
Edit distance for ordered vector sets. A case of
study

Juan Ramón Rico-Juan and José M. Iñesta?

Departamento de Lenguajes y Sistemas Informáticos
Universidad de Alicante, E-03071 Alicante, Spain,

{juanra, inesta}@dlsi.ua.es

Topics: Dominant Points, Pattern Recognition, Structural Pattern Recogni-
tion

Abstract. Digital contours in a binary image can be described as an
ordered vector set. In this paper an extension of the string edit distance is
de�ned for its computation between a pair of ordered sets of vectors. This
way, the di�erences between shapes can be computed in terms of editing
costs. In order to achieve e�cency a dominant point detection algorithm
should be applied, removing redundant data before coding shapes into
vectors. This edit distance can be used in nearest neighbour classi�cation
tasks. The advantages of this method applied to isolated handwritten
character classi�cation are shown, compared to similar methods based
on string or tree representations of the binary image.

1 Introduction

The description of an object contour in a binary image as a string [1] using
Freeman codes [2] or using a tree representation structure [3,1] is widely used
in pattern recognition. For using these structures in a recognition task, the edit
distance is often used as a measure of the di�erences between two instances.
Both, string edit distances [4] and tree edit distances [5] are used, depending on
the data structures utilised for representing the problem data. In this paper, in
order to obtain a representation of the object contour from a binary image, an
ordered vector set is extracted, and an edit distance measure is de�ned between
pairs of instances of this representation. This measure is an extension of the
string edit distance, adding two new rules and changing vectors by symbols.

Freeman chain codes keep very �ne details of the shapes since they code
the relations between every pair of adjacent pixels of the contours. To avoid
computation time and in order to remove irrelevant details, a dominant point
detection algorithm is needed. The goal is to reduce the features that represent a
binary image in order to remove redundant data to compute the distance faster,
keeping the �nal classi�cation time low and good error rates.
? Work supported by the Spanish CICYT under project TIC2003-08496-CO4 and
Generalitat Valenciana I+D+i under project GV06/166

The remainder of this paper consists of four sections. In section 2, two dif-
ferent representations of the same binary image are extracted. In section 3, a
new distance based in ordered vector set is de�ned. In section 4, the results of
experiments in a classi�cation task, applying string and ordered vector set edit
distances are presented. Finally in section 5, the conclusions and future word are
presented.

2 Feature extraction from a binary image
The goal of the ordered vector set is to describe the contour of an object using
the least possible number of elements. The classical representation of a contour
in a binary image links the contour pixels with their neighbors using 0 to 7 (see
Fig. 1) codes which represent a discrete number of 2D directions. This way, a
string that represents the contour is obtained (Fig. 2 top-right).

0
1

2

3

4
5

6

7

Fig. 1. Freeman 2D code

This kind of feature extraction assumes that all linked pixels are of equal
importance. If we select the most representative points of the contour and link
all these points, a compact representation of 2D �gures is obtained, with less
features than using Freeman codes.

The idea is to select a set of dominant points in a contour [6,7], link those
points following the contour of the �gure using 2D vectors, and then use these
ordered vector set to represent the image (Fig. 2 bottom-right).

In a particular application of handwritten character recognition, it is rec-
ommended to apply some �lter operations to original image before extracting
and coding the contours [8] including an opening �lter [9] and a thinning algo-
rithm [10] in order to remove noise and redundant information.

3 Ordered vector set edit distance
The string edit distance de�nition [4] is based on three edit operations: insertion,
deletion, and substitution. Let Σ the alphabet, A,B ∈ Σ∗ two �nite strings of
characters, and Λ is a null character. A 〈i〉 is the ith character of the string A;
A 〈i : j〉 is the substring form the ith to jth characters of A, both inclusive.

..................................

...........................XXXXX..

..........XX..........XXXXXXXXXXX.

.........XXXXX...XXXXXXXXXXXXXXXX.

.........XXXXXXXXXXXXXXXXXXXXXXXX.

.........XXXXXXXXXXXXXXXXXXXXXXXX.

.........XXXXXXXXXXXXXXXXXX.....X.

.........XXXXXXXXXXXX.............

.........XXXXXXXX.................

........XXXXXXX...................

........XXXXXX....................

........XXXXXX....................

........XXXXX.....................

........XXXXX.....................

........XXXXX.....................

........XXXX......................

.......XXXXX......................

.......XXXXX......................

.......XXXXX...............XX.....

