node stores Mt (the representative
of St) and the radius of St, Rt = maxx∈Std(Mt, x).

The tree is generally built using recursive calls to a clustering algorithm. In
the original FNA the c-means algorithm was used. In [7] some other strategies
were explored: in the best method, namely the Most Distant from the Father tree
(MDF), the representative of the left node was the same than the representative
of its father. Thus, each time an expansion of the node is necessary, only one new
distance must be computed (instead of two), reducing the number of distances
computed. As the pruning rules apply on any tree, in the following, the tree will
be built using the MDF method.

In algorithm 1, a simplified version of FNA is presented; only the Prune_FNR
function call must be changed when considering another pruning rule. In order
to make the pseudo-code simpler, the dmin and nn are considered global variable.
Also, only binary trees with one point on the leaves are considered.

The use of the Fukunaga and Narendra Rule (FNR) for pruning internal nodes
is detailed in [6].

When a new sample point x is given, its nearest neighbor nn is searched in
the tree using a depth-first strategy. At a given level, the node t with a smaller
distance d(x, Mt) is explored first. In order to avoid the exploration of some
branches of the tree the FNA uses the FNR rule.

3 A Review of Pruning Rules

Fukunaga and Narendra Rule (FNR)
The pruning rule defined by Fukunaga and Narendra for internal nodes only
makes use of the information in the node t to be pruned (with representant Mt

and radius Rt) and the hyperspherical volume centered in the sample point x
with radius d(x, nn), where nn is the nearest prototype considered up to the
moment.

Rule: No y ∈ St can be the nearest neighbor to x if d(x, nn) + Rt < d(x, Mt).



308 J. Oncina et al.

Algorithm 1: search(t,x)
Data: t: a node tree ; x: a sample point;
Result: nn: the nearest neighbor prototype; dmin: the distance to nn;
if t is not a leaf then

r = right_child(t); � = left_child(t);
dr = d(x,Mr) ; d� = d(x, M�);
update dmin and nn;
if d� < dr then

if not Prune_FNR(�) then
search(�, x);

if not Prune_FNR(r) then
search(r, x);

else
if not Prune_FNR(r) then

search(r, x);
if not Prune_FNR(�) then

search(�, x);

The Sibling Based Rule (SBR)
Given two sibling nodes r and �, this rule requires that each node r stores the
distance between the representative of the node, Mr, and the nearest point, e�,
in the sibling node � (S�).

Rule: No y ∈ S� can be the nearest neighbor to x if d(Mr, e�) > d(Mr, x) +
d(x, nn)

Unlike the FNR, SBR can be applied to eliminate node � without computing
d(M�, x), avoiding some extra distance computations at search time.

Generalized Rule (GR)
This rule is an iterated combination of the FNR and the SBR (see [8] for more
details). Given a node �, a set of prototypes {ei} is defined in the following way:

G1 = S�

ei = argmaxp∈Gi
d(p, M�)

Gi+1 = {p ∈ Gi : d(p, Mr) < d(ei, Mr)}

where Mr is the representative of the sibling node r, and Gi are auxiliary sets
of prototypes.

At preprocessing time, the distances d(Mr, ei) are stored in each node �. This
process is repeated similarly for the sibling node.

Rule: No y ∈ S� can be the nearest neighbor if there is an integer i such that:

d(Mr, ei) ≥ d(Mr, x) + d(x, nn) (1)



A Tabular Pruning Rule in Tree-Based Fast NNS Algorithms 309

d(M�, ei+1) ≤ d(M�, x) − d(x, nn) (2)

Cases i = 0 and i = s are also included not considering equations (1) or (2)
respectively. Note that condition (1) is equivalent to SBR rule when i = s and
condition (2) is equivalent to FNR rule when i = 0.

