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Abstract

We survey the problem of comparing labeled trees based on simple

local operations of deleting, inserting, and relabeling nodes. These op-

erations lead to the tree edit distance, alignment distance, and inclusion

problem. For each problem we review the results available and present,

in detail, one or more of the central algorithms for solving the problem.

keywords tree matching, edit distance

1 Introduction

Trees are among the most common and well-studied combinatorial structures in
computer science. In particular, the problem of comparing trees occurs in several
diverse areas such as computational biology, structured text databases, image
analysis, automatic theorem proving, and compiler optimization [43, 55, 22, 24,
16, 35, 56]. For example, in computational biology, computing the similarity
between trees under various distance measures is used in the comparison of
RNA secondary structures [55, 18].

Let T be a rooted tree. We call T a labeled tree if each node is a assigned a
symbol from a fixed finite alphabet Σ. We call T an ordered tree if a left-to-right
order among siblings in T is given. In this paper we consider matching problems
based on simple primitive operations applied to labeled trees. If T is an ordered
tree these operations are defined as follows:

relabel Change the label of a node v in T .

delete Delete a non-root node v in T with parent v′, making the children of v

become the children of v′. The children are inserted in the place of v as a
subsequence in the left-to-right order of the children of v′.

∗This work is part of the DSSCV project supported by the IST Programme of the European
Union (IST-2001-35443).

1



(a) l1 l2

(b) l1 l1

l2

(b) l1 l1

l2

Figure 1: (a) A relabeling of the node label l1 to l2. (b) Deleting the node
labeled l2. (c) Inserting a node labeled l2 as the child of the node labeled l1.

insert The complement of delete. Insert a node v as a child of v′ in T making
v the parent of a consecutive subsequence of the children of v′.

Figure 1 illustrates the operations. For unordered trees the operations can be
defined similarly. In this case, the insert and delete operations works on a
subset instead of a subsequence. We define three problems based on the edit
operations. Let T1 and T2 be labeled trees (ordered or unordered).

Tree edit distance Assume that we are given a cost function defined on
each edit operation. An edit script S between T1 and T2 is a sequence of edit
operations turning T1 into T2. The cost of S is the sum of the costs of the
operations in S. An optimal edit script between T1 and T2 is an edit script
between T1 and T2 of minimum cost and this cost is the tree edit distance. The
tree edit distance problem is to compute the edit distance and a corresponding
edit script.
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Tree alignment distance Assume that we are given a cost function defined
on pair of labels. An alignment A of T1 and T2 is obtained as follows. First we
insert nodes labeled with spaces into T1 and T2 so that they become isomorphic
when labels are ignored. The resulting trees are then overlayed on top of each
other giving the alignment A, which is a tree where each node is labeled by a
pair of labels. The cost of A is the sum of costs of all pairs of opposing labels
in A. An optimal alignment of T1 and T2 is an alignment of minimum cost and
this cost is called the alignment distance of T1 and T2. The alignment distance
problem is to compute the alignment distance and a corresponding alignment.

Tree inclusion T1 is included in T2 if and only if T1 can be obtained by
deleting nodes from T2. The tree inclusion problem is to determine if T1 is
included in T2.

In this paper we survey each of these problems and discuss the results ob-
tained for them. For reference, Table 1 on page 27 summarizes most of the
available results. All of these and a few others are covered in the text. The
tree edit distance problem is the most general of the problems. The alignment
distance corresponds to a kind of restricted edit distance, while tree inclusion
is a special case of both the edit and alignment distance problem. Apart from
these simple relationships, interesting variations on the edit distance problem
has been studied leading to a more complex picture.

Both the ordered and unordered version of the problems are reviewed. For
the unordered case, it turns out that all of the problems in general are NP-hard.
Indeed, the tree edit distance and alignment distance problems are even MAX
SNP-hard [4]. However, under various interesting restrictions, or for special
cases, polynomial time algorithms are available. For instance, if we impose a
structure preserving restriction on the unordered tree edit distance problem,
such that disjoint subtrees are mapped to disjoint subtrees, it can be solved in
polynomial time. Also, unordered alignment for constant degree trees can be
solved efficiently.

For the ordered version of the problems polynomial time algorithms exists.
These are all based on the classic technique of dynamic programming (see, e.g.,
[9, Chapter 15]) and most of them are simple combinatorial algorithms. Recently
however, more advanced techniques such as fast matrix multiplication have been
applied to the tree edit distance problem [8].

The survey covers the problems in the following way. For each problem and
variations of it we review results for both the ordered and unordered version.
This will in most cases include a formal definition of the problem, a comparison
of the available results and a description of the techniques used to obtain the
results. More importantly, we will also pick one or more of the central algorithms
for each of the problems and present it in almost full detail. Specifically, we will
describe the algorithm, prove that it is correct, and analyze its time complexity.
For brevity, we will omit the proofs of a few lemmas and skip over some less
important details. Common for the algorithms presented in detail is that, in
most cases, they are the basis for more advanced algorithms. Typically, most
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of the algorithms for one of the above problems are refinements of the same
dynamic program.

The main technical contribution of this survey is to present the problems
and algorithms in a common framework. Hopefully, this will enable the reader
to gain a better overview and deeper understanding of the problems and how
they relate to each other. In the literature, there are some discrepancies in the
presentations of the problems. For instance, the ordered edit distance problem
was considered by Klein [25] who used edit operations on edges. He presented
an algorithm using a reduction to a problem defined on balanced parenthesis
strings. In contrast, Zhang and Shasha [55] gave an algorithm based on the
postorder numbering on trees. In fact, these algorithms share many features
which become apparent if considered in the right setting. In this paper we
present these algorithms in a new framework bridging the gap between the two
descriptions.

Another problem in the literature is the lack of an agreement on a definition
of the edit distance problem. The definition given here is by far the most studied
and in our opinion the most natural. However, several alternatives ending in
very different distance measures have been considered [30, 45, 38, 31]. In this
paper we review these other variants and compare them to our definition. We
should note that the edit distance problem defined here is sometimes referred
to as the tree-to-tree correction problem.

This survey adopts a theoretical point of view. However, the problems above
are not only interesting mathematical problems but they also occur in many
practical situations and it is important to develop algorithms that perform well
on real-life problems. For practical issues see, e.g., [49, 46, 40].

We restrict our attention to sequential algorithms. However, there has been
some research in parallel algorithms for the edit distance problem, e.g., [55, 53,
41].