.......XXXXX.........XXXXXXXXX....

......XXXXXX.....XXXXXXXXXXXXX....

......XXXXXX...XXXXXXXXXXXXXXX....

......XXXXXX..XXXXXXXXXXXXXXXX....

......XXXXXX..XXXXXXXXXXXXX.......

......XXXXX...XXXXXXXXXX..........

.....XXXXXX.....XXXXX.............

.....XXXXXX.......................

....XXXXXX........................

....XXXXXX........................

...XXXXXXX........................

...XXXXXX.........................

...XXXXXX.........................

...XXXXXX.........................

...XXXXXX.........................

...XXXXX..........................

..XXXXXX..........................

..XXXXXX..........................

.XXXXXX...........................

.XXXXX............................

..XXXX............................

..................................

Original
binary Image

..................................

...........................XXXXX..

..........XX..........XXXXXXXXXXX.

.........XXXXX...XXXXXXXXXXXXXXXX.

.........XXXXXXXXXXXXXXXXXXXXXXXX.

.........XXXXXXXXXXXXXXXXXXXXXXXX.

.........XXXXXXXXXXXXXXXXXX.....X.

.........XXXXXXXXXXXX.............

.........XXXXXXXX.................

........XXXXXXXX..................

........XXXXXXX...................

........XXXXXX....................

........XXXXX.....................

........XXXXX.....................

........XXXXX.....................

........XXXX......................

.......XXXXX......................

.......XXXXX......................

.......XXXXX...............XX.....

.......XXXXX.........XXXXXXXXX....

......XXXXXXX....XXXXXXXXXXXXX....

......XXXXXXXX.XXXXXXXXXXXXXXX....

......XXXXXXXXXXXXXXXXXXXXXXXX....

......XXXXXXXXXXXXXXXXXXXXX.......

......XXXXXXX.XXXXXXXXXX..........

.....XXXXXXX....XXXXX.............

.....XXXXXX.......................

....XXXXXX........................

....XXXXXX........................

...XXXXXXX........................

...XXXXXX.........................

...XXXXXX.........................

...XXXXXX.........................

...XXXXXX.........................

...XXXXX..........................

..XXXXXX..........................

..XXXXXX..........................

.XXXXXX...........................

.XXXXX............................

..XXXX............................

..................................

Open filter

....................................

...........................XXXXXX...

..........XXX.........XXXXX......X..

.........X...XX..XXXXX............X.

.........X.....XX.................X.

.........X........................X.

.........X........................X.

.........X..................XXXX..X.

.........X............XXXXXX....XX..

........X.........XXXX..............

........X........X..................

........X.......X...................

........X......X....................

........X.....X.....................

........X.....X.....................

........X.....X.....................

.......X.....X......................

.......X.....X......................

.......X.....X.............XXX......

.......X.....X.......XXXXXX...X.....

......X......X...XXXX..........X....

......X.......XXX..............X....

......X........................X....

......X........................X....

......X.....................XXX.....

.....X...................XXX........

.....X.......XXX......XXX...........

....X.......X...XXXXXX..............

....X......X........................

...X.......X........................

...X.......X........................

...X......X.........................

...X......X.........................

...X......X.........................

...X......X.........................

..X......X..........................

..X......X..........................

.X.......X..........................

.X......X...........................

.X.....X............................

.X.....X............................

..XXXXX.............................

....................................

............................

..........................X.

.....................XXXXX..

................XXXXX.......

..........XXXXXX............

.........X..................

........X...................

........X...................

........X...................

.......X....................

.......X....................

.......X....................

.......X....................

.......X....................

.......X....................

.......X....................

......X.....................

......X.....................

......X.....................

......X.............XXXXX...

......XXXXXXX...XXXX........

.....X.......XXX............

.....X......................

.....X......................

.....X......................

....X.......................

....X.......................

...X........................

...X........................

..X.........................

..X.........................

..X.........................

..X.........................

..X.........................

.X..........................

.X..........................

