Reasoning by Analogical Proportion

S. Bayoudh

IRISA – Université de Rennes 1 / ENSSAT
6, rue de Kerampont, 22305 Lannion
sabri.bayoudh@irisa.fr

12 septembre 2006
1. Introduction

2. Analogy

3. Analogy on Sequences
 - Analogical Dissimilarity
 - Reasoning by Analogical Proportion
 - Application

4. Analogy on Binary and Nominal data
 - Classification Rule
 - Attributes Weighting
 - Results

5. Conclusion and Future Works
There are many kinds of Analogies:

- **Semantic Analogy**
 - cow : calf : : mare : foal
 - wings : bird : : fins : fish

- **Analogy on sequences (morphological)**
 - wolf : wolves : : leaf : leaves
 - unsafe : safely : : unfair : fairly

- **Analogy on numbers**
 - 1 : 2 : : 6 : 7
 - 4 : 2 : : 6 : 3
There are many kinds of Analogies:

- **Semantic Analogy**

 - cow : calf : : mare : foal
 - wings : bird : : fins : fish

- **Analogy on sequences** (morphological)

 - wolf : wolves : : leaf : leaves
 - unsafe : safely : : unfair : fairly

- **Analogie on numbers**

 - 1 : 2 : : 6 : 7
 - 4 : 2 : : 6 : 3
There are many kinds of Analogies:

- **Semantic Analogy**
 - cow : calf : : mare : foal
 - wings : bird : : fins : fish

- **Analogy on sequences (morphological)**
 - wolf : wolves : : leaf : leaves
 - unsafe : safely : : unfair : fairly

- **Analogie on numbers**
 - 1 : 2 : : 6 : 7
 - 4 : 2 : : 6 : 3
Introduction

Analogy

Analogy on Sequences
 - Analogical Dissimilarity
 - Reasoning by Analogical Proportion
 - Application

Analogy on Binary and Nominal data
 - Classification Rule
 - Attributes Weighting
 - Results

Conclusion and Future Works
Definition

a is to b as c is to d
Definition

\[a \text{ is to } b \text{ as } c \text{ is to } d \]
\[a : b :: c : d \]

captain : boat :: pilot : plane
Definition

a is to b as c is to d

a : b :: c : d

captain : boat :: pilot : plane

Symmetry of the relation "is to" :

c : d :: a : b

pilot : plane :: captain : boat

Means exchange :

a : c :: b : d

captain : plane :: pilot : boat
Definition

\[a \text{ is to } b \text{ as } c \text{ is to } d \]
\[a : b :: c : d \]

captain : boat :: pilot : plane

Symmetry of the relation "is to" :
\[c : d :: a : b \]

pilot : plane :: captain : boat

Means exchange :
\[a : c :: b : d \]

captain : plane :: pilot : boat
Definition

A is to B as C is to D

a : b :: c : d

Captain : boat :: pilot : plane

Symmetry of the relation "is to" :

C : d :: a : b

Pilot : plane :: captain : boat

Means exchange :

A : c :: b : d

Captain : plane :: pilot : boat

C : a :: d : b

B : d :: a : c

C : d :: a : b

D : b :: c : a

A : c :: b : d

D : c :: b : a

A : b :: c : d

B : a :: d : c
With four elements, we have 24 different analogical equations but only three non equivalent

\[a : b :: c : d \quad a : b :: d : c \quad a : d :: c : b \]

Determinism: si \(a : a :: b : x \) then \(x = b \)
1 Introduction

2 Analogy

3 Analogy on Sequences
 - Analogical Dissimilarity
 - Reasoning by Analogical Proportion
 - Application

4 Analogy on Binary and Nominal data
 - Classification Rule
 - Attributes Weighting
 - Results

5 Conclusion and Future Works
Let \sum be an alphabet. a,b,c,A,B,C the letters of the alphabet. We suppose that our alphabet is described with vectors. We introduce the new letter $-$ in the alphabet to represent the absence of a letter.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>!a</th>
<th>b</th>
<th>!b</th>
<th>c</th>
<th>!c</th>
<th>lowercase</th>
<th>capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>−</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Analogical Dissimilarity (AD) between letters

The AD is a measure that reflects how close are four objects from being in an analogical proportion.

\[
AD(x, y, z, t) = \|x - y - z + t\|
\]

- \(AD(x, y, z, t) = 0\) ⇒ Analogical proportion
- \(AD(x, y, z, t) \uparrow\) ⇒ Analogical proportion \(\downarrow\)

