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Abstract. Evolutionary methods have been largely used in algorithmic
music composition due to their ability to explore an immense space of
possibilities. The main problem of genetic related composition algorithms
has always been the implementation of the selection process. In this work,
a pattern recognition-based system helped by a number of music analysis
rules is designed for that task. The fitness value provided by this kind
of supervisor (the music “critic”) models the affect for a certain music
genre after a training phase. The early stages of this work have been
encouraging since they have responded to the a priori expectations and
more work has to be carried out in the future to explore the creative
capabilities of the proposed system.

1 Introduction

There are three main types of algorithmic composition approaches; those that
follow prespecified rules to generate new melodies, those that learn a set of
patterns from a collection of melodies, and the systems that use evolution to
produce output more perfectly matched to some aesthetic criteria [1].

Compositions from rule-based systems are unlikely to be surprising, and con-
nectionist music composition systems like neural networks can come up with new
compositions, but they will not be particularly novel in an interesting way [1].
Genetic algorithms have a valuable property: they have the capability to explore
an immense space of possibilities and, through the mutation operator, they are
able to model something hardly computable like “inspiration” (something very
vague that can be viewed as “finding something of artistic value by chance”).

Evolutionary methods have been largely used in algorithmic composition.
Genetic algorithms are a technique first proposed by Holland [2], and it is based
upon the evolution by natural selection proposed by Darwin. Its main constituent
parts are a representation for chromosomes (the candidate solutions), an initial
population of chromosomes, a set of operators to generate new candidates, an
evaluation function and a selection method. Some genetic algorithms applied to
automated composition have been discussed by Wiggings in [3].

Anyway, the results of automatic composition are subjective. There is not a
definitive evaluation system; even the impressions of some persons listening to



the same music can be different. This is why the one of the main problems of
genetic related composition algorithms has always been the implementation of
the selection process (the music “critic”) .

The aid of human skills for that permits to model the musician’s taste and
even web-based human assessment of the individuals have been described in the
literature [4–6], but this appealing scenario is not practical in the long term, when
hundreds or thousands of melodies have to be evaluated and rated. When human
critics are used, these evolutionary systems can produce pleasing and sometimes
surprising music, but usually after many tiresome generations of feedback [7].

Some works [3] use music-theoretical knowledge as fitness function, like Mori-
oni et al [8], who use a fitness criteria that takes into account melodic fitness,
harmonic fitness and voice range fitness. Other previous works try to induce
musical structure from a corpus to get new melodies [9]. An extension of this
procedure was done by Spector and Alpern [10], who applied a hybrid rule-based
and neural network critic trained with a corpus of well-known works, and Baluja
et al. [11] who also used a similar combination of neural and genetic techniques.
Neural techniques have been also used by Machado et al .[12] to identify the
author of a given piece and using the results for creating critics.

If we want a connectionist algorithm to learn about the goodness of a given
melody, a corpus must be tagged (scored) before. This is usually done by a
human, so a subjective factor is introduced. In the present work, a combination
of genre classifiers help to assess how probable is that a given generated melody
will belong to a certain genre. In order to train the classifiers, each melody is
tagged with its corresponding genre, which is an easier and less subjective task
than rating their artistic value.

The fitness value provided by pattern recognition-based supervisor models
the affect for a certain music genre after a training phase and it is also helped
by musicology rules. This way, a style-guided composition scheme is achieved in
which “style” can mean music genre, a given author, or even particular tastes,
depending on the training examples1. Thus, the same overall scheme can be used
to generate very different melodies just changing the training data.

The individuals are melodies represented using a tree structure, and mutation
and crossover techniques are defined on this data structure.

2 Methodology

The proposed composition system is a hybrid structure composed basically of
a sequence generator implemented by a genetic algorithm and an automatic
supervisor in charge of providing the fitness function, implemented through a
pattern recognition-based system that is also assisted by a number of basic music
analysis rules. The overall scheme of the setup is displayed in fig. 1.

