Learning an Unbiased Stochastic Edit Distance in the form of a Memoryless Finite-State Transducer

Jose Oncina1 and Marc Sebban2

1University of Alicante, Department of Software and Computing Systems
2University Jean Monnet of Saint-Etienne, EURISE
Outline

- Research context and motivations
- Related work and preliminary experiments
- Learning parameters of a conditional memoryless transducer
- Series of experiments in GI dealing with noisy data
- Perspectives
Research Context and Motivations
Research Context and Motivations

- **Original goal**: dealing with noisy data in GI to avoid
 - overfitting phenomena,
 - high structural complexity of the inferred automata.

-

Research Context and Motivations

- **Original goal:** dealing with noisy data in GI
 - overfitting phenomena,
 - high structural complexity of the inferred automata.

- **3 possible approaches consisting in:**
 1. *a priori* removing noisy and irrelevant strings/trees [Habrard et al. 2005, Fundamenta Informaticae]
Research Context and Motivations

• **Original goal**: dealing with noisy data in GI
 – overfitting phenomena,
 – high structural complexity of the inferred automata.

• **3 possible approaches consisting in:**
 1. *a priori* removing noisy and irrelevant strings/trees [Habrard et al. 2005, Fundamenta Informaticae]
 2. modifying merging rules of inference algorithms [Habrard et al. 2004, ECML’04]
Research Context and Motivations

- **Original goal**: dealing with noisy data in GI
 - overfitting phenomena,
 - high structural complexity of the inferred automata.

- **3 possible approaches consisting in**:
 1. *a priori* removing noisy and irrelevant strings/trees [Habrard et al. 2005, Fundamenta Informaticae]
 2. modifying merging rules of inference algorithms [Habrard et al. 2004, ECML’04]
 3. correcting noisy data
Research Context and Motivations

- **Original goal**: dealing with noisy data in GI
 - overfitting phenomena,
 - high structural complexity of the inferred automata.

- **3 possible approaches consisting in**:
 1. *a priori* removing noisy and irrelevant strings/trees [Habrard et al. 2005, Fundamenta Informaticae]
 2. modifying merging rules of inference algorithms [Habrard et al. 2004, ECML’04]
 3. correcting noisy data
 - by estimating the level of noise [Habrard et al. 2004, FLAIRS’05]
Research Context and Motivations

- **Original goal**: dealing with noisy data in GI
 - overfitting phenomena,
 - high structural complexity of the inferred automata.

- **3 possible approaches consisting in**:
 1. *a priori* removing noisy and irrelevant strings/trees [Habrard et al. 2005, Fundamenta Informaticae]
 2. modifying merging rules of inference algorithms [Habrard et al. 2004, ECML’04]
 3. correcting noisy data
 - by estimating the level of noise [Habrard et al. 2004, FLAIRS’05]
 - **by learning a given noise model**
Learning an Edit Noise Model

“An Edit Noise is the result of the corruption of an input string by purely random errors, called edit operation errors. [Sakakibara and Siromoney, 1992]
Learning an Edit Noise Model

“An Edit Noise is the result of the corruption of an input string by purely random errors, called edit operation errors. [Sakakibara and Siromoney, 1992]

Edit Operations \rightarrow Underlying Probability Distribution \rightarrow Stochastic Edit Distance (ED)
Learning an Edit Noise Model

“An Edit Noise is the result of the corruption of an input string by purely random errors, called edit operation errors. [Sakakibara and Siromoney, 1992]

Edit Operations → Underlying Probability Distribution
→ Stochastic Edit Distance (ED)

Learning a Stochastic ED → Learning a Probabilistic Model
Related Work and Preliminary Experiments
Related Work

- Stochastic model (memoryless transducer) for string edit distance [Ristad and Yanilos, 1996, 1998]
- Pair HMM [Durbin et al. 1998]
- Error correcting technique for smoothing PDFA [Dupont and Amengual, 2000].
Related Work

The previous approaches share the following properties:
→ use the EM algorithm
→ learn a joint distribution over the pairs \((x, y)\) of strings
→ deduce the stochastic edit distance as follows:
\[
d_s(x, y) = -\log p(x, y), \forall x \in X^*, \forall y \in Y^*
\]
Problems due to a joint distribution learning

