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ABSTRACT
Most of the western tonal music is based on the concept of
tonality or key. It is often desirable to know the tonality
of a song stored in a symbolic format (digital scores), both
for content based management and musicological studies
to name just two applications. The majority of the freely
available symbolic music is coded in MIDI format. But,
unfortunately many MIDI sequences do not contain the
proper key meta-event that should be manually inserted at
the beginning of the song. In this work, a polyphonic sym-
bolic music representation that uses a tree model for tonal-
ity guessing is proposed. It has been compared to other
previous methods available obtaining better success rates
and lower performance times.

KEY WORDS
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1 Introduction

In music theory, the tonality or key is defined as the qual-
ity by which all the pitches of a composition are heard in
relation to a central tone called the keynote or tonic.

The majority of works that model the tonality of a
song stored in a symbolic1format (digital scores) use lin-
ear data structures to represent the sequences of notes [7],
[6]. There are other alternatives such as thespiral array
presented in [1], and under a different approach, a tree rep-
resentation of monophonic music was introduced in [3] to
compare the similarity of musical fragments, obtaining bet-
ter results than those using linear string representations. In
this paper we extend the proposed tree model to represent
polyphonic melodies, and use it to find the key of a melodic
segment.

The paper is organized as follows: first the mono-
phonic tree representation of music is reviewed, introduc-
ing the extension to polyphonic music. After that, how
trees are preprocessed is explained before describing the
algorithm to calculate the key of the song. We expose the
experiments we have performed and give the obtained re-
sults. Finally, some conclusions and planned future works
are drawn.

1In opposition to digital recorded audio.

2 Tree representation for music sequences

A melody has two main dimensions: time (duration) and
pitch. In linear representations, both pitches and note du-
rations are coded by explicit symbols, but trees are able
to implicitly represent time in their structure, making use
of the fact that note durations are multiples of basic time
units, mainly in a binary (sometimes ternary) subdivision.
This way, trees are less sensitive to the codes used to rep-
resent melodies, since only pitch codes are needed to be
established and thus there are less degrees of freedom for
coding.

In this section we review shortly the tree construc-
tion method that was introduced in [3] for representing a
monophonic segment of music, defining the terms needed
to build the model.

2.1 Tree construction for each measure

Duration in western music notation is designed according
to a logarithmic scale: awhole note lasts double than a
half note, that is two times longer than aquarter note, etc.
(see Fig. 1). The time dimension of music is divided into
‘beats’, and consecutive ‘beats’ into bars (measures).
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Figure 1. Duration hierarchy for different note figures.
From top to bottom: whole (4 beats), half (2 beats), quarter
(1 beat), and eighth (1/2 beat) notes.

In our tree model, each melody measure is repre-
sented by a tree,τ . Each note or rest will be a leaf node.
The left to right ordering of the leaves keeps the time or-
der of the notes in the melody. The level of each leaf in
the tree determines the duration of the note it represents, as
displayed in figure 1: the root (level 1) represents the dura-
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tion of the whole measure (awhole note), each of the two
nodes at level 2 represents the duration of ahalf note. In
general, nodes at leveli represent the duration of a1/2 i−1

of a measure.
During the tree construction, internal nodes are cre-

ated when needed to reach the appropriate leaf level. Ini-
tially, only the leaf nodes will contain a label value. Once
the tree is built, a bottom-up propagation of these labels is
performed to fully label all the nodes. The rules for this
propagation will be described in section 2.3.

Labels are codes representing any information related
to pitch. In this work labels are the pitch of the note without
octave information, also namedfolded pitch, defined by the
MIDI note number modulo 12, ranging from 0 to 11. Then,
for example, either C3 or C4 are considered as C and will
be represented as a 0, any C# or Db as a 1, and any B as
a 11, etc. Rests are coded with a special symbol ‘s’ (for
‘silence’).

An example of this scheme is presented in Fig. 2. In
the tree, the left child of the root has been split into two
subtrees to reach level 3, that corresponds to the first note
duration (a quarter note lasts a1/22 of the measure, pitch B
coded as11). In order to represent the durations of the rest
and note G (7) (both are 1/8 of the measure), a new subtree
is needed for the right child in level 3, providing two new
leaves for representing the rest (s) and the note G (7). The
half note C (0) onsets at the third beat of the measure, and
it is represented in level 2, according to its duration.