4 The Table Rule (TR)

This rule prunes by taking the current nearest neighbor as a reference. In order
to do so the distance from a prototype p to a set of prototypes S is defined as
d(p, S) = miny∈S d(p, y). At preprocess time, the distances from each prototype
to each node set St in the tree are computed and stored in a table, allowing a
constant time pruning. Note that the size of this table grows with the square of
the number of prototypes since, as the tree is binary, the number of nodes is two
times the number of prototypes.

t

nnxd(nn,S )

t: node
x: sample point
nn: current nearest neighbor

t

Fig. 1. Application of the table rule

Rule: Figure 1, Present a graphical view of the table rule.

Proposition 1 (Table Rule). Given the table rule (2d(x, nn) < d(t, nn)), no
prototype ei in node t can be nearest to the test sample x than nn, i. e.

∀ei ∈ t, d(x, ei) ≥ d(x, nn)

Proof:
Let ei ∈ St. By the definition of the distance between a point and a node

d(nn, St) = minei∈Std(ei, nn)

and thus
d(nn, St) ≤ d(ei, nn)

Moreover, by the triangle inequality, we have:

d(ei, nn) ≤ d(ei, x) + d(x, nn)



310 J. Oncina et al.

Combining these inequalities, we have:

d(nn, St) ≤ d(ei, nn) ≤ d(ei, x) + d(x, nn)
⇒ d(ei, x) ≥ d(nn, St) − d(x, nn)

using the table rule, we finally have:

d(ei, x) ≥ 2d(x, nn) − d(x, nn) = d(x, nn)

which completes the proof.

5 Experiments

As seen in the proof of the correctness of the table rule, it is only required that
d is a true distance. In particular, on the contrary to other techniques such as
the well known kd-tree algorithm, a vector space is not needed in order to apply
the table rule.

In order to evaluate the power of the table rule, the performance of the algo-
rithm has been measured in real and artificial data experiments using the most
significative combinations of the pruning rules.

In the artificial data set up, the prototypes where obtained from a 5 and
10-dimensional uniform distribution in the unit hypercube.

A first experiment was performed using increasing size prototypes sets from
1, 000 prototypes to 8, 000 in steps of 1, 000 for 5 and 10 dimensional data.
Each experiment measures the average distance computations of 16, 000 searches
(1, 000 searches over 16 different prototypes sets). The samples were obtained
from the same distribution.

Figures 2 and 3 show the results for some combinations of the pruning rules
where “f”, “s”, “g” and “t” stand for the “Fukunaga”, “sibling”, “generalized” and
“table” pruning rules respectively. Standard deviation of measures is also included
(though with value almost negligible).

As it can be observed, the table pruning rule, when applied alone, can achieve
∼ 50% distance computations reduction, although additional reduction (up to
∼ 70%) can be achieved when combined with “f”, “fs” or “g” pruning rules.
In these three cases the differences are not noticeable. Obviously, as the time
complexity of the generalized pruning rule is not constant, the combinations
with “f” or “fs” are more appealing.

To show the performance of the algorithm with real data, some tests were
carried out on a spelling task. A database of 38, 000 words of a Spanish dictionary
was used.

The input test of the speller was simulated distorting the words by means
of random insertion, deletion and substitution operations over the words in the
original dictionary. The edit distance was used to compare the words. In these
experiments, the values of the weighting operations costs of the edit distance (in-
sertion, deletion and substitution) were fixed to 1. This makes the edit distance
a mathematical distance which makes the table rule applicable. Please note that



A Tabular Pruning Rule in Tree-Based Fast NNS Algorithms 311

 0

 50

 100

 150

 200

 250

 1000  2000  3000  4000  5000  6000  7000  8000

nu
m

. d
is

ta
nc

es

prototypes

Uniform distribution, dimension 5

f
fs
g
t

ft
fst
gt

Fig. 2. Pruning rules combinations in a uniform distribution 5-dimensional space

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1000  2000  3000  4000  5000  6000  7000  8000

nu
m

. d
is

ta
nc

es

prototypes

Uniform distribution, dimension 10

f
fs
g
t
ft

fst
gt

Fig. 3. Pruning rules combinations in a uniform distribution 10-dimensional space

some fast NN search techniques (i.e. kd-tree) could not be applied here as the
data could hardly be represented in a vector space.

