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Abstract

A new bottom-updistancemeasure for labeled trees,
which is basedon the largest commonforest of the trees
andhasthethreefoldadvantageof independenceof partic-
ular editcosts,low complexity, andcoverageof orderedand
unorderedtrees,is introducedandrelatedin thispaperwith
other distancemeasurespublishedin the literature. Algo-
rithmsfor computingthebottom-updistancein timelinear
in thenumberof nodesare givenin full detail.

Key words designand analysisof algorithms,combi-
natorialproblems,graphalgorithms,patternmatching,tree
patternmatching,treeisomorphism,subtreeisomorphism,
edit distance,metricspace,largestcommonforest

1 Intr oduction

Trees count among the most common combinatorial
structuresin computerscience,with agreatvarietyof appli-
cationareas.Theproblemof comparingandmatchingtrees
findsapplicationin areasasdiverseascompilerdesign[1],
term rewriting [22], graph transformation[17], symbolic
computation[11], information retrieval [15], image pro-
cessing[18], patternrecognition[16], signalprocessing[5],
molecularbiology [20], chemistry[24], andmany others.

Relatedto theproblemof comparingtreesis thetreepat-
ternmatchingproblem,which is analogousto theproblem
of stringpatternmatching.A stringpatternmatcheris apro-
gramthattakesasinputapatternandatext andproducesas
outputthelocationsin thetext at which thepatternappears
asa substring.In treepatternmatching,thepatternandthe
text arerootedtrees,andthepatternmatchingproblemcon-
sistsof finding all subtreesof the text that are isomorphic
to the patternor, more in general,all subtreesof the text
thatareisomorphicto a subtreeof thepattern.Sincethese

commonsubtreesbetweenthepatternandthetext indicate
the extent to which patternand text coincide,treepattern
matchingis alsousefulfor comparingtreesand,asamatter
of fact,severaldistancemeasuresfor comparingtreeshave
beenproposed[14, 19, 25, 26, 28, 30] whichessentiallydif-
fer on theunderlyingnotionof subtree.

In this paper, a new bottom-updistancemeasurebe-
tweenrooted,labeledtrees,which is basedon the largest
commonforestof the trees,is introducedandrelatedwith
other distancemeasurespublishedin the literature: edit
distance[25], top-down distance[19, 30], alignmentdis-
tance[14], andisolated-subtreedistance[26]. Thebottom-
up distance,which actually is a particular case of the
isolated-subtreedistance,is shown to coincidewith thetop-
down distanceonly for isomorphictrees,extendingthusthe
hierarchyamongtreeedit distancesdevelopedin [29].

An advantageof thebottom-updistanceis thatnopartic-
ular treeedit operationstogetherwith their costsneedto be
defined.Anotheradvantageis thelow complexity: it canbe
computedin time linear in the sizeof the trees,on rooted,
labeled,orderedtreesof unboundeddegree. A further ad-
vantageis thefactthatthebottom-updistancehasthesame
low complexity for unorderedtrees.

The following notationwill be usedin the rest of this
paper. For a rootedorderedtree

�
, let � denotethenumber

of nodesof
�

, let ��� ��� denotethenodeof
�

whoseposition
in the preordertraversalof

�
is � , with �
	���	�� , and

let par 
���� denotethepreordernumberof theparentof node
��� ��� . Let also

� � ��� denotethesubtreeof
�

rootedatnode��� ��� .
Node ��� ��� is saidto beto the left of node ��� ��� if ����� . The
rightmostnodeof

� � ��� is, then,thenodeof
� � ��� with largest

preordernumber. Recallthatanorderedtreeis arootedtree
that hasbeenembeddedin the plane,that is, suchthat the
relativeorderof thechildrenis fixedfor eachnode.A forest
is asetof zeroor moredisjoint rootedtrees.Recallalsothat
two trees

���
and

���
areisomorphic,denotedby

����������
, if

they eitherareboth emptyor have identicalroot label and
thesubtreesrootedat correspondingchildrenof their roots
areisomorphic.