It can be seen in figure 2 how the order in time of
the notes in the score is preserved when traversing the tree
from left to right. Note how onset times and durations are
implicitly represented in the tree, compared to the explicit
encoding of time needed when using strings. This repre-
sentation is invariant against changes in duration scaling
or different meter representations of the same melody (e.g.
2/2, 4/4, or 8/8).

For a deeper explanation of how to deal with dotted
notes, ternary subdivisions, grace notes, and more elabo-
rated examples see the full method in [4].
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Figure 2. Simple example of tree construction

2.2 Complete melody representation

The method described above is able to represent a single
measure as a tree,τ . A measure is the basic unit of rhythm
in music, but a melody is composed of a series ofM mea-
sures. In and previous work[3] it was proposed to build a
tree with a root for the whole melody, being each measure
sub-tree a child of that root. This can be considered as a
forest of sub-trees, but linked to a common root node that
represents the whole. Figure 3 displays an example of a
simple melody, composed of three measures and how it is
represented by a tree composed of three sub-trees, one per
measure, rooted to the same parent node. Level 0 will be
assigned to this common root.
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Figure 3. An example of the tree representation of a com-
plete melody. The root of this tree links all the measure
sub-trees.

The proposed method to represent polyphonic music
is straight forward. All notes are placed in the same tree
following the rules of the monophonic music representa-
tion. This way two notes with the same onset time will be
put in the same node. If a node already exists when a new
note is put in the tree, the pitch of this note is added to the
node label. If the label in the node is a rest, it is replaced
by the note pitch. Figure 4 (center) contains a melody with
a chord as an example. Before label propagation (section
2.3), only leaves are labelled.

2.3 Bottom-up propagation of labels

Once the tree is constructed, a label propagation step is per-
formed. The propagation rules are different from those pro-
posed in [3], where the target was similarity search. Now
the presence of all the notes is emphasized since every note
and chord are tips to find the key of the song segment.

The propagation process is performed recursively in a
post-order traversal of the tree. Labels are propagated using
set algebra. LetL(τ) be the label of the root node of the
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Figure 4. An example of a polyphonic melody (top), its tree
representation (center), and the labels for the propagation
(bottom)

subtreeτ expressed as a set of folded pitches. When the
label of the node is a rest, the label set is empty:L(τ) =
∅. Then, given a subtreeτ with childrenc i, the upwards
propagation of labels is performed asL(τ) =

⋃
i L(ci).

In figure 4 (bottom) we can see how the eighth note E
(folded pitch 4) that shared a parent with the rest is pro-
moted (∅ ∪ {4} = {4}), and merging this eighth note
({4}) and the chord next ({7,11,2}) results a parent label:
{4} ∪ {7, 11, 2} = {4, 7, 11, 2}. The same procedure is
applied for the root of the measure.

3 Key finding algorithm

Each local segment of a melody provides a clue of the pos-
sible keys in which it is written in, but the combination of
many local clues can reduce the possible keys leaving at the
end the correct tonality with a high standard of accuracy.

For example, given a local segment of music with two
notes C and G (first bar in the score in figure 5) and want
to know which one of the 24 possible keys (12 major, 12
minor) describes this segment the best in terms of tonality.
The answer is not a unique key: either Cmajor, G major,
A minor, etc. are compatible with those notes. The second
measure can be Cmajor, A minor, but not Gmajor. The
third measure is probably written in Cmajor, and with less
probability in Aminor because although the notes are com-

patible with those for Aminor, the present chords are the
subdominant, dominant and tonic of Cmajor. If we com-
bine the possible keys of the three bars, the most probable
answer is Cmajor.
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Figure 5. An example of key detection

In our tree model, each node is a local segment that
contains one or more folded pitches. In general, several
possible keys can be attributed to it. If the possible keys
are combined from the leaves to the root following a post-
order traversal, finally the root will give us hopefully the
most likely key. The tree in figure 5 illustrates this point.
The pitch in leftmost node ({0}) is compatible with Cma-
jor, A minor, Db major, etc., because that pitch belongs to
the diatonic scale of those keys. Its sibling node, labelled
with {7} can be also Cmajor, A minor, but not Db major
because in this tonality, the natural G does not belong to
the diatonic scale. If the possible keys for both nodes are
combined in their parent node, only Cmajor and Aminor
remain valid. Thus, combining node tonality guesses in a
post-order way reduces the possibilities.

Computing the candidate keys for each node is per-
formed in two steps:

• First arate is obtained for each of the 24 keys possi-
ble applying an algorithm based on rules that will be
detailed in section 3.2.