This summarizes the contents of this paper. Due to the fundamental nature
of comparing trees and its many applications several other ways to compare
trees have been devised. In this paper, we have chosen to limit ourselves to a
handful of problems which we describe in detail. Other problems include tree
pattern matching [27, 10] and [16, 35, 56], maximum agreement subtree [19, 11],
largest common subtree [2, 20], and smallest common supertree [34, 13].

1.1 Outline

In Section 2 we give some preliminaries. In Sections 3, 4, and 5 we survey the
tree edit distance, alignment distance, and inclusion problems respectively. We
conclude in Section 6 with some open problems.

2 Preliminaries and notation

In this section we define notations and definitions we will use throughout the
paper. For a graph G we denote the set of nodes and edges by V (G) and E(G)
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respectively. Let T be a rooted tree. The root of T is denoted by root(T ). The
size of T , denoted by |T |, is |V (T )|. The depth of a node v ∈ V (T ), depth(v),
is the number of edges on the path from v to root(T ). The in-degree of a node
v, deg(v) is the number of children of v. We extend these definitions such that
depth(T ) and deg(T ) denotes the maximum depth and degree respectively of
any node in T . A node with no children is a leaf and otherwise an internal
node. The number of leaves of T is denoted by leaves(T ). We denote the parent
of node v by parent(v). Two nodes are siblings if they have the same parent.
For two trees T1 and T2, we will frequently refer to leaves(Ti), depth(Ti), and
deg(Ti) by Li, Di, and Ii, i = 1, 2.

Let θ denote the empty tree and let T (v) denote the subtree of T rooted
at a node v ∈ V (T ). If w ∈ V (T (v)) then v is an ancestor of w, and if w ∈
V (T (v))\{v} then v is a proper ancestor of w. If v is a (proper) ancestor of w

then w is a (proper) descendant of v. A tree T is ordered if a left-to-right order
among the siblings is given. For an ordered tree T with root v and children
v1, . . . , vi, the preorder traversal of T (v) is obtained by visiting v and then
recursively visiting T (vk), 1 ≤ k ≤ i, in order. Similarly, the postorder traversal
is obtained by first visiting T (vk), 1 ≤ k ≤ i, and then v. The preorder number
and postorder number of a node w ∈ T (v), denoted by pre(w) and post(w), is
the number of nodes preceding w in the preorder and postorder traversal of T

respectively. The nodes to the left of w in T is the set of nodes u ∈ V (T ) such
that pre(u) < pre(w) and post(u) < post(w). If u is to the left of w then w is
to the right of u.

A forest is a set of trees. A forest F is ordered if a left-to-right order among
the trees is given and each tree is ordered. Let T be an ordered tree and let
v ∈ V (T ). If v has children v1, . . . , vi define F (vs, vt), where 1 ≤ s ≤ t ≤ i, as
the forest T (vs), . . . , T (vr). For convenience, we set F (v) = F (v1, vi).

We assume throughout the paper that labels assigned to nodes are chosen
from a finite alphabet Σ. Let λ 6∈ Σ denote a special blank symbol and define
Σλ = Σ∪λ. We often define a cost function, γ : (Σλ ×Σλ)\(λ, λ) → R, on pairs
of labels. We will always assume that γ is a distance metric. That is, for any
l1,l2,l3 ∈ Σλ the following conditions are satisfied:

1. γ(l1, l2) ≥ 0, γ(l1, l1) = 0.

2. γ(l1, l2) = γ(l2, l1).

3. γ(l1, l3) ≤ γ(l1, l2) + γ(l2, l3).

3 Tree Edit Distance

In this section we survey the tree edit distance problem. Assume that we are
given a cost function defined on each edit operation. An edit script S between
two trees T1 and T2 is a sequence of edit operations turning T1 into T2. The
cost of S is the sum of the costs of the operations in S. An optimal edit script
between T1 and T2 is an edit script between T1 and T2 of minimum cost. This

5



f f a

d e d e c d

a

c

a b

d

b a b

(a) (b) (c)

Figure 2: Transforming (a) into (c) via editing operations. (a) A tree. (b) The
tree after deleting the node labeled c. (c) The tree after inserting the node
labeled c and relabeling f to a and e to d.

cost is called the tree edit distance, denoted by δ(T1, T2). An example of an edit
script is shown in Figure 2.

The rest of the section is organized as follows. First, in Section 3.1, we
present some preliminaries and formally define the problem. In Section 3.2 we
survey the results obtained for the ordered edit distance problem and present
two of the currently best algorithms for the problem. The unordered version
of the problem is reviewed in Section 3.3. In Section 3.4 we review results
on the edit distance problem when various structure-preserving constraints are
imposed. Finally, in Section 3.5 we consider some other variants of the problem.

3.1 Edit operations and edit mappings

Let T1 and T2 be labeled trees. Following [43] we represent each edit operation
by (l1 → l2), where (l1, l2) ∈ (Σλ × Σλ)\(λ, λ). The operation is a relabeling if
l1 6= λ and l2 6= λ, a deletion if l2 = λ, and an insertion if l1 = λ. We extend the
notation such that (v → w) for nodes v and w denotes (label(v) → label(w)).
Here, as with the labels, v or w may be λ. Given a metric cost function γ

defined on pairs of labels we define the cost of an edit operation by setting
γ(l1 → l2) = γ(l1, l2). The cost of a sequence S = s1, . . . , sk of operations is

given by γ(S) =
∑k

i=1 γ(si). The edit distance, δ(T1, T2), between T1 and T2 is
formally defined as:

δ(T1, T2) = min{γ(S) | S is a sequence of operations transforming T1 into T2}.

Since γ is a distance metric δ becomes a distance metric too.
An edit distance mapping (or just a mapping) between T1 and T2 is a rep-

resentation of the edit operations, which is used in many of the algorithms for
the tree edit distance problem. Formally, define the triple (M, T1, T2) to be an
ordered edit distance mapping from T1 to T2, if M ⊆ V (T1)×V (T2) and for any
pair (v1, w1), (v2, w2) ∈ M :

1. v1 = v2 iff w1 = w2. (one-to-one condition)

6



f a

d e c d

a

c d

b a b

Figure 3: The mapping corresponding to the edit script in Figure 2.