............................

 |V| angle
11.401754 -2.875341
 5.000000 3.141593
 2.828427 -2.356194
10.198039 -1.768192
 4.123106 -1.325818
 6.082763 -0.165149
 7.280110 0.278300
 4.000000 0.000000
 9.219544 -2.922924
 3.162278 2.819842
 7.071068 -2.999696
14.560220 -1.849096
29.832868 1.333948
 2.828427 0.785398
16.278821 0.185348

F="44445676665666665
66655554454444322122
21222221223344456656
65665666667665544544
45445545666670001010
00001010100001000100
00001000001223232122
221222212222233"

Thinnnig
algorithm

Linked
dominant

points

Ordered
vector

set

Contour

Coded
chain

Start
pixel

Start
pixel

-35

-30

-25

-20

-15

-10

-5

 0

 5

-25 -20 -15 -10 -5 0

Start
pixel

Fig. 2. General scheme. From the binary image, morphological �lters are applied to
correct gaps and spurious points. Thus, contour and skeleton are obtained. From the
�rst, the chain code is obtained and from the second, the ordered vector set is extracted
using a dominant point selection algorithm.

An edit operation is a pair (a, b) ∈ (Σ ∪ {Λ})2 : (a, b) 6= (Λ,Λ). So, the basic
edit operations are substitution a → b, insertion Λ → b and deletion a → Λ. If a
generic cost function is associated to each operation γs (a → b), the cost of the
sequence of edit operations that transforms a �nite string A in B is de�ned as

ds (A,B) =

min





γs (Λ → B 〈1〉) + ds (A,B 〈2 : |B|〉) |B| ≥ 1
γs (A 〈1〉 → Λ) + ds (A 〈2 : |A|〉 , B) |A| ≥ 1

γs (A 〈1〉 → B 〈1〉) + ds (A 〈2 : |A|〉 , B 〈2 : |B|〉) |A| ≥ 1 ∧ |B| ≥ 1
0 |A| = 0 ∧ |B| = 0

The similar idea of an ordered string is extended to an ordered vector set.
Let V, W ∈ (R×[0, 2π])∗ a �nite set of vectors and Λ is a null vector. V 〈i〉 is
the vector ith in the set V , VN 〈i〉 is the norm and Vα 〈i〉 is the angle of the
ith vector; V 〈i : j〉 is the subset from ith to jth component vectors of V , both
included.

Now, an edit operation is a pair (v, w) ∈ (R×[0, 2π]) , (v, w) 6= (Λ,Λ) :
(v, w∗) ∪ (v∗, w). So, the basic edit operations are substitution (1 to 1) v → w,
substitution (1 to N) called fragmentation v → w+, substitution (N to 1) called
consolidation v+ → w, insertion Λ → w and deletion v → Λ. Here, we have
considered the case that one vector could be replaced by N , or vice versa.

When using dominant points, it is usual that a small change in the contour
generates a new dominant point, so when comparing two prototypes 1 vector
in the �rst prototype can be similar to N continuous vectors from the second
prototype.

The cost of sequence of edit operations that transforms a �nite ordered vector
set V into W , if we establish a cost function γv (v∗, w∗), is de�ned as

dv (V, W) =

min





γv (Λ → W 〈1〉) + dv (V,W 〈2 : |W |〉) |W | ≥ 1
γv (V 〈1〉 → Λ) + dv (V 〈2 : |V |〉 ,W) |V | ≥ 1

γv (V 〈1〉 → W 〈1〉) + dv (V 〈2 : |A|〉 ,W 〈2 : |B|〉) |V | ≥ 1 ∧ |W | ≥ 1
γv (V 〈1〉 → W 〈1 : j〉) + dv (V 〈2 : |V |〉 , B 〈j + 1 : |W |〉)
j∈[2,|W |] |W | > 2

γv (V 〈1 : i〉 → W 〈1〉) + dv (V 〈j + 1 : |V |〉 , B 〈2 : |W |〉)
i∈[2,|V |] |V | > 2

0 |V | = 0 ∧ |W | = 0

In a similar way to the e�cient (dynamic programming technique) algorithm
proposed in [4] for computing the string edit distance, it can be extended to
compute the ordered vector set edit distance in the following way:

1. Function vectorEditDistance(V ,W)
2. D[0, 0] := 0;
3. for i := 1 to |V | do D[i, 0] := D[i− 1, 0] + γv (V 〈i〉 → Λ);
4. for j := 1 to |W | do D[0, j] := D[0, j − 1] + γv (Λ → W 〈j〉);
5. for i := 1 to |V | do