Only orderedtreeswill be consideredin the restof the
paper, in orderto easethecomparisonof thebottom-updis-
tancewith previousdistancemeasures.However, thenota-
tion, algorithms,andresultsaboutthe bottom-updistance
extendin a straightforwardway to unorderedtrees,andthe
algorithmsare given for orderedtreesand for unordered
treesaswell.

The restof the paperis organizedasfollows. Previous
distancemeasuresbetweenorderedtreesare reviewed in
Section2. In Section3, the new bottom-upmeasurebe-
tweenorderedtreesis introducedandits relationshipwith
the otherdistancemeasuresis established.Algorithms for
computingthebottom-updistancearegivenin Section4 in



full detail.Finally, Section5 presentssomeconclusions.

2 DistanceMeasuresbetweenTrees

Previous distancemeasuresfor comparingtreesarees-
sentially the generalizationto treesof the (weighted)edit
distancebetweenstrings[2, 6, 13, 23, 32]. The distance
betweentwo treesis givenby theshortestor the least-cost
sequenceof elementaryedit operations(insertion,substitu-
tion, anddeletionof labelednodes)thatallow to transform
onetreeinto the other. Despitetheir original definition in
termsof elementaryedit operations,distancemeasuresbe-
tweentreescanalsobestatedin termsof mappings.

2.1 Edit Operations,Edit Distance,andMappings

A mappingestablishesa one-to-onecorrespondencebe-
tweenthe nodesof two orderedtreeswhich preservesthe
orderof siblingsandancestors.Mappingswereintroduced
in [25] in orderto describehow a sequenceof edit opera-
tionstransformsa treeinto anotherone.

Definition 1. A mappingfrom a tree
���

to a tree
���

is a
set  of ordered pairs of integers 
��"!��#� , �$	%�
	%� � ,
�&	��$	'� � , satisfyingthe following conditions,for all

�� � !(� � �)!*
�� � !(� � ��+, :

- � � � � � if, andonly if, � � � � � ;
- � � � � � � is to the left of � � � � � � if, and only if, � � � � � � is to

theleft of � � � � � � ;
- � � � � � � is anancestorof � � � � � � if, andonly if, � � � � � � is an

ancestorof � � � � � � .
As amatterof fact,amappingfrom atree

�.�
to a tree

���
describestheeditoperationsthatallow to transform

���
into� �

. A node � � � ��� with no pair 
��"!(�/�0+1 is deletedfrom� �
, apair 
��"!(�/��+2 indicatesthesubstitutionof node� � � ���

by node � � � ��� , anda node � � � ��� with no pair 
3�4!(�#�5+� is
insertedinto

� �
.

Let  be a mappingfrom a tree
� �

to a tree
� �

, let 6
be the setof pairs 
��"!(�/�7+8 with � � � ��� and � � � ��� having
differentlabel, let 9 be the setof nodes� � � ��� with no pair

��"!��#�:+; , andlet < bethesetof nodes� � � ��� with no pair

��"!��#��+, . Thecostof mapping isgivenby = 6>= ?�@A= <�= B/@
= 9C= D , where? is the costof a non-identicalsubstitution,B
is the costof an insertion, D is the costof a deletion,and
thecostof identicalsubstitutionsis 0. It is usualto assume
unit cost[21, 29], wherethecostof identicalsubstitutions
is 0 andthecostof all othereditoperations(deletions,non-
identicalsubstitutions,andinsertions)is 1.

Example1. In the mapping  from tree
� �

to tree
� �

of
Figure 1, nodes � � �E���(!F� � � GH��!I� � � JK�(!F� � � LK�(!F� � �M�*NK� are mapped

to nodes � � �E���(!F� � � OK��!I� � � PK�(!F� � �QG*�(!F� � � JR� , respectively, nodes
� � � SH�(!F� � � TR��!I� � � UR�(!F� � � OH�(!F� � � PR� aredeletedfrom

� �
, andnodes

� � � SH�(!F� � � TR��!I� � � UR� are insertedinto
���

. Sincethere are � �WV
=  X= � �YN V O � O nodedeletions,no non-identicalsubsti-
tutions,and � �.V =  X= � J V O � T nodeinsertions,thecost
of the mappingis T�BZ@1OKD . Under the assumptionof unit
cost,thecostof mapping is 8.