1 Music style is a vague concept that can be interpreted in a number of ways, all of
them subjective. Some authors consider the music style as the set of musics that
provide a given emotion (aggressive, calm, romantic, etc.) while others focus on
music genre as the set of authors or pieces sharing some common characteristics.
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Fig. 1. Overall scheme of the system architecture.

The individuals are melodies of fixed duration. We define melody as a mono-
phonic sequence of notes. The length of a music piece is usually expressed in
measures. The measure is the basic unity of music structure and it can be de-
fined as a group of beats, caused by a regular recurrence of accented beats. We
will work in the context of the 4/4 meter, in which a measure lasts 4 beats. For
the structural reasons described below it is interesting to establish the duration
as a power of two, so we have considered 16 measures (16× 4 = 64 beats). Each
individual will be represented as a melody tree [13].

The first generation of melodies will be provided by a sequence generator,
based on stochastic methods and probabilities inferred from real musical data.
Then, the melodies will evolve applying the genetic operators to the trees, with
some constraints related to maintain both the melody length and their viability.

A feature extractor will analyze the melodies (the trees) in order to com-
pute suitable descriptors that will be the input of the evaluation system. The
descriptors are statistical features based both on the global distribution of notes,
silences, intervals, etc. (shallow statistical descriptors) [14], and on the frequen-
cies of appearance of note subsequences (a sort of n-grams) [15].

Once the different individuals have been analyzed, the feature vectors are
input into the evaluation system in order to compute their fitness. This fitness is
composed of three parts. Two of them are related to the melody “style” and the
other evaluates the correctness of the music structure. After fitness computation,
the best individuals get into the next generation step, as usual.

2.1 Melody representation structure

The genotype of each melody is defined as a tree. Tree structures have been
proposed [13, 16] as an alternative to string representations for melodies.

A melody has two main dimensions: time and pitch. Basically, the first is de-
termined by note onset times and durations, and the second by the fundamental
frequencies of the notes. Usually (see [17] for example), strings have been used



in order to code a monophonic sequence of notes. For representing a melody as
a string, symbols from a pitch description alphabet, Σp, and from a duration
alphabet, Σd, are combined in s ∈ Σ∗, s = σ1σ2...σ|s|.

Different kinds of properties can be used for the symbols to represent the
sequence of pitches and durations in a melody. They can be either absolute, if
the property depends only on the represented note (like absolute pitch: C, C#,
D, ... or duration figure, like whole, half, quarter, etc.) or relative, if it is defined
in terms of relations to other notes (like pitch intervals or duration ratios).

In string representations, note durations are coded with explicit symbols, so
the use of different codings can lead to very different results. The main advantage
of using trees is that they are able to implicitly represent this dimension, making
use of the proportional nature of the different duration figures, in the sense that
note durations are multiples of basic time units, mainly in a binary (sometimes
ternary) structure: a whole note lasts twice a half note, whose length is the
double of a quarter note, etc. (see Fig. 2). This way, trees are less sensitive to
the used codes, since there are less degrees of freedom for coding.
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Fig. 2. Duration hierarchy for different note figures. From top to bottom: whole (4
beats), half (2 beats), quarter (1 beat), and eighth (1/2 beat) notes.

Each measure is initially represented by a subtree. Each note or rest will be
a leaf node. The left to right ordering of the leaves keeps the timing of the notes
in the melody. Each leaf level determines the duration of the note it represents,
as displayed in Fig. 2: the root (level 1) represents the duration of the whole
measure (a whole note), both nodes at level 2 represent the duration of a half
note. In general, nodes at level i represent a 1/2i−1 of a measure.

The leaf nodes contain a label value coding any pitch representation symbol,
σi ∈ Σp. For our purposes, relative codes are preferable because this way, the
same melodic line can be represented invariant to transpositions (displacements
in pitch of the note sequence). The problem is that relative codings are danger-
ous when using for composition, because they can lead the melody out of the
useful range of pitches. A representation relative to the tonic note has been used
instead. This provides the advantages of relative codings without their problems.
Once given the tonality, the whole melody is pitched.