2. v1 is an ancestor of v2 iff w1 is an ancestor of w2. (ancestor condition)

3. v1 is to the left of v2 iff w1 is to the left of w2. (sibling condition)

Figure 3 illustrates a mapping that corresponds to the edit script in Figure 2. We
define the unordered edit distance mapping between two unordered trees as the
same, but without the sibling condition. We will use M instead of (M, T1, T2)
when there is no confusion. Let (M, T1, T2) be a mapping. We say that a node
v in T1 or T2 is touched by a line in M if v occurs in some pair in M . Let N1

and N2 be the set of nodes in T1 and T2 respectively not touched by any line in
M . The cost of M is given by:

γ(M) =
∑

(v,w)∈M

γ(v → w) +
∑

v∈N1

γ(v → λ) +
∑

w∈N2

γ(λ → w)

Mappings can be composed. Let T1, T2, and T3 be labeled trees. Let M1 and
M2 be a mapping from T1 to T2 and T2 to T3 respectively. Define

M1 ◦ M2 = {(v, w) | ∃u ∈ V (T2) such that (v, u) ∈ M1 and (u, w) ∈ M2}

With this definition it follows easily that M1 ◦ M2 itself becomes a mapping
from T1 to T3. Since γ is a metric, it is not hard to show that a minimum cost
mapping is equivalent to the edit distance:

δ(T1, T2) = min{γ(M) | (M, T1, T2) is an edit distance mapping}.

Hence, to compute the edit distance we can compute the minimum cost
mapping. We extend the definition of edit distance to forests. That is, for two
forests F1 and F2, δ(F1, F2) denotes the edit distance between F1 and F2. The
operations are defined as in the case of trees, however, roots of the trees in the
forest may now be deleted and trees can be merged by inserting a new root.
The definition of a mapping is extended in the same way.

3.2 General ordered edit distance

The ordered edit distance problem was introduced by Tai [43] as a general-
ization of the well-known string edit distance problem [48]. Tai presented an
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algorithm for the ordered version using O(|T1||T2||L1|
2|L2|

2) time and space.
Subsequently, Zhang and Shasha [55] gave a simple algorithm improving the
bounds to O(|T1||T2|min(L1, D1)min(L2, D2)) time and O(|T1||T2|) space. This
algorithm was modified by Klein [25] to get a better worst case time bound of
O(|T1|

2|T2| log |T2|)
1 under the same space bounds. We present the latter two

algorithms in detail below. Recently, Chen [8] has presented an algorithm using
O(|T1||T2|+ L2

1|T2|+ L2.5
1 L2) time and O((|T1|+ L2

1)min(L2, D2) + |T2|) space.
Hence, for certain kinds of trees the algorithm improves the previous bounds.
This algorithm is more complex than all of the above and uses results on fast
matrix multiplication. Note that in the above bounds we can exchange T1 with
T2 since the distance is symmetric.

3.2.1 A simple algorithm

We first present a simple recursion which will form the basis for the two dynamic
programming algorithms we present in the next two sections. We will only show
how to compute the edit distance. The corresponding edit script can be easily
obtained within the same time and space bounds. The algorithm is due to Klein
[25]. However, we should note that the presentation given here is somewhat
different. We believe that our framework is more simple and provides a better
connection to previous work.

Let F be a forest and v be a node in F . We denote by F − v the forest
obtained by deleting v from F . Furthermore, define F − T (v) as the forest
obtained by deleting v and all descendants of v. The following lemma provides
a way to compute edit distances for the general case of forests.

Lemma 1 Let F1 and F2 be ordered forests and γ be a metric cost function
defined on labels. Let v and w be the rightmost (if any) roots of the trees in F1

and F2 respectively. We have,

δ(θ, θ) = 0

δ(F1, θ) = δ(F1 − v, θ) + γ(v → λ)

δ(θ, F2) = δ(θ, F2 − w) + γ(λ → w)

δ(F1, F2) = min











δ(F1 − v, F2) + γ(v → λ)

δ(F1, F2 − w) + γ(λ → w)

δ(F1(v), F2(w)) + δ(F1 − T1(v), F2 − T2(w)) + γ(v → w)

Proof. The first three equations are trivially true. To show the last equation
consider a minimum cost mapping M between F1 and F2. There are three
possibilities for v and w:

Case 1: v is not touched by a line. Then (v, λ) ∈ M and the first case of the
last equation applies.

1Since the edit distance is symmetric this bound is in fact
O(min(|T1|2|T2| log |T2|, |T2|2|T1| log |T1|). For brevity we will use the short version.
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Case 2: w is not touched by a line. Then (λ, w) ∈ M and the second case of
the last equation applies.

Case 3: v and w are both touched by lines. We show that this implies (v, w) ∈
M . Suppose (v, h) and (k, w) are in M . If v is to the right of k then h

must be to right of w by the sibling condition. If v is a proper ancestor of
k then h must be a proper ancestor of w by the ancestor condition. Both
of these cases are impossible since v and w are the rightmost roots and
hence (v, w) ∈ M . By the definition of mappings the equation follows. �

Lemma 1 suggests a dynamic program. The value of δ(F1, F2) depends on
a constant number of subproblems of smaller size. Hence, we can compute
δ(F1, F2) by computing δ(S1, S2) for all pairs of subproblems S1 and S2 in order
of increasing size. Each new subproblem can be computed in constant time.
Hence, the time complexity is bounded by the number of subproblems of F1

times the number of subproblems of F2.
To count the number of subproblems, define for a rooted, ordered forest F

the (i, j)-deleted subforest, 0 ≤ i + j ≤ |F |, as the forest obtained from F by
first deleting the rightmost root repeatedly j times and then, similarly, deleting
the leftmost root i times. We call the (0, j)-deleted and (i, 0)-deleted subforests,
for 0 ≤ j ≤ |F |, the prefixes and the suffixes of F respectively. The number

of (i, j)-deleted subforests of F is
∑|F |

k=0 k = O(|F |2), since for each i there are
|F | − i choices for j.

It is not hard to show that all the pairs of subproblems S1 and S2 that can
be obtained by the recursion of Lemma 1 are deleted subforests of F1 and F2.
Hence, by the above discussion the time complexity is bounded by O(|F1|

2|F2|
2).

In fact, fewer subproblems are needed, which we will show in the next sections.

3.2.2 Zhang and Shasha’s algorithm

The following algorithm is due to Zhang and Shasha [55]. Define the keyroots
of a rooted, ordered tree T as follows:

keyroots(T ) = {root(T )} ∪ {v ∈ V (T ) | v has a left sibling}

The special subforests of T is the forests F (v), where v ∈ keyroots(T ). The
relevant subproblems of T with respect to the keyroots is the prefixes of all special
subforests F (v). In this section we refer to these as just the relevant subproblems.

Lemma 2 For each node v ∈ V (T ), F (v) is a relevant subproblem.