D� �
[

\
]

[
[

^
^
^

_

D � �
[
[

^
^

^
^

_

Figure 1. Sample mapping.

Theedit distancebetweenorderedtreeswasintroduced
in [25], and an algorithm was given in [31] to com-
putethe distancebetweentwo orderedtrees

� �
and

� �
in` 
�� � � ��acb�d � �eacb�d � � � time. Theedit distanceproblemfor

unorderedtreeswasshown to beNP-completein [33].

Definition 2. The edit distancefrom tree
���

to tree
���

is
thecostof a least-costmappingbetween

���
and

���
.

2.2 Alignment Distance

Other distancemeasuresbetweentreesimposefurther
conditionson mappings.The alignmentdistancebetween
orderedtreeswas introducedin [14], wherean algorithm
was given to computethe distancebetweentwo ordered
trees

���
and

���
in
` 
3� � � � acb�d � � aEbfd � � � time, andwhere

thealignmentproblembetweenunorderedtreeswasshown
to beMAX SNP-hard.

Definition 3. A mappingis an alignmentif it can be ex-
tendedto an isomorphismbetweenthe underlying unla-
beledtreesafter insertinga leastnumberof nodesinto the
two trees.Thealignmentdistancefromtree

� �
to tree

� �
is

thecostof a least-costalignmentmappingbetween
� �

and� �
.

2.3 Isolated-SubtreeDistance

The isolated-subtreedistancebetweenorderedtreeswas
introducedin [26], wherean algorithmwasgiven to com-
putethe distancebetweentwo orderedtrees

���
and

���
in` 
�� � � � � time. Isolated-subtreemappingsalwaysmapdis-

joint subtreesto disjoint subtrees.



Definition 4. A mapping  from a tree
� �

to a tree
� �

is
isolated-subtreeif it satisfiesthefollowingcondition,for all

�� � !(� � �)!*
�� � !(� � ��+, :

- the rightmostnodeof
� � � � � � is to the left of � � � � � � if,

andonly if, therightmostnodeof
� � � � � � is to theleft of

� � � � � � .
Theisolated-subtreedistancefromtree

���
to tree

���
is the

cost of a least-costisolated-subtree mappingbetween
���

and
���

.

2.4 Top-Down Distance

The top-downdistancebetweenorderedtreeswasintro-
ducedin [19], andan algorithmwasgiven in [30] to com-
putethedistancebetweentwo trees

� �
and

� �
in
` 
3� � � � �

time. In a top-down mapping,the parentsof nodesin the
mappingarealsoin themapping.

Definition 5. A mapping  from a tree
���

to a tree
���

is
top-downif it satisfiesthe following condition, for all �"!(�
such that � � � ��� and � � � ��� are not the root of

� �
and

� �
, re-

spectively:

- if 
3�4!(�#��+� then 
 par
����)! par
E�#�I��+, .

Thetop-downdistancefromtree
� �

to tree
� �

is thecostof
a least-costtop-downmappingbetween

� �
and

� �
.

Example2. Themappingof Figure 2 betweenthetreesof
Example1 is an alignmentmappingand also an isolated-
subtreemappinganda top-downmapping.

D���
[

\
]

[
[

^
^
^

_

D ���
[
[

^
^

^
^

_

Figure 2. Sample alignment mapping whic h is
also isolated-subtree and top-do wn.

2.5 RelationshipbetweenDistanceMeasures

These distancemeasureswere related to each other
in [29], establishingthusa hierarchyamongtreeedit dis-
tances.

Lemma 1 (Wang,Zhang, 2001). Assumethat the cost of
identicalsubstitutionsis 0 andthecostof all otheredit op-
erationsis 1.