• Then, the keys are ordered decreasingly according to
the obtainedrate resulting in arank, which has the
most probable keys first. If two keys have the same
rate, they are given the same rank position. The reason
for using rank positions instead of rate values is that
they make the system more robust against wrong local
guesses.

After a rank of keys for each individual node has been
created, a post-order combination of these ranks is per-
formed in order to have the final rank at the root of the
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tree. In this rank the key that appears in the first position is
considered the central key of the whole melody. These pro-
cedure is summarized in a recursive way in the algorithm 1.

Algorithm 1 Key finding on treeτ
if arity(τ ) = 0 then

calculate key ranks forτ root node (see sect. 3.2)
else

for all child(τ) ∈ children(τ) do
Algorithm1(child(τ))

end for
rank(τ )=combine( ranks(τ , child) ) (see sect. 3.3)

end if

3.1 Scales, degrees and chords

3.1.1 Scales

Definition 3.1 specifies the utilized scales represented as a
vector indexed by the interval from the tonic note of the
key (from 0 to 11), beingM the major scale, andm the
minor scale. The valuesM [i] �= 0 are the degrees in the
scale represented in roman numbers. Zero values represent
those notes that do not belong to the scale. In the minor
scale,m, the natural, harmonic, and melodic scales have
been merged.

Definition 3.1 Diatonic scales

Major scale M = [I, 0, II, 0, III, IV, 0, V, 0, VI, 0, VII]

Minor scale m = [I, 0, II, III, 0, IV, 0, V, VI, VI, VII, VII]

3.1.2 Degrees

Let a tonality be represented by its key note, represented as
a folded pitch, and its mode,major or minor, defined by the
corresponding scaleS. Then, given a folded pitchp and a
keyk, thedegree of p is defined as:

deg(p, k, S) = S[(((p + 12) − k) mod 12)] (1)

A given scale,S, can be eitherS = M orS = m. Given
the set of|P | folded pitchesP = {p1, p2, ..., p|P |} in a
node, the number of pitches inP that belong to the scaleS
of keyk is defined as:

scaleNotes(P, k, S) =
|P |∑

i=1

(deg(pi, k, S) �= 0) (2)

Given thedegree for a note in the key,tonal and
modal degrees are considered:

Tonal degreesTD = {I, IV, V }
Modal degrees MD = {III }

Tonal degrees are important to define the keynote,
while modal degrees help to distinguish betweenmajor and
minor modes.

Given the above definitions, thetonalDegNotes and
modalDegNotes functions are defined as:

tonalDegNotes(P, k, S) =
|P |∑

i=1

(deg(pi, k, S) ∈ TD)

(3)

modalDegNotes(P, k, S) =
|P |∑

i=1

(deg(pi, k, S) ∈ MD)

(4)

3.1.3 Chords

Only the diatonic scale triad chords have been considered.
The set of notes contained in the label of a node may con-
stitute either a full triad or a partial one. Given the setP,
chordNotes(k, c, P ) is defined as the number of elements
in P that belong to a chordc given the keyk.

In figure 4 (bottom), the leftmost node in the tree rep-
resents the first chord in the score. For it,P = {0, 4, 7},
for k = C major andc =I (the tonic triad of CMajor).
ThereforechordNotes(k, c, P )=3 because it contains the
three pitches of this chord. Ifk = A minor is consid-
ered andc =I again (A minor tonic triad composed by the
pitchesA, C andE), the result would be 2 because only the
pitchesC andE are found in the chord.

3.2 Node key rating

Given the previous definitions, the rules in table 1 compute
the rate value for each key according to the set of pitches
in a node. These rates (see table 2), have been established
empirically after an exhaustive search over the parameter
space.

This scheme scores triad chords that clearly belong to
a key the highest. Then it gives lower values both to two
note chords and single notes that belong to the key.