It is easy to see that, in fact, the subproblems that can occur in the above
recursion are either subforests of the form F (v), where v ∈ V (T ), or prefixes
of a special subforest of T . Hence, it follows by Lemma 2 and the definition
of a relevant subproblem, that to compute δ(F1, F2) it is sufficient to compute
δ(S1, S2) for all relevant subproblems S1 and S2 of T1 and T2 respectively.
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The relevant subproblems of a tree T can be counted as follows. For a node
v ∈ V (T ) define the collapsed depth of v, cdepth(v), as the number of keyroot
ancestors of v. Also, define cdepth(T ) as the maximum collapsed depth of all
nodes v ∈ V (T ).

Lemma 3 For an ordered tree T the number of relevant subproblems, with re-
spect to the keyroots is bounded by O(|T |cdepth(T )).

Proof. The relevant subproblems can be counted using the following expression:

∑

v∈keyroots(T )

|F (v)| <
∑

v∈keyroots(T )

|T (v)| =
∑

v∈V (T )

cdepth(v) ≤ |T |cdepth(T )

Since the number prefixes of a subforest F (v) is |F (v)| the first sum counts the
number of relevant subproblems of F (v). To prove the first equality note that
for each node v the number of special subforests containing v is the collapsed
depth of v. Hence, v contributes the same amount to the left and right side.
The other equalities/inequalities follow immediately. �

Lemma 4 For a tree T , cdepth(T ) ≤ min{depth(T ), leaves(T )}

Thus, using dynamic programming it follows that the problem can be solved in
time (and space) O(|T1||T2|min{D1, L1}min{D2, L2}). Furthermore, by care-
fully discarding distances between prefixes of special forests the space used in
the computation can be reduced to O(|T1||T2|). Hence,

Theorem 1 ([55]) For ordered trees T1 and T2 the edit distance problem can
be solved in time O(|T1||T2|min{D1, L1}min{D2, L2}) and space O(|T1||T2|).

3.2.3 Klein’s algorithm

In the worst case, that is for trees with linear depth and a linear number
of leaves, Zhang and Shasha’s algorithm of the previous section still requires
O(|T1|

2|T2|
2) time as the simple algorithm. In [25] Klein obtained a better worst

case time bound of O(|T1|
2|T2| log |T2|) while maintaining the same space bound

of O(|T1||T2|). It should be noted that the paper only states O(|T1|
2|T2| log |T2|)

as the space bound. However, it is straightforward to improve this to O(|T1||T2|)
[23].

The algorithm is based on an extension of the recursion in Lemma 1. The
main idea is to consider all of the O(|T1|

2) deleted subforests of T1 but only
O(|T2| log |T2|) deleted subforests of T2. In total the worst case number of
subproblems is thus reduced to the desired bound above.

A key concept in the algorithm is the decomposition of a rooted tree T into
disjoint paths called heavy paths. This technique was introduced by Harel and
Tarjan [15]. We define the size a node v ∈ V (T ) as |T (v)|. We classify each
node of T as either heavy or light as follows. The root is light. For each internal
node v we pick a child u of v of maximum size among the children of v and
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classify u as heavy. The remaining children are light. We call an edge to a light
child a light edge, and an edge to a heavy child a heavy edge. The light depth
of a node v, ldepth(v), is the number of light edges on the path from v to the
root.

Lemma 5 ([15]) For any tree T and any v ∈ V (T ), ldepth(v) ≤ log |T |+O(1).

By removing the light edges T is partitioned into heavy paths.
We define the relevant subproblems of T with respect to the light nodes below.

We will refer to these as relevant subproblems in this section. First fix a heavy
path decomposition of T . For a node v in T we recursively define the relevant
subproblems of F (v) as follows: F (v) is relevant. If v is not a leaf, let u be
the heavy child of v and let l and r be the number of nodes to the left and to
the right of u in F (v) respectively. Then, the (i, 0)-deleted subforests of F (v),
0 ≤ i ≤ l, and the (l, j)-deleted subforests of F (v), 0 ≤ j ≤ r are relevant
subproblems. Recursively, all relevant subproblems of F (u) are relevant.

The relevant subproblems of T with respect to the light nodes is the union
of all relevant subproblems of F (v) where v ∈ V (T ) is a light node.

Lemma 6 For an ordered tree T the number of relevant subproblems with re-
spect to the light nodes is bounded by O(|T | ldepth(T )).

Proof. Follows by the same calculation as in the proof of Lemma 3. �

Also note that Lemma 2 still holds with this new definition of relevant sub-
problems. Let S be a relevant subproblem of T and let vl and vr denote the
leftmost and rightmost root of S respectively. The difference node of S is either
vr if S−vr is relevant or vl if S−vl is relevant. The recursion of Lemma 1 com-
pares the rightmost roots. Clearly, we can also choose to compare the leftmost
roots resulting in a new recursion, which we will refer to as the dual of Lemma
1. Depending on which recursion we use, different subproblems occur. We now
give a modified dynamic program for calculating the tree edit distance. Let S1

be a deleted tree of T1 and let S2 be a relevant subproblem of T2. Let d be the
difference node of S2. We compute δ(S1, S2) as follows. There are two cases to
consider:

1. If d is the rightmost root of S2 compare the rightmost roots of S1 and S2

using Lemma 1.

2. If d is the leftmost root of S2 compare the leftmost roots of S1 and S2

using the dual of Lemma 1.

It is easy to show that in both cases the resulting smaller subproblems of S1

will all be deleted subforests of T1 and the smaller subproblems of S2 will all be
relevant subproblems of T2. Using a similar dynamic programming technique
as in the algorithm of Zhang and Shasha we obtain the following:

Theorem 2 ([25]) For ordered trees T1 and T2 the edit distance problem can
be solved in time O(|T1|

2|T2| log |T2|) and space O(|T1||T2|).
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Klein [25] also showed that his algorithm can be extended within the same
time and space bounds to the unrooted ordered edit distance problem between
T1 and T2, defined as the minimum edit distance between T1 and T2 over all
possible roots of T1 and T2.

3.3 General unordered edit distance

In the following section we survey the unordered edit distance problem. This
problem has been shown to be NP-complete [58, 50, 57] even for binary trees
with a label alphabet of size 2. The reduction is from the Exact Cover by
3-set problem [12]. Subsequently, the problem was shown to be MAX-SNP
hard [54]. Hence, unless P=NP there is no PTAS for the problem [4]. It was
shown in [58] that for special cases of the problem polynomial time algorithms
exists. If T2 has one leaf, i.e., T2 is a sequence, the problem can be solved
in O(|T1||T2|) time. More generally, there is an algorithm running in time
O(|T1||T2| + L2!3

L2(L3
2 + D2

1)|T1|). Hence, if the number of leaves in T2 is
logarithmic the problem can be solved in polynomial time.