6. for j := 1 to |W | do
7. m1 := D[i− 1, j − 1] + γv (V 〈i〉 → W 〈j〉);
8. m2 := D[i− 1, j] + γv (V 〈i〉 → Λ);
9. m3 := D[i, j − 1] + γv (Λ → W 〈j〉);
10. m := ∞;
11. for k := 1 to |V | do
12. if (i− k) ≥ 0 then
13. m := min {m, D[i− k, j − 1] + γv (V 〈i− k : i〉 → W 〈j〉)};
14. endfor
15. for k := 1 to |W | do
16. if (j − k) ≥ 0 then
17. m := min {m, D[i− 1, j − k] + γv (V 〈i〉 → W 〈j − k : j〉)};
18. endfor
19. D[i, j] := min(m,m1, m2, m3);
20. endfor
21. endfor
22. return D[i, j]

The complexity of the string edit distance algorithm is proportional to the
length of both strings, O(|A| |B|). In the case of the vectorEditDistance, it has
three nested loops and the complexity is O(|V | |W |max {|V | |W |}O(γv)), but if
we consider that a vector can be replaced by a �xed constant number of vectors
and the function γv de�ned bellow, the complexity is reduced to O(|V | |W |).
Thus, the cost is similar to that of the string edit distance.

To compute the di�erence between one vector and a set of N vectors, used
in vectorEditDistance, the following function is utilised:

1. Function γv (V 〈k〉 → W 〈i : j〉)
2. float auxN := 0, aunAng := 0, r := 0, rSubs := 0, rLeft := 0
3. auxN := VN 〈k〉 //Norm single vector
4. auxAng := Vα 〈k〉 //Angle single vector
5. for l := i to j do
6. if auxN ≥ 0 then //Left norm single vector
7. rSubs := rSubs + auxN ∗ closest(auxAng, Wα 〈l〉)
8. auxAng := Wα 〈l〉
9. endif
10. auxN := auxN −WN 〈l〉
11. endfor
12. if auxN ≥ 0 then //Left norm single vector
13. rLeft := auxN ∗ kInsertion
14. else //Norms W vectors > V

15. rLeft := −auxN ∗ kDeletion
16. endif
17. return rSubs + rLeft

where closest(angle1, angle2) returns the smallest angle between both parame-
ters, resulting a value in [0, π]. The kInsertion = kDeletion=π/2 is the maximum
possible di�erence between two angles.

The functions γv (V 〈i.j〉 → W 〈k〉) and γv (V 〈i〉 → W 〈j〉) are similar. In
the �rst case, the parameters change the order and in the second case, both
parameters are unitary vectors.

The insertion and deletion functions are de�ned as γv (Λ → W 〈j〉) = |W 〈j〉|∗
kInsertion and γv (V 〈i〉 → Λ) = |V 〈j〉| ∗ kDeletion.

4 Experiments
Three algorithms have been compared based on di�erent contour descriptions:

1. Classical Freeman chain code extracted from the object contour in the binary
image. Any point reduction method is applied.

2. The ordered vector set extracted from the dominant points computed by the
algorithm described in [7], that will be referred as non collinear dominant
points (NCDP).

3. The new structure based in the ordered vector set extracted from dominant
points described in [6]. In this article, 1− curvature and k− curvature algo-
rithms are de�ned in order to select dominant points using these measures.
The authors showed that the obtained dominant points were similar for both
curvature measures, so we utilised the faster one: 1− curvature.

In the preliminary trials tested, the algorithm 1 − curvature obtained lower
error rates than NCDP. Thus, the k parameter in the vectorEditDistance func-
tion was tuned when applied to 1− curvature. The k parameter is the maximum
number of continuous vectors that was set to k = 1.

A classi�cation task using the NIST SPECIAL DATABASE 3 of the Na-
tional Institute of Standards and Technology was performed using the di�er-
ent contour descriptions enumerated above to represent the characters. Only
the 26 uppercase handwritten characters were used. The increasing-size training
samples for the experiments were built by taking 500 writers and selecting the
samples randomly. The nearest neighbour (NN) technique was used for perform
classi�cation.

Figure 3 shows the comparison between the error rate in the vector classi�ca-
tion task evaluated for di�erent sizes, k (vectorEditDistance). This experiment
shows that the error rate decreases linearly when the k grows to a limit. If
k grows the number of computations increases as well the classi�cation time.
In this case, we found the lowest error rate with the lowest k, so the optimal
parameter value was k = 3.

The �gure 4 shows the classi�cation error rate and the time used in the
classi�cation of 50 examples per class as a function of di�erent training set.