For example:
- \(a : a : : b : b\) ⇒ \(AD(a, a, b, b) = 0\) ⇒ Analogical Proportion
- \(a : A : : b : B\) ⇒ \(AD(a, A, b, B) = 0\) ⇒ Analogical Proportion
- \(a : b : : A : c\) ⇒ \(AD(a, b, A, c) = 6\) ⇒ far from being in Analogy
The classical graphical representation of the analogical equation

\[a : b :: c : d \]

is the parallelogram.
Analogical Dissimilarity between Sequences

Let Σ be an alphabet = {a, .., z, A, .., Z}
Let Σ* be the set of words or sequences = {U, V, ..}
Let the equation

\[U : V :: W : T \]

\[AD(U, V, W, T) = \sum_i AD(U_i, V_i, W_i, T_i) \]

<table>
<thead>
<tr>
<th>Unsafe</th>
<th>Safe</th>
<th>Fairly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsafe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DA = 24

<table>
<thead>
<tr>
<th>Unsafe</th>
<th>Safe</th>
<th>Fairly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsafe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DA = 0
Learning by Analogical Proportion

Let $E = (e_i)_{0 \leq i \leq \text{card}(E)} \subset \sum^*$ be the learning set. The learning step consists in finding the triplet $(e_i, e_j, e_k) \in E^3$ of words that forms an analogy with the element x and which has the lowest AD.

$$e_i : e_j :: e_k : x \quad i, j, k \in [1, \text{card}(E)]$$

English
Let $E = (e_i)_{0 \leq i \leq \text{card}(E)} \subset \sum^*$ be the learning set. The learning step consists in finding the triplet $(e_i, e_j, e_k) \in E^3$ of words that forms an analogy with the element x and which has the lowest AD.

$$e_i : e_j :: e_k : x \quad i, j, k \in [1, \text{card}(E)]$$
Resolution by Analogical Proportion

The Resolution by Analogical Proportion consists in creating the fourth element of the Analogy using the first three elements.

<table>
<thead>
<tr>
<th>J' Aime</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>le</th>
<th>tennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Préfères tu le tennis?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J' Aime</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>le</td>
<td>repos</td>
</tr>
</tbody>
</table>
Resolution by Analogical Proportion

The Resolution by Analogical Proportion consists in creating the fourth element of the Analogy using the first three elements.

```
J' aime - - - - - - le - tennis
Préfères tu le tennis?
J' aime - - - - - - le repos.
Préfères tu le repos?

J' aime le repos.
Préfères tu le tennis?

Français
```
Translation

Other application: how to pronounce English words (grapheme phoneme).
Translation

Other application: how to pronounce English words (grapheme phoneme).
Application

Translation

Other application: how to pronounce English words (grapheme phoneme).
1. Introduction

2. Analogy

3. Analogy on Sequences
 - Analogical Dissimilarity
 - Reasoning by Analogical Proportion
 - Application

4. Analogy on Binary and Nominal data
 - Classification Rule
 - Attributes Weighting
 - Results

5. Conclusion and Future Works

S. Bayoudh:
Reasoning by Analogical Proportion
<table>
<thead>
<tr>
<th>Animals</th>
<th>HC</th>
<th>IA</th>
<th>IM</th>
<th>DM</th>
<th>classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>calf</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Ruminant</td>
</tr>
<tr>
<td>bull</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Ruminant</td>
</tr>
<tr>
<td>kitten</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Feline</td>
</tr>
<tr>
<td>tomcat</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>?</td>
</tr>
</tbody>
</table>

- 0 est à 0 ce que 1 est à 1 (*HC*)
- 0 est à 1 ce que 0 est à 1 (*IM* et *IA*)
- 1 est à 0 ce que 1 est à 0 (*DM*)
<table>
<thead>
<tr>
<th>Animals</th>
<th>HC</th>
<th>IA</th>
<th>IM</th>
<th>DM</th>
<th>classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>calf</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Ruminant</td>
</tr>
<tr>
<td>bull</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Ruminant</td>
</tr>
<tr>
<td>kitten</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Feline</td>
</tr>
<tr>
<td>tomcat</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>?</td>
</tr>
</tbody>
</table>

- 0 est à 0 ce que 1 est à 1 (*HC*)
- 0 est à 1 ce que 0 est à 1 (*IM* et *IA*)
- 1 est à 0 ce que 1 est à 0 (*DM*)
<table>
<thead>
<tr>
<th>Animals</th>
<th>HC</th>
<th>IA</th>
<th>IM</th>
<th>DM</th>
<th>classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>calf</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Ruminant</td>
</tr>
<tr>
<td>bull</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Ruminant</td>
</tr>
<tr>
<td>kitten</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Feline</td>
</tr>
<tr>
<td>tomat</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>?</td>
</tr>
</tbody>
</table>

- 0 est à 0 ce que 1 est à 1 (*HC*)
- 0 est à 1 ce que 0 est à 1 (*IM* et *IA*)
- 1 est à 0 ce que 1 est à 0 (*DM*)
0 est à 0 ce que 1 est à 1 (HC)
0 est à 1 ce que 0 est à 1 (IM et IA)
1 est à 0 ce que 1 est à 0 (DM)