3.4 Constrained edit distance

The fact that the general edit distance problem is difficult to solve has led to
the study of restricted versions of the problem. In [51, 52] Zhang introduced
the constrained edit distance, denoted by δc, which is defined as an edit distance
under the restriction that disjoint subtrees should be mapped to disjoint sub-
trees. Formally, δc(T1, T2) is defined as a minimum cost mapping (Mc, T1, T2)
satisfying the additional constraint, that for all (v1, w1), (v2, w2), (v3, w3) ∈ Mc:

• nca(v1, v2) is a proper ancestor of v3 iff nca(w1, w2) is a proper ancestor
of w3.

According to [29], Richter [37] independently introduced the structure re-
specting edit distance δs. Similar to the constrained edit distance, δs(T1, T2) is
defined as a minimum cost mapping (Ms, T1, T2) satisfying the additional con-
straint, that for all (v1, w1), (v2, w2), (v3, w3) ∈ Ms such that none of v1, v2, and
v3 is an ancestor of the others,

• nca(v1, v2) = nca(v1, v3) iff nca(w1, w2) = nca(w1, w3).

It is straightforward to show that both of these notions of edit distance
are equivalent. Henceforth, we will refer to them simply as the constrained edit
distance. As an example consider the mappings of Figure 4. (a) is a constrained
mapping since nca(v1, v2) 6= nca(v1, v3) and nca(w1, w2) 6= nca(w1, w3). (b) is
not constrained since nca(v1, v2) = v4 6= nca(v1, v3) = v5, while nca(w1, w2) =
w4 = nca(w1, w3). (c) is not constrained since nca(v1, v3) = v5 6= nca(v2, v3),
while nca(w1, w3) = v5 6= nca(w2, w3) = w4.

In [51, 52] Zhang presents algorithms for computing minimum cost con-
strained mappings. For the ordered case he gives an algorithm using O(|T1||T2|)
time and for the unordered case he obtains a running time of O(|T1||T2|(I1 +

12



v5 w5

(a)

v4 w4

v1
v2

v3

w1
w2

w3

v5 w4

(b)

v4

v1
v2

v3

w1

w2 w3

v5 w5

(c)

v4 w4

v1
v2

v3

w1
w2

w3

Figure 4: (a) A mapping which is constrained and less-constrained. (b) A
mapping which is less-constrained but not constrained. (c) A mapping which is
neither constrained nor less-constrained.

I2) log(I1 + I2)). Both use space O(|T1||T2|). The idea in both algorithms is
similar. Due to the restriction on the mappings fewer subproblem need to be
considered and a faster dynamic program is obtained. In the ordered case the
key observation is a reduction to the string edit distance problem. For the
unordered case the corresponding reduction is to a maximum matching prob-
lem. Using an efficient algorithm for computing a minimum cost maximum flow
Zhang obtains the time complexity above. Richter presented an algorithm for
the ordered constrained edit distance problem, which uses O(|T1||T2|I1I2) time
and O(|T1|D2I2) space. Hence, for small degree, low depth trees this algorithm
gives a space improvement over the algorithm of Zhang.

Recently, Lu et al. [29] introduced the less-constrained edit distance, δl,
which relaxes the constrained mapping. The requirement here is that for all
(v1, w1), (v2, w2), (v3, w3) ∈ Ml such that none of v1, v2, and v3 is an ancestor
of the others,

• depth(nca(v1, v2)) ≥ depth(nca(v1, v3)) and also nca(v1, v3) = nca(v2, v3)
if and only if depth(nca(w1, w2)) ≥ depth(nca(w1, w3)) and nca(w1, w3) =
nca(w2, w3).

13



For example, consider the mappings in Figure 4. (a) is less-constrained be-
cause it is constrained. (b) is not a constrained mapping, however the mapping
is less-constrained since depth(nca(v1, v2)) > depth(nca(v1, v3)), nca(v1, v3) =
nca(v2, v3), nca(w1, w2) = nca(w1, w3), and nca(w1, w3) = nca(w2, w3). (c) is
not a less-constrained mapping since depth(nca(v1, v2)) > depth(nca(v1, v3))
and nca(v1, v3) = nca(v2, v3), while nca(w1, w3) 6= nca(w2, w3)

In the paper [29] an algorithm for the ordered version of the less-constrained
edit distance problem using O(|T1||T2|I

3
1I3

2 (I1+I2)) time and space is presented.
For the unordered version, unlike the constrained edit distance problem, it is
shown that the problem is NP-complete. The reduction used is similar to the one
for the unordered edit distance problem. It is also reported that the problem is
MAX SNP-hard. Furthermore, it is shown that there is no absolute approxima-
tion algorithm2 for the unordered less-constrained edit distance problem unless
P=NP.

3.5 Other variants

In this section we survey results for other variants of edit distance. Let T1 and
T2 be rooted trees. The unit cost edit distance between T1 and T2 is defined
as the number of edit operations needed to turn T1 into T2. In [41] the or-
dered version of this problem is considered and a fast algorithm is presented.
If u is the unit cost edit distance between T1 and T2 the algorithm runs in
O(u2 min{|T1|, |T2|}min{L1, L2}) time. The algorithm uses techniques from
Ukkonen [47] and Landau and Vishkin [28].

In [38] Selkow considered an edit distance problem where insertions and
deletions are restricted to leaves of the trees. This edit distance is sometimes
referred to as the 1-degree edit distance. He gave a simple algorithm using
O(|T1||T2|) time and space. Another edit distance measure where edit operations
work on subtrees instead of nodes was given by Lu [30]. A similar edit distance
was given by Tanaka in [45, 44]. A short description of Lu’s algorithm can be
found in [42].

4 Tree Alignment Distance

In this section we consider the alignment distance problem. Let T1 and T2

be rooted, labeled trees and let γ be a metric cost function on pairs of labels
as defined in Section 2. An alignment A of T1 and T2 is obtained by first
inserting nodes labeled with λ (called spaces) into T1 and T2 so that they become
isomorphic when labels are ignored, and then overlaying the first augmented tree
on the other one. The cost of a pair of opposing labels in A is given by γ. The
cost of A is the sum of costs of all opposing labels in A. An optimal alignment

2An approximation algorithm A is absolute if there exists a constant c > 0 such that for
every instance I, |A(I) − OPT (I)| ≤ c, where A(I) and OPT (I) are the approximate and
optimal solutions of I respectively [33].
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of T1 and T2, is an alignment of T1 and T2 of minimum cost. We denote this cost
by α(T1, T2). Figure 5 shows an example (from [18]) of an ordered alignment.

a a (a, a)

e d b f (e, λ) (λ, f)

b c c d (b, b) (c, λ) (λ, c) (d, d)

(a) (b) (c)

Figure 5: (a) Tree T1. (b) Tree T2. (c) An alignment of T1 and T2.