An example of this scheme is presented in Fig. 3 for a melody in the tonality
of C major. In the resulting tree, the left child of the root has been splitted into
two subtrees to reach the level 3, that corresponds to the first note (a quarter



note, duration of a 1/22 of the measure, pitch ‘a’ that is 1 semitone below the
tonic). In order to represent the durations (both are 1/8 of the measure) of the
rest and note G, a new subtree is needed for the right child in level 3, providing
two new leaves for representing the rest (‘-’ is the code for rests) and the note
(‘G’, 7 semitones over the tonic). The half note (C, is the tonic) onsets at the
third beat of the measure, so it is represented in level 2, according to its duration.

a rest G C

0

+7-

0

G-

-1 a

Fig. 3. Simple example of tree construction using intervals for the pitches in the leaves.
The central tree displays the interval values relative to the tonic and the right one, the
actual character representation of those values. If a ‘C3’ is given as tonic, an absolute
reference is obtained for the melody.

One note can last more than its usual duration (when it is tied to others or
dotted) or can be syncopated (it does not begin in its natural position, according
to its duration and the music meter). In those cases, more than one leaf is needed
for representing it. Only the first part of the note is coded by its pitch while the
other parts of the note are represented by leaves labeled as ‘continuation’.

The internal representation of the tree in the chromosome is a parenthesized
character string corresponding to its pre-order representation. In order to avoid
two characters representing intervals (for the ‘+’ and ‘−’ signs), the interval
values have been mapped into ASCII printable characters. If the interval is
positive, uppercase letters were used (A for 1 semitone, B for 2, etc.), while
negative intervals were mapped into the corresponding lowercases. Since only 26
letters are available, only 24 semitone intervals have been considered (2 octaves),
keeping the characters “y” and “z” (upper and lowercase) for coding intervals
larger than 2 and 3 octaves, respectively. If the interval is zero, a “0” is utilized.
Silences are coded by “-” and continuations by “!”.

This way, the tree in Fig. 3 will be represented by the chromosome ((a((-G)))0)
Note that this tree represents a single measure, while the whole melody is com-
posed of 16 measures. For it, the adjacent measures are grouped together in pairs
in the immediate upper level of the tree, and then adjacent pairs are grouped
again, an so on until reaching the root of the tree, where the 16 measures are
grouped. See Fig. 4 for an illustration of this structure.

Thus, two different kinds of internal nodes appear in the melody tree:

Measure nodes: Those in the upper 5 levels (being level 1 the root) of the tree,
representing one or more measures.

Note nodes: Those in levels lower or equal than 6. The duration of the music
fragment represented by them is always shorter than a measure.



16M

8M

4M

4 measures

4M

4 measures

8M

4M

4 measures

4M

4 measures

Fig. 4. Structure of a tree coding the 16 measures of a whole melody.

The root node represents 16 measures. The nodes in the second level represent
8 measures each, those in the third level, 4 measures each. Two measures is the
duration represented by the nodes in the fourth level and the individual measures
are represented by the nodes in the fifth level. The rest of levels represent the
internal structure of each measure.

2.2 Genetic operators applied

The usual genetic parameters have been utilized (mutation, crossover, popu-
lation size, number of generations, etc.), but some of them are specific of our
representation scheme, as explained next.

Melody population initialization. The initial population of melodies is gen-
erated using a simple sequence generation method. Since we are interested in
style-oriented composition, we have used an algorithm that generates sequences
in which the different intervals are conditioned by the probabilities of having
them according to their appearance frequencies in a training set, composed of
real melodies from a given style.

From the melodies in the training set, the probability of an interval σi is

calculated as P (σi) = N(σi)P
j N(σj)

. Where N(.) is the number of times that an

interval appears in the set.