<table>
<thead>
<tr>
<th>Animals</th>
<th>HC</th>
<th>IA</th>
<th>IM</th>
<th>DM</th>
<th>classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>calf</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Ruminant</td>
</tr>
<tr>
<td>bull</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Ruminant</td>
</tr>
<tr>
<td>kitten</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Feline</td>
</tr>
<tr>
<td>tomcat</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>?</td>
</tr>
</tbody>
</table>
0 est à 0 ce que 1 est à 1 (HC)
0 est à 1 ce que 0 est à 1 (IM et IA)
1 est à 0 ce que 1 est à 0 (DM)

\(\text{calf is to bull as kitten is to tomcat} \)
Animals

<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>IA</th>
<th>IM</th>
<th>DM</th>
<th>classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>calf</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Ruminant</td>
</tr>
<tr>
<td>bull</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Ruminant</td>
</tr>
<tr>
<td>kitten</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Feline</td>
</tr>
<tr>
<td>tomcat</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>?</td>
</tr>
</tbody>
</table>

- 0 est à 0 ce que 1 est à 1 (**HC**)
- 0 est à 1 ce que 0 est à 1 (**IM** et **IA**)
- 1 est à 0 ce que 1 est à 0 (**DM**)

\[
\text{calf is to bull as kitten is to tomcat}
\]

Ruminant is to Ruminant as Feline is to ?
Analogy on Binary and Nominal data

<table>
<thead>
<tr>
<th>Animals</th>
<th>HC</th>
<th>IA</th>
<th>IM</th>
<th>DM</th>
<th>classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>calf</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Ruminant</td>
</tr>
<tr>
<td>bull</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Ruminant</td>
</tr>
<tr>
<td>kitten</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Feline</td>
</tr>
<tr>
<td>tomcat</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Feline</td>
</tr>
</tbody>
</table>

- 0 est à 0 ce que 1 est à 1 (HC)
- 0 est à 1 ce que 0 est à 1 (IM et IA)
- 1 est à 0 ce que 1 est à 0 (DM)

\[\text{calf is to bull as kitten is to tomcat} \]

\[\text{Ruminant is to Ruminant as Feline is to Feline} \]
Classification using the k least dissimilar triplets

$$S = \{(c_i, h(c_i)) \mid 1 \leq i \leq m\},$$

1. Keep those which involve solutions.
2. Computing the AD(triplet,x), triplet $\in S^3$.
3. Order triplets.
4. Deduce k' from k.
5. Keep the k' first triplets.
6. Find the winner class.

<table>
<thead>
<tr>
<th>$o_1 o_2 o_3$</th>
<th>$h(o_1) h(o_2) h(o_3)$</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a b c$</td>
<td>$\omega_0 \omega_0 \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$a b d$</td>
<td>$\omega_0 \omega_0 \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$a b e$</td>
<td>$\omega_0 \omega_0 \omega_2$</td>
<td>ω_2</td>
</tr>
<tr>
<td>$a c d$</td>
<td>$\omega_0 \omega_1 \omega_1$</td>
<td>\perp</td>
</tr>
<tr>
<td>$a c e$</td>
<td>$\omega_0 \omega_1 \omega_2$</td>
<td>\perp</td>
</tr>
<tr>
<td>$a d e$</td>
<td>$\omega_0 \omega_1 \omega_2$</td>
<td>\perp</td>
</tr>
<tr>
<td>$b a c$</td>
<td>$\omega_0 \omega_0 \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$b a d$</td>
<td>$\omega_0 \omega_0 \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$b a e$</td>
<td>$\omega_0 \omega_0 \omega_2$</td>
<td>ω_2</td>
</tr>
<tr>
<td>$b c d$</td>
<td>$\omega_0 \omega_1 \omega_1$</td>
<td>\perp</td>
</tr>
<tr>
<td>$b c e$</td>
<td>$\omega_0 \omega_1 \omega_2$</td>
<td>\perp</td>
</tr>
<tr>
<td>$b d e$</td>
<td>$\omega_0 \omega_1 \omega_2$</td>
<td>\perp</td>
</tr>
<tr>
<td>$c a b$</td>
<td>$\omega_1 \omega_0 \omega_0$</td>
<td>\perp</td>
</tr>
<tr>
<td>$c a d$</td>
<td>$\omega_1 \omega_0 \omega_1$</td>
<td>ω_0</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Classification using the k least dissimilar triplets

$$S = \{(c_i, h(c_i)) \mid 1 \leq i \leq m\}, x$$

1. Keep those which involve solutions.
2. Computing the $AD\text{ (triplet, x)}$, triplet $\in S^3$.
3. Order triplets.
4. Deduce k' from k.
5. Keep the k' first triplets.
6. Find the winner class.