The tree alignment distance problem is a special case of the tree editing
problem. In fact, it corresponds to a restricted edit distance where all insertions
must be performed before any deletions. Hence, δ(T1, T2) ≤ α(T1, T2). For
instance, assume that all edit operations have cost 1 and consider the example
in Figure 1. The optimal sequence of edit operations is achieved by deleting the
node labeled e and then inserting the node labeled f . Hence, the edit distance
is 2. The optimal alignment, however, is the tree depicted in (c) with a value
of 4. It is a well known fact that edit and alignment distance are equivalent in
terms of complexity for sequences, see, e.g., Gusfield [14]. However, for trees
this is not true which we will show in the following sections. In Section 4.1 and
Section 4.2 we survey the results for the ordered and unordered tree alignment
distance problem respectively.

4.1 Ordered tree alignment distance

In this section we consider the ordered tree alignment distance problem. Let T1

and T2 be two rooted, ordered and labeled trees. The ordered tree alignment
distance problem was introduced by Jiang et al. in [18]. The algorithm presented
there uses O(|T1||T2|(I1 + I2)

2) time and space. Hence, for small degree trees,
this algorithm is in general faster than the best known algorithm for the edit
distance. We present this algorithm in detail in the next section. Recently, in
[17], a new algorithm was proposed designed for similar trees. Specifically, if
there is an optimal alignment of T1 and T2 using at most s spaces the algorithm
computes the alignment in time O((|T1|+ |T2|) log(|T1|+ |T2|)(I1 +I2)

4s2). This
algorithm works in a way similar to the fast algorithms for comparing similar
sequences, see, e.g., Section 3.3.4 in [39]. The main idea is to speedup the
algorithm of Jiang et al. by only considering subtrees of T1 and T2 whose sizes
differ by at most O(s).

15



4.1.1 Jiang, Wang, and Zhang’s algorithm

In this section we present the algorithm of Jiang et al. [18]. We only show how
to compute the alignment distance. The corresponding alignment can easily be
constructed within the same complexity bounds. Let γ be a metric cost function
on the labels. For simplicity, we will refer to nodes instead of labels, that is,
we will use (v, w) for nodes v and w to mean (label(v), label(w)). Here, v or w

may be λ. We extend the definition of α to include alignments of forests, that
is, α(F1, F2) denotes the cost of an optimal alignment of forest F1 and F2.

Lemma 7 Let v ∈ V (T1) and w ∈ V (T2) with children v1, . . . , vi and w1, . . . , wj

respectively. Then,

α(θ, θ) = 0

α(T1(v), θ) = α(F1(v), θ) + γ(v, λ)

α(θ, T2(w)) = α(θ, F2(w)) + γ(λ, w)

α(F1(v), θ) =

i
∑

k=1

α(T1(vk), θ)

α(θ, F2(w)) =

j
∑

k=1

α(θ, T2(wk))

Lemma 8 Let v ∈ V (T1) and w ∈ V (T2) with children v1, . . . , vi and w1, . . . , wj

respectively. Then,

α(T1(v), T2(w)) = min











α(F1(v), F2(w)) + γ(v, w)

α(θ, T2(w)) + min1≤r≤j{α(T1(v), T2(wr)) − α(θ, T2(wr)}

α(T1(v), θ) + min1≤r≤i{α(T1(vr), T2(w)) − α(T1(vr), θ)}

Proof. Consider an optimal alignment A of T1(v) and T2(w). There are four
cases: (1) (v, w) is a label in A, (2) (v, λ) and (k, w) are labels in A for some
k ∈ V (T1), (3) (λ, w) and (v, h) are labels in A for some h ∈ V (T2) or (4) (v, λ)
and (λ, w) are in A. Case (4) need not be considered since the two nodes can
be deleted and replaced by the single node (v, w) as the new root. The cost of
the resulting alignment is by the triangle inequality at least as small.

Case 1: The root of A is labeled by (v, w). Hence,

α(T1(v), T2(w)) = α(F1(v), F2(w)) + γ(v, w)

Case 2: The root of A is labeled by (v, λ). Hence, k ∈ V (T1(ws)) for some
1 ≤ r ≤ i. It follows that,

α(T1(v), T2(w)) = α(T1(v), θ) + min
1≤r≤i

{α(T1(vr), T2(w)) − α(T1(vr), θ)}

Case 3: Symmetric to case 2. �
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Lemma 9 Let v ∈ V (T1) and w ∈ V (T2) with children v1, . . . , vi and w1, . . . , wj

respectively. For any s, t such that 1 ≤ s ≤ i and 1 ≤ t ≤ j,

α(F1(v1, vs), F2(w1, wt)) = min























































α(F1(v1, vs−1), F2(w1, wt−1)) + α(T1(vs), T2(wt))

α(F1(v1, vs−1), F2(w1, wt)) + α(T1(vs), θ)

α(F1(v1, vs), F2(w1, wt−1)) + α(θ, T2(wt))

γ(λ, wt) + min
1≤k<s

{α(F1(v1, vk−1), F2(w1, wt−1))

+ α(F1(vk, vs), F2(wk))}
γ(vs, λ) + min

1≤k<t
{α(F1(v1, vs−1), F2(w1, wk−1))

+ α(F1(vs), F2(wk, wt))}

Proof. Consider an optimal alignment A of F1(v1, vs) and F2(w1, wt). The
root of the rightmost tree in A is labeled either (vs, wt), (vs, λ) or (λ, wt).

Case 1: The label is (vs, wt). Then the rightmost tree of A must be an optimal
alignment of T1(vs) and T2(wt). Hence,

α(F1(v1, vs), F2(w1, wt)) = α(F1(v1, vs−1), F2(w1, wt−1))+α(T1(vs), T2(wt)).

Case 2: The label is (vs, λ). Then T1(vs) is a aligned with a subforest F2(wt−k+1, wt),
where 0 ≤ k ≤ t. The following subcases can occur:

2.1 (k = 0). T1(vs) is aligned with F2(wt−k+1, wt) = θ. Hence,

α(F1(v1, vs), F2(w1, wt)) = α(F1(v1, vs−1), F2(w1, wt))+α(T1(vs), θ).

2.2 (k = 1). T1(vs) is aligned with F2(wt−k+1, wt) = T2(wt). Similar to
case 1.

2.3 (k ≥ 2). The most general case. It is easy to see that:

α(F1(v1, vs), F2(w1, wt)) = γ(vs, λ) + min
1≤r<t

{α(F1(v1, vs−1), F2(w1, wk−1)))

+ α(F1(vs), F2(wk, wt)).