1. Let
���

and
���

be two treesand let  bean isolated-
subtree mappingfrom

� �
to
� �

. Then  is also an
alignmentmappingfrom

� �
to
� �

.

2. Let
� �

and
� �

be two treesand let  be a top-down
mappingfrom

� �
to
� �

. Then  is also an isolated-
subtreemappingfrom

� �
to
� �

.

Notice that every alignment is, by definition, a map-
ping. Thisyieldsahierarchyamongdistancemeasures[29],
where top-down mappingsare isolated-subtreemappings
which, in turn,arealignmentswhich, in turn,aremappings.

In thenext section,thebottom-updistanceis introduced
andits relationshipwith previous treeedit distancesis es-
tablished,completingtherebytheprevioushierarchy.

3 A Bottom-Up DistancebetweenTrees

Thebottom-updistancebetweenrootedtreeswasintro-
ducedin [28], wherean algorithm was given to compute
thedistancebetweentwo trees

� �
and

� �
, eitherorderedor

unordered,in expected̀ 
3� � @�� � � time. The bottom-up
distancebetweentwo non-emptyrootedtrees

� �
and

� �
is

equalto � VAg.hjilkKm 
3� � !I� � � , where
g

is thesizeof a largest
commonforestof

� �
and

� �
. Thealgorithmfor computing

the bottom-updistanceis basedon a simple and efficient
bottom-upalgorithm for finding all commonrooted sub-
treesin a forestin expected̀ 
�� � @n� � � time[27], which is
improvedin Section4 to takeworst-casè 
3� � @;� � � time.

A new definition of bottom-updistanceis given next
which is basedon mappings.A bottom-upmappingis an
isolated-subtreemappingin which thechildrenof nodesin
themappingarealsoin themapping.

Definition 6. An isolated-subtreemapping  from a tree� �
to a tree

� �
is bottom-upif it satisfiesthefollowing con-

dition:

- if 
3�"!��#��+� then 
3� � !�� � �)!poYopo.!*
���q/!��HqR��+2 
where � � � � � ��!YopoYo.!F� � � ��qY� are the children of node � � � ��� and
� � � � � �(!poYopo�!F� � � � q � are the children of node � � � ��� . Thebot-
tom-updistancefromtree

� �
to tree

� �
is thecostof a least-

costbottom-upmappingbetween
� �

and
� �

.

Example3. Themappingof Figure 3 betweenthetreesof
Examples1 and2 is thebottom-upmappingof largestsize
betweenthetwo trees.

Undertheassumptionof unit cost[21, 29], thebottom-
up distancebetweentwo treesclearly correspondsto the
largestbottom-upmappingbetweenthe trees.As a matter
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D ���
[
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_

Figure 3. Sample bottom-up mapping.

of fact, it sufficesthat thecostof identicalsubstitutionsbe
lessthanthe costof the otheredit operationsfor a largest
bottom-upmappingto correspondto theleast-costbottom-
up mapping. Similar relationshipsarealsoknown to hold
for theedit distancebetweengraphs[3, 4, 9].

Now, the bottom-updistanceturnsout to coincidewith
thetop-down distanceonly for isomorphictrees.

Lemma 2. Let
���

and
���

be two treesand let  be a
bottom-upmappingfrom

���
to
���

. If  is alsoa top-down
mappingfrom

� �
to
� �

, then
� � ���� �

.

Proof. Let
���

and
���

betwo trees,andlet  beamapping
from

�.�
to
���

which is bothtop-down andbottom-up.Let
also 
3�4!(�#��+, . Since  is a top-down mapping,all nodes
in thepathfrom � to the root of

���
arein  , andsince  

is alsoa bottom-upmapping,all nodesof thesubtreeof
� �

rootedat the root of
� �

, that is, all nodesof
� �

, arein  .
Therefore,

� � ���� �
.

Thereare,however, isolated-subtreemappingswhichare
neithertop-down norbottom-up,asshown by thefollowing
example.