<table>
<thead>
<tr>
<th>$o_1o_2o_3$</th>
<th>$h(o_1)h(o_2)h(o_3)$</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a\ b\ c$</td>
<td>$\omega_0\ \omega_0\ \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$a\ b\ d$</td>
<td>$\omega_0\ \omega_0\ \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$a\ b\ e$</td>
<td>$\omega_0\ \omega_0\ \omega_2$</td>
<td>ω_2</td>
</tr>
<tr>
<td>$b\ a\ c$</td>
<td>$\omega_0\ \omega_0\ \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$b\ a\ d$</td>
<td>$\omega_0\ \omega_0\ \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$b\ a\ e$</td>
<td>$\omega_0\ \omega_0\ \omega_2$</td>
<td>ω_2</td>
</tr>
<tr>
<td>$c\ a\ d$</td>
<td>$\omega_1\ \omega_0\ \omega_1$</td>
<td>ω_0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Classification using the k least dissimilar triplets

$S = \{(c_i, h(c_i)) \mid 1 \leq i \leq m\}, x$

1. Keep those which involve solutions.

2. Computing the AD(triplet,x), triplet $\in S^3$.

3. Order triplets.

4. Deduce k' from k.

5. Keep the k' first triplets.

6. Find the winner class.

<table>
<thead>
<tr>
<th>$o_1 o_2 o_3$</th>
<th>$h(o_1) h(o_2) h(o_3)$</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a b c$</td>
<td>$\omega_0 \omega_0 \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$a b d$</td>
<td>$\omega_0 \omega_0 \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$a b e$</td>
<td>$\omega_0 \omega_0 \omega_2$</td>
<td>ω_2</td>
</tr>
<tr>
<td>$b a c$</td>
<td>$\omega_0 \omega_0 \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$b a d$</td>
<td>$\omega_0 \omega_0 \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$b a e$</td>
<td>$\omega_0 \omega_0 \omega_2$</td>
<td>ω_2</td>
</tr>
<tr>
<td>$c a d$</td>
<td>$\omega_1 \omega_0 \omega_1$</td>
<td>ω_0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Classification using the k least dissimilar triplets

\[S = \{(c_i, h(c_i)) | 1 \leq i \leq m\}, x \]

1. Keep those which involve solutions.
2. Computing the AD(triplet, x), triplet $\in S^3$.
3. Order triplets.
4. Deduce k' from k.
5. Keep the k' first triplets.
6. Find the winner class.

<table>
<thead>
<tr>
<th>$o_1 o_2 o_3$</th>
<th>$h(o_1) h(o_2) h(o_3)$</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a b c$</td>
<td>$\omega_0 \omega_0 \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$a b d$</td>
<td>$\omega_0 \omega_0 \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$a b e$</td>
<td>$\omega_0 \omega_0 \omega_2$</td>
<td>ω_2</td>
</tr>
<tr>
<td>$b a c$</td>
<td>$\omega_0 \omega_0 \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$b a d$</td>
<td>$\omega_0 \omega_0 \omega_1$</td>
<td>ω_1</td>
</tr>
<tr>
<td>$b a e$</td>
<td>$\omega_0 \omega_0 \omega_2$</td>
<td>ω_2</td>
</tr>
<tr>
<td>$c a d$</td>
<td>$\omega_1 \omega_0 \omega_1$</td>
<td>ω_0</td>
</tr>
</tbody>
</table>

S. Bayoudh:
Reasoning by Analogical Proportion
Classification Rule

Classification using the k least dissimilar triplets

$S = \{(c_i, h(c_i)) \mid 1 \leq i \leq m\}, x$

1. Keep those which involve solutions.
2. Computing the $AD$$(\text{triplet}, x)$, triplet $\in S^3$.
3. Order triplets.
4. Deduce k' from k.
5. Keep the k' first triplets.
6. Find the winner class.

<table>
<thead>
<tr>
<th>$o_1 o_2 o_3$</th>
<th>$h(o_1) h(o_2) h(o_3)$</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a b c$</td>
<td>$\omega_0 \omega_0 \omega_1 \omega_1$</td>
<td>6</td>
</tr>
<tr>
<td>$a b d$</td>
<td>$\omega_0 \omega_0 \omega_1 \omega_1$</td>
<td>1</td>
</tr>
<tr>
<td>$a b e$</td>
<td>$\omega_0 \omega_0 \omega_2 \omega_2$</td>
<td>3</td>
</tr>
<tr>
<td>$b a c$</td>
<td>$\omega_0 \omega_0 \omega_1 \omega_1$</td>
<td>4</td>
</tr>
<tr>
<td>$b a d$</td>
<td>$\omega_0 \omega_0 \omega_1 \omega_1$</td>
<td>0</td>
</tr>
<tr>
<td>$b a e$</td>
<td>$\omega_0 \omega_0 \omega_2 \omega_2$</td>
<td>3</td>
</tr>
<tr>
<td>$c a d$</td>
<td>$\omega_1 \omega_0 \omega_1 \omega_0$</td>
<td>7</td>
</tr>
</tbody>
</table>
Classification using the \(k \) least dissimilar triplets

\[S = \{(c_i, h(c_i)) \mid 1 \leq i \leq m\}, x \]

1. Keep those which involve solutions.
2. Computing the \(AD(\text{triplet},x) \), triplet \(\in S^3 \).
3. Order triplets.
4. Deduce \(k' \) from \(k \).
5. Keep the \(k' \) first triplets.
6. Find the winner class.