Constant Rate
FULL TRIADS I V 16

FULL TRIADS 15
2NOTESTRIADS I V 9

2NOTESTRIADS 8
NOTESCHORDSI V 10

2NOTESCHORDS 9
TONAL DEGREES 4
MODAL DEGREES 3

SCALE NOTES 2

Table 2. Rates values for constants in table 1
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Rule |P | Condition Rate

1 3 chordNotes(c) = 3 where c ∈ {I, V} FULL TRIADS I V
2 3 chordNotes(c) = 3 where c ∈ {II, III, IV, VI, VII} FULL TRIADS
3 3 chordNotes(c) = 2 where c ∈ {I, V} 2NOTES TRIADS I V
4 3 chordNotes(c) = 2 where c ∈ {II, III, IV, VI, VII} 2NOTES TRIADS
5 2 chordNotes(c) = 2 where c ∈ {I, V} 2NOTES CHORDS I V
6 2 chordNotes(c) = 2 where c ∈ {II, III, IV, VI, VII} 2NOTES CHORDS
7 |P | − SN > 2 tonalDegNotes(P, k, S) > 0 TONAL DEGREES
8 |P | − SN > 2 modalDegNotes(P, k, S) > 0 MODAL DEGREES
9 |P | − SN > 2 scaleNotes(P, k, S) > 0 SCALE NOTES

Table 1. Keyk rating, for the node pitchesP . The rules are checked and applied if the conditions are met in precedence order
from rules 1 to 9, firing only the first matched rule.SN stands forscaleNotes(P, k, S)

3.3 Subtree key bottom-up combination

Once the ranks for the children nodes and the parent node
have been calculated, they must be combined to replace all
the key ranks in the parent node. This operation is per-
formed in two steps. First the rate values for the parent
node are recomputed, and then a new sort of the tonalities
is performed.

Given a parent tree nodeτ , with children
c1, c2, ..., carity(τ), the new rate for each keyk is
calculated as:

rate(τ, k) = rank(τ, k) +
arity(τ)∑

i=1

rank(ci, k) (5)

The function rank  (τ, k) returns the position of tonality k
in the rank for the root node ofτ .

4 Experiments and results

In order to evaluate our algorithm, 212 MIDI files of clas-
sical pieces have been collected, including Cimarosa, Al-
binoni, Bach, Beethoven, Chopin, Dvorak among others2.
To avoid key changes as far as possible, the first 8 measures
for each song have been extracted.

We have compared our method with two freely avail-
able systems. One is thekey program ofMelisma3. This
system implements three different algorithms that can be
selected:CBMS ([5]), a Bayesian key-finding algorithm
[6] and theKrumhansl-Schmuckler (KS) algorithm ([2]).
The other is the programkey of Humdrum (HUM) 4, which
also implements theKrumhansl-Schmuckler method with
the parameters that the authors established in [?].

Thekey program ofMelisma returns a list of keys or-
dered in time. The central key is calculated as the most
repeated one.

2The database is available for research purposes under request to the
authors

3Version 2003 implemented in http://www.link.cs.cmu.edu/music-
analysis/

4http://dactyl.som.ohio-state.edu/Humdrum/

Relation to correct key Points
Same 1

Perfect fifth 0.5
Relative major/minor 0.3
Parallel major/minor 0.2

Table 3. MIREX 2005 Key finding scorings

To compare the results, we have followed the eval-
uation process proposed for theAudio and Symbolic Key
Finding topic of the 2nd Annual Music Information Re-
trieval Evaluation eXchange (MIREX 2005)5, as detailed
in table 3.

The success rate of an algorithm is obtained as the
achieved points averaged for all the songs in the corpus.

The Melisma system is built in ANSI C, our system
uses the Java 1.4.2-38 virtual machine, that is even slower
than the native code generated from C. All the experiments
have been run in a Apple PowerBook, using a PowerPC G4
1.33 Ghz processor with 512 Mb of RAM memory.

The plot in figure 6 shows the results of average scor-
ings and total times for our algorithm (Trees), each one of
the three methods implemented inMelisma, and the algo-
rithm in Humdrum. The best rates are those giving a value
closer to 1. TheTrees algorithm performs the best and re-
quires around eight times less computation time than the
others.

5 Conclusion and future work

In this work we have presented a polyphonic music tree
representation that has proved to be a simple and adequate
representation for finding the key of a song. The success
rates were slightly better than those ofMelisma andHum-
drum systems but the computing times are much smaller.

5http://www.music-ir.org/mirexwiki/index.php/MIREX2005
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Figure 6. Average points and total times

The proposed method utilize very little harmonic in-
formation, but nevertheless a good key identification has
been achieved. The system can be improved by using of a
more powerful harmonic model. Also the rates for scoring,
now empirically obtained, could be automatically learned
from a given training set, providing more flexibility and ro-
bustness to the method.

We are also working in the key change finding inside
a given song obtaining some promising results.
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