Example4. Themappingof Figure 4 betweenthetreesof
Examples1 and2 is an isolated-subtreemappingwhich is
neithera top-downmappingnor a bottom-upmapping.

D� �
[

\
]

[
[

^
^
^

_

D � �
[
[

^
^

^
^

_

Figure 4. Sample isolated-subtree mapping
whic h is neither top-do wn nor bottom-up.

4 Computing the Bottom-Up Distance

The bottom-updistancebetweentwo treescorresponds
to the largestbottom-upmappingbetweenthetrees,which
in turn correspondsto the largestcommonforestbetween
the two trees. The latter is becausebottom-upmappings
areisolated-subtreemappings,andthuscorrespondto com-
mon forests. Therefore,the bottom-updistancebetween
two rootedtrees

� �
and

� �
canbecomputedin linear time

by thefollowing steps:

1. Obtainacompacteddirectedacyclic graphrepresenta-
tion r of theforest s consistingof thedisjoint union
of
� �

and
� �

, togetherwith a correspondencet be-
tweenthenodesof

� �
and

� �
andthenodesof r .

2. Extract a mapping  from
���

to
���

, accordingto
graph r andnodecorrespondencet .

3. Computethe bottom-updistancebetween
� �

and
� �

,
accordingto mapping .

Now, given a forest consistingof the disjoint union of
two rootedtrees

� �
and

� �
, the extendedsubtreeisomor-

phismproblem(finding all subtreesof
� �

that areisomor-
phic to eachsubtreeof

� �
) is equivalent to the extension

to forestsof the commonsubexpressionproblem: repre-
senta rootedtree in a maximally compactform as a di-
rectedacyclic graph,wherecommon(isomorphic)subtrees
arefactoredandshared.A solutionto any of theseproblems
yield alsoa largestcommonforestbetween

� �
and

� �
.

Definition 7. Let s be a forest. Thecompactedrepresen-
tation of s is a directedacyclicgraph r such that a node
� uf� of r is an equivalenceclassof nodesof s , where two
nodes] and u areequivalentif, andonly if, thesubtreeof s
rootedat ] andthesubtreeof s rootedat u areisomorphic,
andthere is a directededge fromnode � ] � to node � uf� in r
if, andonly if, thereexist nodes] and u in somerootedtree�

of s such that u is a child of ] in
�

.

Example5. Graph r of Figure5 is thecompacteddirected
acyclicgraphrepresentationof

���
and

���
. Thecorrespon-

dence t betweennodesof
�.�

and
���

and nodesof r is
given explicitely. Graph r is presentedwith nodesar-
ranged in bottom-uporder of non-decreasingheight, from
right to left.

The common subexpressionproblem was introduced
in [8], wherea rathercomplex, linear time algorithm for
orderedlabeledtreeswasgiven. The idea from [10] that
a procedurefor dynamicallymaintaininga global tableof
uniqueidentifiersallows thecompactedrepresentationof a
rootedtree to be determinedin expectedlinear time, was
exploited in [27] to give a simple algorithm for extended
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r

�STUOPGJL
�.� r �.� r ��� r ��� r ��� r
1 6 6 4 11 9 16 1 21 1
2 3 7 2 12 8 17 1 22 2
3 2 8 1 13 7 18 2 23 1
4 1 9 2 14 3 19 1 24 2
5 1 10 1 15 2 20 5 25 1

Figure 5. Compacted directed acyclic graph
representation of two rooted trees.

subtreeisomorphismthat also takesexpectedlinear time,
andis hereimprovedto take worst-caselinear time by ma-
nipulatingtherootedtreesin thegivenforestandcomparing
themwith thegraphrepresentationof theforestby meansof
a nodecorrespondence,insteadof computingisomorphism
codes.More complex algorithmsfor extendedsubtreeiso-
morphismareknown for ordered,labeledtrees[12] andfor
unordered,unlabeledtrees[7].