Exemple

<table>
<thead>
<tr>
<th>(o_1 o_2 o_3)</th>
<th>(h(o_1) h(o_2) h(o_3))</th>
<th>(h(x))</th>
<th>(AD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b a d</td>
<td>(\omega_0) (\omega_0) (\omega_1)</td>
<td>(\omega_1)</td>
<td>0</td>
</tr>
<tr>
<td>c d e</td>
<td>(\omega_1) (\omega_1) (\omega_2)</td>
<td>(\omega_2)</td>
<td>1</td>
</tr>
<tr>
<td>a b d</td>
<td>(\omega_0) (\omega_0) (\omega_1)</td>
<td>(\omega_1)</td>
<td>1</td>
</tr>
<tr>
<td>d c e</td>
<td>(\omega_1) (\omega_1) (\omega_2)</td>
<td>(\omega_2)</td>
<td>2</td>
</tr>
<tr>
<td>d b c</td>
<td>(\omega_1) (\omega_0) (\omega_1)</td>
<td>(\omega_0)</td>
<td>2</td>
</tr>
<tr>
<td>a b e</td>
<td>(\omega_0) (\omega_0) (\omega_2)</td>
<td>(\omega_2)</td>
<td>3</td>
</tr>
<tr>
<td>b a e</td>
<td>(\omega_0) (\omega_0) (\omega_2)</td>
<td>(\omega_2)</td>
<td>3</td>
</tr>
<tr>
<td>b a c</td>
<td>(\omega_0) (\omega_0) (\omega_1)</td>
<td>(\omega_1)</td>
<td>4</td>
</tr>
</tbody>
</table>
Classification Rule

Classification using the k least dissimilar triplets

$S = \{(c_i, h(c_i)) \mid 1 \leq i \leq m\}, x$

1. Keep those which involve solutions.
2. Computing the AD(triplet,x), triplet $\in S^3$.
3. Order triplets.
4. Deduce k' from k.
5. Keep the k' first triplets.
6. Find the winner class.

Exemple

<table>
<thead>
<tr>
<th>$o_1 o_2 o_3$</th>
<th>$h(o_1)\ h(o_2)\ h(o_3)$</th>
<th>$h(x)$</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b \ a \ d$</td>
<td>$\omega_0 \ \omega_0 \ \omega_1$</td>
<td>ω_1</td>
<td>0</td>
</tr>
<tr>
<td>$c \ d \ e$</td>
<td>$\omega_1 \ \omega_1 \ \omega_2$</td>
<td>ω_2</td>
<td>1</td>
</tr>
<tr>
<td>$a \ b \ d$</td>
<td>$\omega_0 \ \omega_0 \ \omega_1$</td>
<td>ω_1</td>
<td>1</td>
</tr>
<tr>
<td>$d \ c \ e$</td>
<td>$\omega_1 \ \omega_1 \ \omega_2$</td>
<td>ω_2</td>
<td>2</td>
</tr>
<tr>
<td>$d \ b \ c$</td>
<td>$\omega_1 \ \omega_0 \ \omega_1$</td>
<td>ω_0</td>
<td>2</td>
</tr>
<tr>
<td>$a \ b \ e$</td>
<td>$\omega_0 \ \omega_0 \ \omega_2$</td>
<td>ω_2</td>
<td>3</td>
</tr>
<tr>
<td>$b \ a \ e$</td>
<td>$\omega_0 \ \omega_0 \ \omega_2$</td>
<td>ω_2</td>
<td>3</td>
</tr>
<tr>
<td>$b \ a \ c$</td>
<td>$\omega_0 \ \omega_0 \ \omega_1$</td>
<td>ω_1</td>
<td>4</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>k'</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$h(x)$</th>
<th>ω_1</th>
<th>ω_0</th>
<th>ω_1</th>
<th>ω_0</th>
<th>ω_1</th>
</tr>
</thead>
</table>

S. Bayoudh:
Reasoning by Analogical Proportion
Classification Rule

Classification using the k least dissimilar triplets

$$S = \{(c_i, h(c_i)) \mid 1 \leq i \leq m\}, x$$

1. Keep those which involve solutions.
2. Computing the $AD(\text{triplet}, x)$, triplet $\in S^3$.
3. Order triplets.
4. Deduce k' from k.
5. Keep the k' first triplets.
6. Find the winner class.