Evolution. For the evolution of the population, an adaptive approach has been
utilized. The evolution is divided into four parts. In the first one, the individuals
are randomly selected for crossover, with a probability Pc of being selected. In the
second part, a roulette weighted with the fitness function for each individual is
utilized. The same scheme is used again for the third part, but using a non linear
distribution of the weights in order to give more chances to the best individuals.
In the last part, only the best fitted individuals are selected for crossover.

Crossover function Two classes of crossover can happen depending on the
tree node selected for interchange the genetic material:



Nodes at or above level 5: whole measures are interchanged. This forces the
other individual to select a node at the same level in order to interchange
the same amount of measures, thus maintaining their melody length.

Nodes at or below level 6: part of a measure is interchanged. In this case,
the interchange can take place at different levels, thus changing the relative
length of the notes, but always inside a measure (except if the first node is a
continuation event, that extends the duration of the last note or rest of the
previous measure; always a rest if it is the first node in the new individual).

Mutation Mutation is applied both to leaf and internal nodes with a probabi-
lity Pm. This value is adjusted at each generation inversely proportional to the
variance of the fitness function for the population. This way, diversity is ensured.
Three kinds of equally probable mutations are utilized:

1. Interval: the label of a leaf node is changed randomly, without using any
information of the current label. It can be changed by any other label from
the pitch alphabet, Σp ∪ {-, !}.

2. Duration increment: the selected leaf node is moved one level upwards,
deleting its uncle node and his possible offspring. Thus, its duration is dou-
bled taking the place of the next notes.

3. Duration reduction: A leaf node is converted into an internal node with
two offsprings, each of its half duration. The left one will take the father’s
label and the right one will be random.

2.3 Melody description models

One of the goals of this work is to study the ability of pattern classifiers to
classify algorithmically generated music into a given style. This scheme has been
proved to be useful for real music of the most relevant composers in classical and
jazz music, using models of melody statistical descriptors [14, 15]. Those schemes
are applied here. For that, the evolving melodies have to be described using the
statistical features that will be the input to those recognition systems.

The first model is the shallow description scheme [14]. A number of statistical
descriptors are computed related to melodic, harmonic and rhythmic properties
of a melody like, for example, average note pitch, average note durations, pitch
interval range, etc. A total of 28 descriptors are available. See [14] for details.

These descriptors create a cloud of points in R28 representing the different
melodies in the training set for a given style. Under the hypothesis that new
melodies of that style should be close to those already existing, the distance from
the point representing the evolving melody to the cloud is given as a measure
of style for it. The selected approach to compute that distance is to select the k
nearest neighbors to the test melody using the GNAT (Geometric Near-neighbor
Access Tree) algorithm [18], returning the distance d to the centroid of those k
points.

The other approach to style modelling is that of n-words events [15]. The for-
mer approach is based under a hypothesis that is very weak in terms of the huge



number of different melodies that can provide similar statistics with different
note combinations. We could state that proximity to the style cloud provides a
necessary condition but not a sufficient condition for a melody to look style-like.

The n-word based models are based on text categorization methods. The
technique encodes note sequences as character strings, therefore converting a
melody in a text to be categorized. Such a sequence of n consecutive notes is
called a n-word. This way, much restrictive constraints are imposed on adjacent
notes. All possible n-words are extracted from a melody, except those containing
a silence lasting four or more beats. This method generates n-words by encod-
ing pitch intervals and relative duration information. For each n-note window,
intervals and duration ratios are obtained, respectively, by the equations:

Ii = Pitchi+1 − Pitchi (i = 1, . . . , n− 1) (1)

Ri =
Onseti+2 −Onseti+1

Onseti+1 −Onseti
(i = 1, . . . , n− 1) (2)

and each n-word is defined as a string of symbols:

[ I1 R1 . . . In−2 Rn−2 In−1 Rn−1 ]

where the intervals and duration ratios have been mapped into alphanumeric
characters (see [15] for details). In order to compute Rn−1, the duration of the
last note in the sequence substitutes for Onseti+2 −Onseti+1 in Eq. 2.