4.1 Computing the Compacted Dir ected Acyclic
Graph Representation

The algorithm given in Figure6 computesin time lin-
earin thenumberof nodesthecompacteddirectedacyclic
graphrepresentationr of a forest s consistingof the dis-
joint unionof two rootedtrees

���
and

���
, partitioningthus

the setof rootedsubtreesof
�.�

and
���

into isomorphism
equivalenceclasses.Theresultingcorrespondencebetween
nodesof thetreesandnodesof thegraphis returnedaspa-
rametert , amapof nodesof

� �
and

� �
to nodesof r .

The algorithmis basedon a bottom-uptraversalof the
trees, that is, a traversalof

� �
and

� �
by order of non-

decreasingheight. The nodesof
� �

and
� �

aredequeued

in bottom-uporder, andmappedto acorrespondingnodein
thecompacteddirectedacyclic graphrepresentationr right
upondequeuingthem.

Now, becauseof the bottom-uporder, the childrenof a
nodeof

�.�
or
���

beingconsideredwill alreadyhave been
mappedtonodesin r , whichallowstoeasilycheckwhether
thenodemustbemappedto somenodein r corresponding
to nodesin

���
or
���

of the sameheightasthe nodebeing
considered,or it mustbe mappedto a new nodein r . As
a matterof fact,noticethata node u in theforest s canbe
mappedto a node w in thegraph r beingbuilt, only if the
childrenof node u in s correspondone-to-oneto thechil-
drenof nodew in r . Sincegraphr isbuilt duringabottom-
up traversalof forest s , sucha correspondencemeansthat
thechildrenof node u in s will have beenmappedone-to-
oneto thechildrenof nodew in r , andthecorrespondence
canbe testedin time linear in the degreeof nodesu in s
or w in r . Furthermore,sincenode u in s canbemapped
to node w in r only if u and w have thesameheight,and
graph r is being built in order of non-decreasingheight,
only thosenodesw which werelastaddedto r needto be
consideredascandidateswhichnodeu couldbemappedto.
Alternativealgorithms[7, 8, 12], requireradixsortingof the
setof all nodesof r correspondingto nodesof s of same
heightasnodeu , in orderto obtaina lineartime algorithm.

Notice that, sincesomeorderingamongthe nodesof a
graphis fixedby any particularrepresentationof thegraph,
andgiventhatin thealgorithmin Figure6 only thosenodes
w which werelastaddedto graph r needto beconsidered
ascandidateswhichnodeu couldbemappedto, thereis no
needin line 21 to iterateoverall nodesof r andit suffices
to iterateover thosenodeswhich wherelast addedto r ,
that is, to iterateover all nodesof r in reverse(underthe
particularrepresentationusedin theimplementation)order.

Regardingtime complexity, eachof the � � nodesin
���

and � � nodesin
���

is enqueuedanddequeuedonly once
and for eachdequeuednode, only thosenodesin r (if
any) whosecorrespondingnodesin

� �
or
� �

havethesame
heightas the dequeuednodeareconsideredascandidates
which the dequeuednodecould be mappedto. For each
suchcandidatenode,a list of the nodesin r which the
childrenof the nodein

� �
or
� �

have beenmappedto is
comparedwith a list of thechildrenof thecandidatenode,
whereastheselistsarebothbuilt accordingto asamepartic-
ularorderingof nodesandedgesfixedby therepresentation
of r . Therefore,thenodesin r correspondingto all of the
nodesin

���
and

���
arefoundor addedin

` 
3� � @x� � � time.
Dealingwith unorderedtreesjustrequiressortingthelisty
of nodesin r which the childrenof node u in s have

beenmappedto, andthelist z of childrenof nodew in r ,
right beforethe

y � z equalitytest.Sortingtheselists of
nodescanbe madein time linear in the lengthof the lists
(thedegreeof node u in s , sameastheoutdegreeof node



procedurecompact(
� � ! � � : tree, r : graph,t : map)