Exemple

<table>
<thead>
<tr>
<th>$o_1o_2o_3$</th>
<th>$h(o_1)h(o_2)h(o_3)$</th>
<th>$h(x)$</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b\ a\ d$</td>
<td>$\omega_0\ \omega_0\ \omega_1$</td>
<td>ω_1</td>
<td>0</td>
</tr>
<tr>
<td>$c\ d\ e$</td>
<td>$\omega_1\ \omega_1\ \omega_2$</td>
<td>ω_2</td>
<td>1</td>
</tr>
<tr>
<td>$a\ b\ d$</td>
<td>$\omega_0\ \omega_0\ \omega_1$</td>
<td>ω_1</td>
<td>1</td>
</tr>
<tr>
<td>$d\ c\ e$</td>
<td>$\omega_1\ \omega_1\ \omega_2$</td>
<td>ω_2</td>
<td>2</td>
</tr>
<tr>
<td>$d\ b\ c$</td>
<td>$\omega_1\ \omega_0\ \omega_1$</td>
<td>ω_0</td>
<td>2</td>
</tr>
<tr>
<td>$a\ b\ e$</td>
<td>$\omega_0\ \omega_0\ \omega_2$</td>
<td>ω_2</td>
<td>3</td>
</tr>
<tr>
<td>$b\ a\ e$</td>
<td>$\omega_0\ \omega_0\ \omega_2$</td>
<td>ω_2</td>
<td>3</td>
</tr>
<tr>
<td>$b\ a\ c$</td>
<td>$\omega_0\ \omega_0\ \omega_1$</td>
<td>ω_1</td>
<td>4</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>k'</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>$h(x)$</td>
<td>ω_1</td>
<td>ω_1</td>
<td>ω_1</td>
<td>$?$</td>
<td>$?$</td>
<td>ω_2</td>
</tr>
</tbody>
</table>
Fast search Algorithm : FADANA

Off line

- Preprocessing

On line

- Computation
- Elimination

\[AD(u, v, z, t) \leq AD(z, t, y, x_i) - \delta \]
\[AD(u, v, z, t) \geq AD(z, t, y, x_i) + \delta \]

- Selection

\[(z, t) = \text{Argmin}_{(u, v) \in U} \sum_{(z, t) \in C} |AD(u, v, z, t) - AD(z, t, x_i, y)|\]
Classification Rule

Fast search Algorithm : FADANA

Off line
- Preprocessing

On line
- Computation
- Elimination

\[
AD(u, v, z, t) \leq AD(z, t, y, x_i) - \delta
\]

\[
AD(u, v, z, t) \geq AD(z, t, y, x_i) + \delta
\]

Selection

\[
(z, t^*) = \operatorname{Argmin}_{(u, v) \in U} \sum_{(z, t) \in C} |AD(u, v, z, t) - AD(z, t, x_i, y)|
\]

S. Bayoudh: Reasoning by Analogical Proportion
Fast search Algorithm : FADANA

Off line

- Preprocessing

On line

- Computation
 - Elimination

\[
AD(u, v, z, t) \leq AD(z, t, y, x_i) - \delta
\]

\[
AD(u, v, z, t) \geq AD(z, t, y, x_i) + \delta
\]

- Selection

\[
(zz, tt) = \arg\min_{(u,v) \in U} \sum_{(z,t) \in C} | AD(u, v, z, t) - AD(z, t, x_i, y) |
\]
Fast search Algorithm : FADANA

Off line
- Preprocessing

On line
- Computation
- Elimination

\[AD(u, v, z, t) \leq AD(z, t, y, x_i) - \delta \]
\[AD(u, v, z, t) \geq AD(z, t, y, x_i) + \delta \]

Selection

\[
(z'z, t') = \text{Argmin}_{(u,v) \in U} \sum_{(z,t) \in C} | AD(u, v, z, t) - AD(z, t, x_i, y) |
\]
Fast search Algorithm : FADANA

Off line
- Preprocessing

On line
- Computation
- Elimination

\[
AD(u, v, z, t) \leq AD(z, t, y, x_i) - \delta
\]

\[
AD(u, v, z, t) \geq AD(z, t, y, x_i) + \delta
\]

Selection

\[
(zz, tt) = \text{Argmin}_{(u,v) \in U} \sum_{(z,t) \in C} |AD(u, v, z, t) - AD(z, t, x_i, y) |
\]

S. Bayoudh: Reasoning by Analogical Proportion
Fast search Algorithm : FADANA

Off line
- Preprocessing

On line
- Computation
- Elimination

\[\text{Selection} \]

\[\delta \]

\[AD(u, v, z, t) \leq AD(z, t, y, x_i) - \delta \]

\[AD(u, v, z, t) \geq AD(z, t, y, x_i) + \delta \]

\[(z, t) = \text{Argmin} \sum_{(u,v) \in U} \sum_{(z,t) \in C} |AD(u, v, z, t) - AD(z, t, x_i, y)| \]
Fast search Algorithm : FADANA