The distance to the style will be given by the class-conditional probability
of a melody, given by the probability distribution of n-words for each genre, as
learned from a training set. Two different distributions were utilized: a Multivari-
ate Bernoulli model, which reflects how likely the words appear in a melody for a
given style, and a Multinomial model, which estimates the frequency of presence
of the words for the style. For those n-words not appearing in the training set a
discount model [19] is applied in order to not return a zero probability.

These measures of style are complemented by a melodic analysis of the indi-
vidual, as explained below.

2.4 Fitness function

The fitness will be a combination of stylistic aesthetics and melodic correctness,
expressed in mathematical form as a linear combination of those factors:

F = wsS + wnN + wmM

where, S is the style measure using the distance d to the cloud in the shallow
descriptor space, normalized through S = 1

d+1 . N is the second stylistic evalua-
tion, as the probability of the melody to belong to the distribution established
by the style training set, using the n-words scheme. N is a probability so it is
normalized by definition. Finally, M is the result of the melodic analysis of the
melody, defined in [0,1] as explained below. The weights are selected holding
ws + wn + wm = 1. This way, F ∈ [0, 1]. The weights wi are free parameters of



the system so the influence of the three aspects can be tuned in order to test
and modify its performance.

For computingM , a number of features that are described below are analyzed
and converted into numerical rates. M is computed as the average of them:

M =
NT + CS + RP + JE + MP + RT + JR

7
.

All those features are normalized, so M is normalized too. The features are:

– (NT) The relevant notes of the melody not in the chord should be tensions2.
A note will be relevant if it holds any of the following conditions:
1. It is a note of the chord3.
2. It is a long note (longer than one beat).
3. It is a short note followed by a long rest or jump4.
4. It is a short note in a strong beat that is followed by a note in a weak

beat that is the descending second5.
This feature is computed as NT = Ntn/Nn, where Ntn is the number of
relevant notes that are tensions and are not in the chord, and Nn is the
number of relevant notes that are not in the chord.

– (CS) Conclusive sense: This aspect of the melody is rated according to the
last note of the melody, this way:

CS =





1 if it ends with the tonic or root note.
0.3 if it ends with a fifth of the key.
0 otherwise

– (RP) The best range of pitches is of a tenth interval (16 semitones).

RP =





1 if 16 = RS
1/|16−RS| otherwise
0 if RS > 32

where RS is the interval range for the melody in semitones.
– (JE) Ratio of scales6 ending with jump, JE = E

S , where S is the total number
of scales, and E those ending with a jump.

– (MP) Melodic profile. The more abrupt the worse. It will be measured as

the ratio of jumps to the total number of intervals: MP = 1− Nj
Ni

, where Nj
is the number of jumps and Ni the total number of intervals in the melody.

2 A note is a tension if it is not in the chord, and is one tone above or below any
note of the triad chord, without making a tritone neither with the third nor with
the seventh of the chord.

3 The chord will be considered as the triad (root note, third, and fifth), plus the
seventh note of a given tonality. For example: {C,E,G,B[} for C major.

4 Defined as an interval larger that a sixth (> ±9 semitones).
5 In a 4/4 metrics context, the first and third beats are the strong ones.
6 Defined as sequences of 4 or more different and adjacent diatonic notes. All of them

have to be in the same direction (ascendent or descendent).



– (RT) Ratio of tensions solved into notes of the chord: RT =
Tf
Nt

, where Tf
is the number of tensions followed by a note of the chord and Nt the total
number of notes.

– (JR) Ratio of jump returns. Jumps that are followed by an interval in the
opposite direction are better rated. It is computed as JR = Jr

Jt
, where Jr

is the number of jump returns and Jt if the total number of jumps in the
melody.