Case 3: The label is (λ, wt). Symmetric to case 2. �

This recursion can be used to construct a bottom-up dynamic programming
algorithm. Consider a fixed pair of nodes v and w with children v1, . . . , vi and
w1, . . . , wj respectively. We need to compute the values α(F1(vh, vk), F2(w))
for all 1 ≤ h ≤ k ≤ i, and α(F1(v), F2(wh, wk)) for all 1 ≤ h ≤ k ≤ j. That
is, we need to compute the optimal alignment of F1(v) with each subforest of
F2(w) and, on the other hand, compute the optimal alignment of F2(w) with
each subforest of F1(v). For any s and t, 1 ≤ s ≤ i and 1 ≤ t ≤ j, define the
set:

As,t = {α(F1(vs, vp), F2(wt, wq)) | s ≤ p ≤ i, t ≤ q ≤ j}
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To compute the alignments described above we need to compute As,1 and A1,t

for all 1 ≤ s ≤ i and 1 ≤ t ≤ j. Assuming that values for smaller subproblems
are known it is not hard to show that As,t can be computed, using Lemma 9, in
time O((i−s) · (j− t) · (i−s+ j− t)) = O(ij(i+ j)). Hence, the time to compute
both of As,1 and A1,t, 1 ≤ s ≤ i and 1 ≤ t ≤ j, is bounded by O(ij(i + j)2). It
follows that the total time needed for all nodes v and w is bounded by:

∑

v∈V (T1)

∑

w∈V (T2)

O(deg(v) deg(w)(deg(v) + deg(w))2)

≤
∑

v∈V (T1)

∑

w∈V (T2)

O(deg(v) deg(w)(deg(T1) + deg(T2))
2)

≤ O((I1 + I2)
2

∑

v∈V (T1)

∑

w∈V (T2)

deg(v) deg(w))

≤ O(|T1||T2|(I1 + I2)
2)

In summary, we have shown the following theorem.

Theorem 3 ([18]) For ordered trees T1 and T2, the tree alignment distance
problem can be solved in O(|T1||T2|(I1 + I2)

2) time and space.

4.2 Unordered tree alignment distance

The algorithm presented above can be modified to handle the unordered version
of the problem in a straightforward way [18]. If the trees have bounded degrees
the algorithm still runs in O(|T1|T2|) time. This should be seen in contrast
to the edit distance problem which is MAX SNP-hard even if the trees have
bounded degree. If one tree has arbitrary degree unordered alignment becomes
NP-hard [18]. The reduction is, as for the edit distance problem, from the Exact
Cover by 3-Sets problem [12].

5 Tree Inclusion

In this section we survey the tree inclusion problem. Let T1 and T2 be rooted,
labeled trees. We say that T1 is included in T2 if there is a sequence of delete
operations performed on T2 which makes T2 isomorphic to T1. The tree inclusion
problem is to decide if T1 is included in T2. Figure 6(a) shows an example of
an ordered inclusion. The tree inclusion problem is a special case of the tree
edit distance problem: If insertions all have cost 0 and all other operations have
cost 1, then T1 can be included in T2 if and only if δ(T1, T2) = 0. According
to [7] the tree inclusion problem was initially introduced by Knuth [26][exercise
2.3.2-22].

The rest of the section is organized as follows. In Section 5.1 we give some
preliminaries and in Section 5.2 and 5.3 we survey the known results on ordered
and unordered tree inclusion respectively.
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f

f d e

(a) b e a

c

b

f

f d e

(b) b e a

c

b

Figure 6: (a) The tree on the left is included in the tree on the right by deleting
the nodes labeled d, a and c. (b) The embedding corresponding to (a).

5.1 Orderings and embeddings

Let T be a labeled, ordered, and rooted tree. We define an ordering of the nodes
of T given by v ≺ v′ iff post(v) < post(v′). Also, v � v′ iff v ≺ v′ or v = v′.
Furthermore, we extend this ordering with two special nodes ⊥ and ⊤ such that
for all nodes v ∈ V (T ), ⊥ ≺ v ≺ ⊤. The left relatives, lr(v), of a node v ∈ V (T )
is the set of nodes that are to the left of v and similarly the right relatives, rr(v),
are the set of nodes that are to the right of v.

Let T1 and T2 be rooted labeled trees. We define an ordered embedding
(f, T1, T2) as an injective function f : V (T1) → V (T2) such that for all nodes
v, u ∈ V (T1),

• label(v) = label(f(v)). (label preservation condition)

• v is an ancestor of u iff f(v) is an ancestor of f(u). (ancestor condition)

• v is to the left of u iff f(v) is to the left of f(u). (sibling condition)

Hence, embeddings are special cases of mappings (see Section 3.1). An unordered
embedding is defined as above, but without the sibling condition. An embedding
(f, T1, T2) is root preserving if f(root(T1)) = root(T2). Figure 6(b) shows an
example of a root preserving embedding.

5.2 Ordered tree inclusion

Let T1 and T2 be rooted, ordered and labeled trees. The ordered tree inclu-
sion problem has been the attention of much research. Kilpeläinen and Man-
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nila [22] (see also [21]) presented the first polynomial time algorithm using
O(|T1||T2|) time and space. Most of the later improvements are refinements
of this algorithm. We present this algorithm in detail in the next section.
In [21] a more space efficient version of the above was given using O(|T1|D2)
space. In [36] Richter gave an algorithm using O(|ΣT1

||T2| + mT1,T2
D2) time,

where ΣT1
is the alphabet of the labels of T1 and mT1,T2

is the set matches,
defined as the number of pairs (v, w) ∈ T1 × T2 such that label(v) = label(w).
Hence, if the number of matches is small the time complexity of this algorithm
improves the (|T1||T2|) algorithm. The space complexity of the algorithm is
O(|ΣT1

||T2| + mT1,T2
). In [7] a more complex algorithm was presented using

O(L1|T2|) time and O(L1 min{D2, L2}) space. In [3] an efficient average case
algorithm was given.

5.2.1 Kilpeläinen and Mannila’s algorithm

In this section we present the algorithm of Kilpeläinen and Mannila [22] for the
ordered tree inclusion problem. Let T1 and T2 be ordered labeled trees. Define
R(T1, T2) as the set of root-preserving embeddings of T1 into T2. We define
ρ(v, w), where v ∈ V (T1) and w ∈ V (T2):

ρ(v, w) = min
≺

({w′ ∈ rr(w) | ∃f ∈ R(T1(v), T2(w
′))} ∪ {⊤})

Hence, ρ(v, w) is the closest right relative of w which has a root-preserving
embedding of T1(v). Furthermore, if no such embedding exists ρ(v, w) is ⊤.
It is easy to see that, by definition, T1 can be included in T2 if and only if
ρ(v,⊥) 6= ⊤. The following lemma shows how to search for root preserving
embeddings.