Off line
- Preprocessing

On line
- Computation
- Elimination

\[
AD(u, v, z, t) \leq AD(z, t, y, x_i) - \delta \\
AD(u, v, z, t) \geq AD(z, t, y, x_i) + \delta
\]

- Selection

\[
(zz, tt) = \operatorname{Argmin}_{(u, v) \in U} \sum_{(z, t) \in C} | AD(u, v, z, t) - AD(z, t, x_i, y) |
\]

S. Bayoudh:
Reasoning by Analogical Proportion
Fast search Algorithm : FADANA

Off line
- Preprocessing

On line
- Computation
- Elimination

\[AD(u, v, z, t) \leq AD(z, t, y, x_i) - \delta \]
\[AD(u, v, z, t) \geq AD(z, t, y, x_i) + \delta \]

- Selection

\[(zz, tt) = \text{Argmin}_{(u, v) \in \mathcal{U}} \sum_{(z, t) \in \mathcal{C}} | AD(u, v, z, t) - AD(z, t, x_i, y) | \]
Attributes Weighting

- Attributes.
- Departure class and arrival class.

Weighting Matrix \(W = (W_{kij})_{0 \leq k \leq d, 0 \leq i, j \leq C} \)
Attributes Weighting

- **Attributes.**
- **Departure class and arrival class.**

<table>
<thead>
<tr>
<th>$h(a)$</th>
<th>$h(b)$</th>
<th>$h(c)$</th>
<th>$h(x)$</th>
<th>resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_0</td>
<td>ω_0</td>
<td>ω_0</td>
<td>?</td>
<td>$h(x) = \omega_0$</td>
</tr>
<tr>
<td>ω_1</td>
<td>ω_0</td>
<td>ω_1</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>ω_1</td>
<td>ω_1</td>
<td>ω_0</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

Weighting Matrix $W = (W_{kij})_{0 \leq k \leq d, 0 \leq i,j \leq C}$
Attributes Weighting

- Attributes.
- Departure class and arrival class.

<table>
<thead>
<tr>
<th></th>
<th>$h(a)$</th>
<th>$h(b)$</th>
<th>$h(c)$</th>
<th>$h(x)$</th>
<th>resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_0</td>
<td>ω_0</td>
<td>ω_0</td>
<td>ω_0</td>
<td>?</td>
<td>$h(x) = \omega_0$</td>
</tr>
<tr>
<td>ω_1</td>
<td>ω_0</td>
<td>ω_1</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ω_1</td>
<td>ω_1</td>
<td>ω_0</td>
<td>?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weighting Matrix $W = (W_{kij})_{0 \leq k \leq d, 0 \leq i, j \leq C}$

<table>
<thead>
<tr>
<th>Departure Class</th>
<th>Arrived class (decision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>class ω_i</td>
<td>W_{kii}</td>
</tr>
<tr>
<td>class ω_j</td>
<td>W_{kji}</td>
</tr>
</tbody>
</table>
\(W_{kij} \) = Estimating the probability of finding an analogy on attribute \(k \)
- \(\omega_i \) and \(\omega_j \) are departure and arrival classes.

1. Count the number of occurrences.
2. Estimate the probability.
Attributes Weighting

\[W_{kij} = \text{Estimating the probability of finding an analogy on attribute } k \]

- \(\omega_i \) and \(\omega_j \) are departure and arrival classes.

1. **Count the number of occurrences.**

2. **Estimate the probability.**

\[
\begin{array}{ccc}
\ldots & \text{class } \omega_j & \ldots \\
\begin{array}{c}
\ldots \\
\ldots \\
\ldots \\
\end{array} & n_{0i} & \ldots \\
\begin{array}{c}
\ldots \\
a_k = 0 \\
a_k = 1 \\
\end{array} & n_{1i} & \ldots \\
\end{array}
\]

\[
\sum_{k=0}^{1} \sum_{i=1}^{C} n_{ki} = m
\]
Attributes Weighting

\(W_{kij} = \) Estimating the probability of finding an analogy on attribute \(k\)

- \(\omega_i\) and \(\omega_j\) are departure and arrival classes.

1. Count the number of occurrences.
2. Estimate the probability.

\[
P_k(1^{st}) = \frac{n_{0i}n_{0j}n_{0j}}{m^4}
\]

\[
\vdots
\]

\[
W_{kij} = P_k(1^{st}) + \cdots + P_k(6^{th})
\]

\[
W_{kij} = \frac{(n_{0i}^2 + n_{1i}^2)(n_{0j}^2 + n_{1j}^2) + 2 \cdot n_{0i}n_{0j}n_{1i}n_{1j}}{(6 \cdot m^4)}
\]
Attributes Weighting

\(W_{kij} \) = Estimating the probability of finding an analogy on attribute \(k \)

- \(\omega_i \) and \(\omega_j \) are departure and arrival classes.