2.5 Convergence

The fitness function F is normalized. For achieving a value F = 1 is needed that
all the partial functions, S = N = M = 1. For a value M = 1 it is necessary
that the melody fits all the criteria imposed above. This is difficult, but not
impossible. For S = 1 the distance to the centroid of the k nearest neighbors in
the training set must be 0 (or ε for floating point operations). Considering the
high dimensionality of the representation space this is highly improbable. But
N = 1 is even harder, because (after a re-normalization strategy) it needs that
all sequences of n notes in the individual appear in the training set for that style.
If multinomial distributions are utilized, then all the sequences of n notes have
to appear with the same frequencies than those in the training set.

For all these reasons it is expected that the fitness values F reach in practice
a low value, as it is observed in Fig. 5. Due to the unpredictable value that F
will reach for each experiment, a convergence criterion based in the number of
generations, Ng, has been utilized.
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Fig. 5. Convergence for two experiments with (left) 2000 and (right) 5000 generations.

Note in Fig. 5 the usual behavior of genetic algorithms, where in the first
generations the evolution is very rapid, but it becomes slower as the number of
generations advances.

2.6 Experiments and results

Extensive tests have been carried out exploring the performance of the system
under different parameter values. For style training we have used two corpora:
65 MIDI files of classical pieces and 85 of jazz standards, respectively. The total



length was around 15,000 bars (more than 10 hours of music). Classical works
were taken from Mozart, Bach, Schubert, Chopin, Grieg, Vivaldi, Schumann,
Brahms, Beethoven, Dvorak, Haendel, Paganini, Lehar, and Wagner. Jazz sam-
ples were tunes from a variety of well known jazz authors including Charlie
Parker, Duke Ellington, Bill Evans, Miles Davis, Jobim, Monk, Jobim, etc.

There are lots of parameters to be tuned in such a system, but most of them
have very little influence on its performance. Here is a list of those who have
shown really influent:

– Style-conditioned probability table for the initial population.
– Number of neighbors k utilized for style distance calculation.
– Number of generations until stop evolution, Ng.
– Number of individuals of the population, Ni.
– Recombination probability, Pc.
– Mutation probability, Pm.
– Weights ws, wn, and wm controlling the relative importance of shallow, n-

words, and melodic fitness.
– Statistical distribution for the n-words: binomial (BN) or multinomial (MN).
– n for the length of n-words.

For each time the system has been run, the best individual has been taken
and it has been rated (from 0 to 10) from a group of musicians in order to
analyse the performance as a function of the different parameters. For example,
MN distributions have performed better than BN. Other usual values among
the best rated melodies were Ng = 2500, Ni ∈ [30, 40], Pc = 0.9, Pm = 0.3, and
n ∈ {2, 3}. But there is not a combination of them that overcomes the rest. The
order of time for a Ng = 2500, Ni = 100 evolution was around 120 minutes on
a Pentium Centrino at 1.8GHz, 1GB RAM.

A number of samples, with the values taken for the free parameters has been
set at the URL: http://grfia.dlsi.ua.es/cmWeb/demos/

3 Conclusions and future work

This work has presented the design of a hybrid cooperative system for evolu-
tionary music composition. The fitness part of the system is implemented as a
pattern recognition system that, based on training data, is able to guide the
genetic algorithm in its composition work.

The early stages of testing the system have been encouraging since the per-
formance has responded to the a priori expectations. More work has to be carried
out in the future to explore the creative capabilities of the proposed system.

The use of a higher level structure on the sequence should improve the musi-
cality of the results. Thus, structures like A-A-B-A are often used in jazz or blues.
This way, for a 16 measure sequence, the system should compose 4 measures for
A and for B, and then they will be fitted into the structure.

The use of other styles is being studied and corpora are being compiled. Also,
the use of particular authors or personal tastes is being planned for testing the
system capabilities.
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