1: let s bethedisjointunionof
� �

and
� �

2: let { beanemptymapof nodelabelsto nodesof r
3: for all leaf labels| in s do
4: adda new node} to r
5: ~E�f�4�p~�� }R����|
6: {�� |)�e��}
7: end for
8: let � beanemptyqueueof nodesof s
9: for all nodesu in s do

10: �"�#��~E�R�I����� uf�����K�v�����(���I�"�/� uf�
11: if �"�#��~E�R�I�p��� uf� � N then
12: enqueuenodeu into �
13: end if
14: end for
15: repeat
16: dequeuenodeu from �
17: if �R�v�(�f�����I�"�#� u�� � N then
18: t
� u�����{��E~E���"�p~�� uf�E�
19: else
20: ���K�v�e�l�'� k ac�I�
21: for all nodesw in r in reverseorderdo
22: if �����M�H�#�*� uf���� ���p�M�H�#�Y� wW� or �K�v�����(�R�4�4�/� u�����

�R�v�(�f�����I�"�/� w>� or ~c���"��~�� uf���� ~c���"��~I� wW� then
23: break
24: end if

25:
y �%�*t
� ] � = ] is a child of nodeu¢¡

26: z£�¤�Ht
� ] � = ] is a child of nodew�¡
27: if

y � z then
28: t
� uf����w
29: ���K�v���l�'¥I¦4§ �
30: break
31: end if
32: end for
33: if not foundthen
34: addanew nodew to r
35: t¨� uf����w
36: ~c���"��~I� wW�.�%~E�f�4�p~�� u��
37: �����M�H�#�*� w>���©�����M�H�#�*� uf�
38: for all children ] of nodeu do
39: addanew arcin r from w to t
� ] �
40: end for
41: end if
42: end if
43: if nodeu is not therootof a treein s then
44: �4�v��~E�K�4����� ª��R�I�p���p� u��c�����"�#��~c�K�I�p��� ª��K�4���¢�p� uf�c� V �
45: if �"�#��~E�R�I�p�«� ª��K�I�p���p� uf�E� � N then
46: enqueuenodeª��K�4���¢��� uf� into �
47: end if
48: end if
49: until thequeue� is empty

endprocedure

Figure 6. Computing the compacted directed acyclic graph representation of a forest, consisting of
the disjoint union of two rooted trees.

w in r ) usingbucketsort,for instanceon thenodenumber
in theactualrepresentationof r .

4.2 Computing the Bottom-Up Mapping

Given thecompacteddirectedacyclic graphrepresenta-
tion r of thedisjoint unionof two non-emptyrootedtrees� �

and
� �

, togetherwith a map t of nodesof
� �

and
� �

to nodesof r , a bottom-upmappingfrom
� �

to
� �

cor-
respondingto a largestcommonforestbetween

� �
and

� �
canbeobtainedby justcollectinganunmappedisomorphic
subtreein

���
for eachunmappedsubtreeof

�.�
duringapre-

ordertraversalof
�.�

. Althoughany unmappedisomorphic
subtreein

���
would do in the caseof unorderedtrees,for

orderedtreesthe leftmostone,that is, the onewhoseroot
hastheleastpreordernumberhasto betaken.

The algorithmgiven in Figure7 computesa bottom-up
mappingfrom arootedtree

���
to arootedtree

���
, giventhe

compacteddirectedacyclic graphrepresentationr of the
disjointunionof

� �
and

� �
, togetherwith thecorresponding

map t of nodesof
� �

and
� �

to nodesof r . Theresulting

bottom-upmappingis returnedasparameter , a mapof
nodesof

� �
to nodesof

� �
.

Correctnessof the algorithmfollows from the fact that
every largestunmappedsubtreeof

� �
isomorphicto a sub-

treeof
� �

will befoundduringa level-ordertraversalof
� �

,
uponwhich the whole subtreeof

� �
is mappedto the iso-

morphicsubtreeof
� �

found. Sucha mappingis madein
lines14–17duringa simultaneouspreordertraversalof the
two subtrees,althoughany kind of symultaneoustraversal
couldbeusedaslongasthetraversalis of thesamekind for
bothsubtrees.