- Statistical dependence between primitive edit operations

\[\sum_{a \in X \cup \{\lambda\}, b \in Y \cup \{\lambda\}} c(a, b) = 1, \]

- Statistical dependence on the input string distribution \(p(x) \)

\[p(x) = \sum_{y \in Y^*} p(x, y), \]

- Biased estimates of \(p(y|x) = \frac{p(x,y)}{p(x)} \), useful for applications.
Experiments with Ristad and Yanilos’s approach

<table>
<thead>
<tr>
<th>$c^*(a, b)$</th>
<th>λ</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>$c^*(a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>0.00</td>
<td>0.05</td>
<td>0.08</td>
<td>0.02</td>
<td>0.02</td>
<td>0.17</td>
</tr>
<tr>
<td>a</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>b</td>
<td>0.02</td>
<td>0.01</td>
<td>0.16</td>
<td>0.04</td>
<td>0.01</td>
<td>0.24</td>
</tr>
<tr>
<td>c</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.15</td>
<td>0.00</td>
<td>0.19</td>
</tr>
<tr>
<td>d</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.28</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Table 1: Target distribution

Figure 1: Input Distribution
Experiments with Ristad and Yanilos’s approach

We computed an average difference between the target and the learned distributions, defined as follows:

\[
d(c, c^*) = \frac{\sum_{a \in X \cup \{\lambda\}} \sum_{b \in Y \cup \{\lambda\}} |c(a, b) - c^*(a, b)|}{2}
\]
Experiments with Ristad and Yanilos’s approach

Distance between theoretical and learnt transducers

Number of Strings

- a (0.08) b (0.24) c (0.19) d (0.32) # (0.17)
- a (0.06) b (0.28) c (0.03) d (0.32) # (0.31)
- a (0.07) b (0.28) c (0.01) d (0.40) # (0.24)
- a (0.12) b (0.15) c (0.26) d (0.14) # (0.32)
- a (0.28) b (0.23) c (0.21) d (0.02) # (0.32)
Learning parameters of a conditional memoryless transducer (CMT)
Learning parameters of a CMT

Definition 1 A conditional memoryless transducer is denoted by a tuple \((X, Y, c, \gamma)\) where:

- **\(X\)** is the input alphabet,
- **\(Y\)** is the output alphabet,
- **\(c\)** is the primitive conditional probability function \(c : E \rightarrow [0, 1]\), where \(E = E_s \cup E_d \cup E_i\) is the alphabet of primitive edit operations, \(E_s = X \times Y\), is the set of substitutions, \(E_d = X \times \{\lambda\}\) is the set of deletions, \(E_i = \{\lambda\} \times Y\) is the set of insertions.
- **\(\gamma\)** is the probability of the termination symbol of a string (also noted \(c(\lambda|\lambda)\)).
Learning parameters of a CMT

The probability $p(y|x)$ can be recursively computed by means:

- of a **forward function** $\alpha : X^* \times Y^* \to \mathbb{R}^+$ as:

 $$\alpha(y|x) = [1]_{x=\lambda \land y=\lambda} + [c(b|a) \cdot \alpha(y'|x')]_{x=x'\land y=y'}$$
 $$+ [c(\lambda|a) \cdot \alpha(y|x')]_{x=x'\land y=\lambda} + [c(b|\lambda) \cdot \alpha(y'|x')]_{y=y'}. $$

where $[f(x)]_{\pi(x,\ldots)} = f(x)$ if the predicate $\pi(x,\ldots)$ holds and 0 otherwise. Then,

$$\rightarrow p(y|x) = \alpha(y|x)\gamma$$
Learning parameters of a CMT

- of a backward function $\beta : X^* \times Y^* \rightarrow \mathbb{R}^+$ as:

$$\beta(y|x) = [1]_{x=\lambda \land y=\lambda} + [c(b|a) \cdot \beta(y'|x')]_{x=ax' \land y=by'}$$

$$+ [c(\lambda|a) \cdot \beta(y|x')]_{x=ax'} + [c(b|\lambda) \cdot \beta(y'|x)]_{y=by'}.$$