In all cases the use of Freeman chain codes generates a lower error rate (less
than 9%) in recognition than using ordered vector sets, although the classi�cation
time is much higher. Thus, the ordered vector set description based on dominant

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5 6 7

A
ve

ra
ge

 e
rr

or
 r

at
e(

%
)

Number of vectors can be replaced in edit distance function

Vector set (1-curvature)

(a)

 100

 1000

 10000

 0 1 2 3 4 5 6 7

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n
tim

e(
se

c.
)

Number of vectors can be replaced in edit distance function

Vector set (1-curvature)

(b)

Fig. 3. Results for NN classi�cation of characters obtained with ordered vector set
(1− curvature), di�erent training set (200 examples per class) and test set (50 samples
per class and 26 character classes) as a function of di�erent number of vectors that can
be replaced in a substitution operation in the vector edit distance: (a) average error
rate ± standard deviation; (b) average classi�cation time.

points 1−curvature [6] is a good trade-o� choice. It obtains also a low error rate
(less than 11%) and it is 10 times faster than using the Freeman chain codes.

5 Conclusions and future work
The computation of the edit distance between ordered vector sets that represent
the contour of an object in a binary image (based on dominant point computation
using 1-curvature) is one order of magnitude faster than using Freeman chain
codes, and it has just a slightly higher error rate when using it for recognition.
The edit distance de�ned in this paper to compare ordered vector sets has similar
complexity than that of string edit distance. Since the size of the ordered vector
set is signi�catively lower than that of strings for representing the same object,
the time needed for computing the distance needed for classi�cation is much
lower.

As it can be seen in the results section the error rate using ordered vector set
based on dominant points is similar to that of using the Freeman chain code.

As future work we planned to use some special labels for each vector to de-
scribe the curved shape of the original image in order to obtain a better descrip-
tion of the binary image contour and decrease the error rate in this classi�cation
task. Another possible line of future work is to apply algorithms such as [11] in
order to optimise the cost functions for the ordered vector set edit distance.

References
1. Rico-Juan, J.R., Micó, L.: Comparison of AESA and LAESA search algorithms

using string and tree edit distances. Pattern Recognition Letters 24(9) (2003)

 5

 10

 15

 20

 25

 30

 50 100 150 200

A
ve

ra
ge

 e
rr

or
 r

at
e(

%
)

Number of examples per class in training set

Contour string
Vector set (NCDP)

Vector set (1-curvature)

(a)

 100

 1000

 10000

 50 100 150 200

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n
tim

e(
se

c.
)

Number of examples per class in training set

Contour string
Vector set (NCDP)

Vector set (1-curvature)

(b)

Fig. 4. Results for NN classi�cation of characters obtained with di�erent contour rep-
resentations as a function of di�erent training example sizes: (a) average error rate ±
standard deviation; (b) average classi�cation time.

1427�1436
2. Freeman, H.: On the encoding of arbitrary geometric con�gurations. IRE Trans-

actions on Electronic Computer 10 (1961) 260�268
3. Rico-Juan, J.R., Micó, L.: Some results about the use of tree/string edit distances

in a nearest neighbour classi�cation task. In Goos, G., Hartmanis, J., van Leeuwen,
J., eds.: Pattern Recognition and Image Analysis. Number 2652 in Lecture Notes
in Computer Science, Puerto Andratx, Mallorca, Spain, Springer (2003) 821�828

4. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21
(1974) 168�173

5. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing 18 (1989) 1245�1262

6. Teh, C.H., Chin, R.T.: On the detection of dominant points on digital curves.
IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989) 859�872

7. Iñesta, J.M., Buendía, M., Sarti, M.A.: Reliable polygonal approximations of im-
aged read objects though dominant point detection. Pattern Recognition 31 (1998)
685�697

8. Rico-Juan, J.R., Calera-Rubio, J.: Evaluation of handwritten character recognizers
using tree-edit-distance and fast nearest neighbour search. In Iñesta, J.M., Micó, L.,
eds.: Pattern Recognition in Information Systems, Alicante (Spain), ICEIS PRESS
(2002) 326�335

9. Serra, J.: Image Analysis and mathematical morphology. Academic Press (1982)
10. Carrasco, R.C., Forcada, M.L.: A note on the Nagendraprasad-Wang-Gupta thin-

ning algorithm. Pattern Recognition Letters 16 (1995) 539�541
11. Ristad, E., Yianilos, P.: Learning string-edit distance. IEEE Transactions on

Pattern Analysis and Machine Intelligence 20 (1998) 522�532