Example6. The largest commonforest betweenrooted
trees

� �
and

� �
from Example5, as computedby the

bottom-upmappingalgorithm, is indicated by encircled
nodesin Figure8.

4.3 Computing the Bottom-Up Distance

Finally, thebottom-updistancebetweentwo rootedtrees
can be readily computedfrom a bottom-upmappingbe-
tween them. The (straightforward) algorithm given in



procedure mapping(
��� ! ��� : tree, r : graph, t : map,

 : map)
1: set  to anemptymapof nodes
2: let  ­¬

�
beanemptymapof nodes

3: for all nodesu of
� �

in level-orderdo
4: if  ®� u�� is undefinedthen
5: w1��� � � � � �
6: for all nodes] of

� �
with t
� ] � � t
� u�� do

7: if  ¬
�
� ] � is undefinedthen

8: if ªe�4�4�R�I���p��� ] ���
ªe�4�4�R�I���p�v� w>� then
9: w1� ]

10: end if
11: end if
12: end for
13: if t
� u�� � t¨� wW� then
14: for all nodes̄ of

��� � uf� and � of
��� � wW� in pre-

orderdo
15:  ®� ¯p�����
16:  ¬

�
� �(���©¯

17: end for
18: end if
19: end if
20: end for

endprocedure

Figure 7. Computing a bottom-up mapping
between two rooted trees.

Figure 9 computesthe bottom-updistancebetweentwo
non-emptyrooted trees

���
and

���
. A call of the form

�K�±°)�(�R�e�"�#
 � � ! � � !p�f!p�f!p�*� computesthe bottom-updistance
between

� �
and

� �
undertheassumptionof unit cost.

5 Conclusions

A new bottom-updistancemeasurebetweenrooted,la-
beledtrees,which is basedon thelargestcommonforestof
thetrees,is introducedin thispaperandcomparedwith pre-
viousdistancemeasurespublishedin theliterature:editdis-
tance,top-down distance,alignmentdistance,andisolated-
subtreedistance.The bottom-updistance,which is a par-
ticular caseof the isolated-subtreedistance,is shown to
coincidewith the top-down distanceonly for isomorphic
trees,extendingthusthe known hierarchyamongtreeedit
distances.The diagramin Fig. 10 illustratesthe inclusion
relationshipsamongthemappingsunderlyingthe different
distancemeasures.

Themainadvantageof thebottom-updistanceis thelow
complexity: it canbe computedin time linear in the size
of thetrees,on rooted,labeled,orderedtreesof unbounded
degree,andrathersimplealgorithmsaregivenfor comput-
ing the measure.Besides,the bottom-updistancehasthe

� �

P
T

S
�

�
U

S
�

S
�

� �

L
J

G
T

S
�

�
S
�

O
� S

�

S
�

Figure 8. A largest common forest between
two rooted trees.

1: function distance(
��� ! ��� : tree,?�!4B#!FD : real)

2: let r beanemptydirectedgraph
3: let t bea mapof nodesof

���
and

���
to nodesof r

4: let  bea mapof nodesof
� �

to nodesof
� �

5: �4�R²>ª����p�Y
 � � ! � � !4r³!Itx�
6: ²³�"ª�ªe���#�.
 � � ! � � !4r³!ItC!4 $�
7: ´µ��= � � = V =  X=
8: ¯¶��=·�/
3u¢!Iw¶�¸+, ¹=#~c���"��~I� uf���� ~E���"�p~�� wW��¡#=
9: �«��= � � = V =  X=

10: return ¯>º�?»@;��ºpB>@
´�ºpD
11: end function

Figure 9. Computing the bottom-up distance
between two rooted trees.

samelow complexity for unorderedtrees.Thesefactsturn
it into a suitablemeasurefor the direct comparisonof la-
beledtrees,aswell asa fastfilter for searchingin a metric
spaceof trees.
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