Dictionaries of increasing size (from 1, 000 to 8, 000) were obtained extracting
randomly words of the whole dictionary. The test points were 1, 000 distorted
words obtained from randomly selected dictionary words. To obtain reliable



312 J. Oncina et al.

 0

 500

 1000

 1500

 2000

 2500

 1000  2000  3000  4000  5000  6000  7000  8000

nu
m

. d
is

ta
nc

es

prototypes

f
fs
g
t

gt
fst
ft

Fig. 4. Pruning rules combined in a spelling task

results the experiments were repeated 16 times. The averages and the standard
deviation are showed on the plots.

The experiment performed in Figures 2 and 3 for artificial data (average num-
ber of distance computations using increasing size prototype sets) were repeated
in the spelling task. Results are shown in Figure 4.

The experiments show a reduction in the number of distance computations
(around 40%) for the table rule when combined with "f", "fs" or "g" pruning
rules.

On the contrary to the artificial data case, the table rule alone does not per-
form better than the generalized rule. Nevertheless, this is not problematic as
combining the table rule with the two constant time pruning rules – namely
the Fukunaga and/or the Sibling rule – outperforms the generalized rule perfor-
mances.

6 Conclusions and Further Works

To summarize, a new pruning rule has been defined that can been applied in tree-
based search algorithms. To apply the rule, a distance table should be computed
and stored in preprocess time. This table rule stores the distances between each
prototype in the training set and every node of the tree; its space complexity is
therefore quadratic in the size of the training set.

As the experiments suggest, this rule save the computation of 70% of distances
in the case of 10-dimensional data and 40% in the case of strings with training
set around 8, 000 points when compared with the generalized rule.



A Tabular Pruning Rule in Tree-Based Fast NNS Algorithms 313

In future works, a more exhaustive study of the rule will be performed. In
particular, the idea is to study on the one hand which is the better combination
of rules (with the minor cost), and on the other hand, what is the condition and
order where each rule can be applied.

Other problem that should be explored is how to reduce the space complexity
of the table rule.

Acknowledgments

The authors thank the Spanish CICyT for partial support of this work through
projects DPI2006-15542-C04-01, TIN2006-14932-C02, GV06/166, the IST Pro-
gramme of the European Community, under the PASCAL Network of Excellence,
IST–2002-506778.

References

1. Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of the 21st

VLDB Conference, pp. 574–584 (1995)
2. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in metric

spaces. ACM Computing Surveys 33(3), 273–321 (2001)
3. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Tech-

niques. IEEE Computer Society Press, Los Alamitos (1991)
4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chich-

ester (2000)
5. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches

in logarithmic expected time. ACM Transactions on Mathematical Software 3,
209–226 (1977)

6. Fukunaga, K., Narendra, P.M.: A branch and bound algorithm for computing k-
nearest neighbors. IEEE Transactions on Computers, IEC 24, 750–753 (1975)

7. Gómez-Ballester, E., Micó, L., Oncina, J.: Some improvements in tree based nearest
neighbour search algorithms. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP
2003. LNCS, vol. 2905, pp. 456–463. Springer, Heidelberg (2003)

8. Gómez-Ballester, E., Micó, L., Oncina, J.: Some approaches to improve tree-based
nearest neighbour search algorithms. Pattern Recognition 39(2), 171–179 (2006)

9. McNames, J.: A fast nearest neighbor algorithm based on a principal axis tree.
IEEE Transactions on Pattern Analysis and Machine Intelligence 23(9), 964–976
(2001)

10. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, pp. 311–321 (1993)


	Introduction
	 The Basic Algorithm
	A Review of Pruning Rules
	The Table Rule (TR)
	 Experiments
	Conclusions and Further Works