1. Count the number of occurrences.
2. Estimate the probability.

Hence

\[
AD(a, b, c, x) = \sum_{k=1}^{d} W_{kij} AD(a_k, b_k, c_k, x_k)
\]
Results

<table>
<thead>
<tr>
<th>Methods</th>
<th>MO.1</th>
<th>MO.2</th>
<th>MO.3</th>
<th>SP.</th>
<th>B.S</th>
<th>Br.</th>
<th>H.R</th>
<th>Mu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>nb nominal attributes</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>22</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>nb binary attributes</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>22</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>nb instances train</td>
<td>124</td>
<td>169</td>
<td>122</td>
<td>80</td>
<td>187</td>
<td>35</td>
<td>66</td>
<td>81</td>
</tr>
<tr>
<td>nb instances test</td>
<td>432</td>
<td>432</td>
<td>432</td>
<td>172</td>
<td>438</td>
<td>664</td>
<td>66</td>
<td>8043</td>
</tr>
<tr>
<td>nb classes</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>WAPC ($k = 100$)</td>
<td>98%</td>
<td>100%</td>
<td>96%</td>
<td>79%</td>
<td>86%</td>
<td>96%</td>
<td>82%</td>
<td>98%</td>
</tr>
<tr>
<td>APC ($k = 100$)</td>
<td>98%</td>
<td>100%</td>
<td>96%</td>
<td>58%</td>
<td>86%</td>
<td>91%</td>
<td>74%</td>
<td>97%</td>
</tr>
<tr>
<td>Decision Table</td>
<td>100%</td>
<td>64%</td>
<td>97%</td>
<td>65%</td>
<td>67%</td>
<td>86%</td>
<td>42%</td>
<td>99%</td>
</tr>
<tr>
<td>Id3</td>
<td>78%</td>
<td>65%</td>
<td>94%</td>
<td>71%</td>
<td>54%</td>
<td>mv</td>
<td>71%</td>
<td>mv</td>
</tr>
<tr>
<td>PART</td>
<td>93%</td>
<td>78%</td>
<td>98%</td>
<td>81%</td>
<td>76%</td>
<td>88%</td>
<td>82%</td>
<td>94%</td>
</tr>
<tr>
<td>Multi layer Perceptron</td>
<td>100%</td>
<td>100%</td>
<td>94%</td>
<td>73%</td>
<td>89%</td>
<td>96%</td>
<td>77%</td>
<td>96%</td>
</tr>
<tr>
<td>LMT</td>
<td>94%</td>
<td>76%</td>
<td>97%</td>
<td>77%</td>
<td>89%</td>
<td>88%</td>
<td>83%</td>
<td>94%</td>
</tr>
<tr>
<td>IB1</td>
<td>79%</td>
<td>74%</td>
<td>83%</td>
<td>80%</td>
<td>62%</td>
<td>96%</td>
<td>56%</td>
<td>98%</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Methods</th>
<th>MO.1</th>
<th>MO.2</th>
<th>MO.3</th>
<th>SP.</th>
<th>B.S</th>
<th>Br.</th>
<th>H.R</th>
<th>Mu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>nb nominal attributes</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>22</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>nb binary attributes</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>22</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>nb instances train</td>
<td>124</td>
<td>169</td>
<td>122</td>
<td>80</td>
<td>187</td>
<td>35</td>
<td>66</td>
<td>81</td>
</tr>
<tr>
<td>nb instances test</td>
<td>432</td>
<td>432</td>
<td>432</td>
<td>172</td>
<td>438</td>
<td>664</td>
<td>66</td>
<td>8043</td>
</tr>
<tr>
<td>nb classes</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

WAPC \((k = 100)\)

APC \((k = 100)\)

Decision Table

Id3

PART

Multi layer Perceptron

LMT

IB1

S. Bayoudh:

Reasoning by Analogical Proportion
1 Introduction

2 Analogy

3 Analogy on Sequences
 - Analogical Dissimilarity
 - Reasoning by Analogical Proportion
 - Application

4 Analogy on Binary and Nominal data
 - Classification Rule
 - Attributes Weighting
 - Results

5 Conclusion and Future Works
- Importance of the weighting.
- Apply it to numerical data.
- Improve the weighting.
- Reduce the computational time.
• Importance of the weighting.
• Apply it to numerical data.
 • Improve the weighting.
• Reduce the computational time.
• Importance of the weighting.
• Apply it to numerical data.
• Improve the weighting.
• Reduce the computational time.
- Importance of the weighting.
- Apply it to numerical data.
- Improve the weighting.
- Reduce the computational time.
Thanks for your attention.