Then,

$$\rightarrow p(y|x) = \beta(y|x)\gamma.$$

In both cases (forward or backward), we have to learn the costs $c(b|a) \ \forall b \in Y \cup \{\lambda\}, \ a \in Y \cup \{\lambda\}.$
Learning parameters of a CMT with the EM algorithm

EM works on the principle that the corpus likelihood can be maximized subject to some maximization constraints on the parameters. In our case:

1. $\gamma > 0$, $c(b|a)$, $c(b|\lambda)$, $c(\lambda|a) \geq 0$ $\forall a \in X, b \in Y$

2. $\sum_{b \in Y} c(b|\lambda) + \sum_{b \in Y} c(b|a) + c(\lambda|a) = 1$ $\forall a \in X$

3. $\sum_{b \in Y} c(b|\lambda) + \gamma = 1$
Learning parameters of a CMT with the EM algorithm

• The **Expectation** step:

\[
\delta(b|a) = \sum_{(xax', yby') \in S} \frac{\alpha(y|x)c(b|a)\beta(y'|x')\gamma}{p(yby'|xax')}
\]

\[
\delta(b|\lambda) = \sum_{(xx', yby') \in S} \frac{\alpha(y|x)c(b|\lambda)\beta(y'|x')\gamma}{p(yby'|xx')}
\]

\[
\delta(\lambda|a) = \sum_{(xax', yy') \in S} \frac{\alpha(y|x)c(\lambda|a)\beta(y'|x')\gamma}{p(yy'|xax')}
\]

\[
\delta(\lambda|\lambda) = \sum_{(x,y) \in S} \frac{\alpha(y|x)\gamma}{p(y|x)} = |S|.
\]
Learning parameters of a CMT with the EM algorithm

- **The Maximization step:**

 (we begin by normalizing the insertion $c(b|\lambda)$ because it appears in constraints 2 and 3).

 $$c(b|\lambda) = \frac{\delta(b|\lambda)}{N}$$

 where

 $$N = \sum_{a \in X \cup \{\lambda\}} \delta(b|a)$$

 $$\sum_{b \in Y \cup \{\lambda\}}$$
Learning parameters of a CMT with the EM algorithm

- **The Maximization step:**
 From constraint 3, we deduce then:

 \[
 \gamma = \frac{N - N(\lambda)}{N}
 \]

 where

 \[
 N(\lambda) = \sum_{b \in Y} \delta(b|\lambda)
 \]
Learning parameters of a CMT with the EM algorithm

- The **Maximization** step:

\[c(b|a) = \frac{\delta(b|a)}{N(a)} \frac{N - N(\lambda)}{N} \quad c(\lambda|a) = \frac{\delta(\lambda|a)}{N(a)} \frac{N - N(\lambda)}{N} \]

where

\[N(a) = \sum_{b \in \mathcal{Y} \cup \{\lambda\}} \delta(b|a). \]
Experiments
Experiments (I): Convergence Results

Distance between theoretical and learnt transducers vs Number of Strings

- a (0.10) b (0.17) c (0.26) d (0.20) # (0.28)
- a (0.09) b (0.29) c (0.04) d (0.27) # (0.31)
- a (0.15) b (0.18) c (0.32) d (0.15) # (0.20)
- a (0.23) b (0.32) c (0.13) d (0.05) # (0.27)
- a (0.18) b (0.23) c (0.16) d (0.15) # (0.28)
Experiments in Grammatical Inference (II)

- Learning Sample
- Noisy Input Data
- Oracle
- Noise free pairs of strings
- Stochastic Transducer

PDFA 1
- "noisy"
- Test Set with Noisy Inputs
- Correction
- Perplexity

PDFA 2
- "corrected"
- Test Set with Corrected Inputs
- Perplexity

PDFA 3
- "Oracle"
- Unnoisy Inputs
- ALERGIA

Perplexity
Experiments in Grammatical Inference (II)

\[X = Y = \{a, b, c, e, f, g\}, |LS| = 1000, |TS| = 1000 \]
Conclusions and Perspectives

- We overcame the drawback of state of the art methods by directly learning a conditional distribution over the edit operations.

- Current series of experiments on handwritten digits.

- We plan to extend this model to:
 1. non memoryless transducers (but breaking the link with the edit distance?)
 2. the learning of a stochastic edit distance over trees (PASCAL pump-priming proposal)