Lemma 10 Let v be a node in T1 with children v1, . . . , vi. For a node w in
T2, define a sequence p1, . . . , pi by setting p1 = ρ(v1, max≺ lr(w)) and pk =
ρ(vk, pk−1), for 2 ≤ k ≤ i. There is a root preserving embedding f of T1(v) in
T2(v) if and only if label(v) = label(w) and pi ∈ T2(w), for all 1 ≤ k ≤ i.

Proof. If there is a root preserving embedding between T1(v) and T2(w) it is
straightforward to check that there is a sequence pi, 1 ≤ i ≤ k such that the
conditions are satisfied. Conversely, assume that pk ∈ T2(w) for all 1 ≤ k ≤ i

and label(v) = label(w). We construct a root-preserving embedding f of T1(v)
into T2(w) as follows. Let f(v) = w. By definition of ρ there must be a root
preserving embedding fk, 1 ≤ k ≤ i, of T1(vk) in T2(pk). For a node u in T1(vk),
1 ≤ k ≤ i, we set f(u) = fk(u). Since pk ∈ rr(pk−1), 2 ≤ k ≤ i, and pk ∈ T2(w)
for all k, 1 ≤ k ≤ i, it follows that f is indeed a root-preserving embedding. �

Using dynamic programming it is now straightforward to compute ρ(v, w)
for all v ∈ V (T1) and w ∈ V (T2). For a fixed node v we traverse T2 in reverse
postorder. At each node w ∈ V (T2) we check if there is a root preserving
embedding of T1(v) in T2(w). If so we set ρ(v, q) = w, for all q ∈ lr(w) such
that x � q, where x is the next root-preserving embedding of T1(v) in T2(w).

20



For a pair of nodes v ∈ V (T1) and w ∈ V (T2) we test for a root-preserving
embedding using Lemma 10. Assuming that values for smaller subproblems has
been computed, the time used is O(deg(v)). Hence, the contribution to the total
time for the node w is

∑

v∈V (T1) O(deg(v)) = O(|T1|). It follows that the time

complexity of the algorithm is bounded by O(|T1||T2|). Clearly, only O(|T1||T2|)
space is needed to store ρ. Hence, we have the following theorem,

Theorem 4 ([22]) For any pair of rooted, labeled, and ordered trees T1 and
T2, the tree inclusion problem can be solved in O(|T1||T2|) time and space.

5.3 Unordered tree inclusion

In [22] it is shown that the unordered tree inclusion problem is NP-complete.
The reduction used is from the Satisfiability problem [12]. Independently, Ma-
toušek and Thomas [32] gave another proof of NP-completeness.

An algorithm for the unordered tree inclusion problem is presented in [22]
using O(|T1|I12

2I1 |T2|) time. Hence, if I1 is constant the algorithm runs in
O(|T1||T2|) time and if I1 = log |T2| the algorithm runs in O(|T1| log |T2||T2|

3).

6 Conclusion

We have surveyed the tree edit distance, alignment distance, and inclusion prob-
lems. Furthermore, we have presented, in our opinion, the central algorithms
for each of the problems. There are several open problems, which may be the
topic of further research. We conclude this paper with a short list proposing
some directions.

• For the unordered versions of the above problems some are NP-complete
while others are not. Characterizing exactly which types of mappings
that gives NP-complete problems for unordered versions would certainly
improve the understanding of all of the above problems.

• The currently best worst case upper bound on the ordered tree edit dis-
tance problem is the algorithm of [25] using O(|T1|

2|T2| log |T2|). Con-
versely, the quadratic lower bound for the longest common subsequence
problem [1] problem is the best general lower bound for the ordered tree
edit distance problem. Hence, a large gap in complexity exists which needs
to be closed.

• Several meaningful edit operations other than the above may be considered
depending on the particular application. Each set of operations yield a
new edit distance problem for which we can determine the complexity.
Some extensions of the tree edit distance problem have been considered
[6, 5, 24].
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Tree edit distance
variant type time space reference
general O O(|T1||T2|D

2
1D

2
2) O(|T1||T2|D

2
1D

2
2) [43]

general O O(|T1||T2|min(L1, D1)min(L2, D2)) O(|T1||T2|) [55]
general O O(|T1|

2|T2| log |T2|) O(|T1||T2|) [25]
general O O(|T1||T2| + L2

1|T2| + L2.5
1 L2) O((|T1| + L2

1)min(L2, D2) + |T2|) [8]
general U MAX SNP-hard [54]

constrained O O(|T1||T2|) O(|T1||T2|) [51]
constrained O O(|T1||T2|I1I2) O(|T1||D2I2) [37]
constrained U O(|T1||T2|(I1 + I2) log(I1 + I2)) O(|T1||T2|) [52]

less-constrained O O(|T1||T2|I
3
1I3

2 (I1 + I2)) O(|T1||T2|I
3
1I3

2 (I1 + I2)) [29]
less-constrained U MAX SNP-hard [29]

unit-cost O O(u2 min(|T1|, |T2|)min(L1, L2)) O(|T1||T2|) [41]
1-degree O O(|T1||T2|) O(|T1||T2|) [38]

Tree alignment distance
general O O(|T1||T2|(I1 + I2)

2) O(|T1||T2|(I1 + I2)
2) [18]

general U MAX SNP-hard [18]
similar O O((|T1| + |T2|) log(|T1| + |T2|)(I1 + I2)

4s2) O((|T1| + |T2|) log(|T1| + |T2|)(I1 + I2)
4s2) [17]

Tree inclusion
general O O(|T1||T2|) O(|T1|min(D2L2)) [21]
general O O(|ΣT1

||T2| + mT1,T2
D2) O(|ΣT1

||T2| + mT1,T2
) [36]

general O O(L1|T2|) O(L1 min(D2L2)) [7]
general U NP-hard [22, 32]

Table 1: Results for the tree edit distance, alignment distance, and inclusion problem listed according to variant. Di, Li, and
Ii denotes the depth, the number of leaves, and the maximum degree respectively of Ti, i = 1, 2. The type is either O for
ordered or U for unordered. The value u is the unit cost edit distance between T1 and T2 and the value s is the number of
spaces in the optimal alignment of T1 and T2. The value ΣT1

is set of labels used in T1 and mT1,T2
is the number of pairs of

nodes in T1 and T2 which have the same label.
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