[grfia]
+ General Information
+ Members
+ Research
+ Intranet

PRAIg '17 / +pics

[]



AERFAI Summer School on Deep Learning

[]

Alicante July 5-6, 2017

10th international workshop on Machine Learning and Music

[]

Barcelona: 6th October 2017

Pertusa Ibáñez, Antonio Jorge

Contratado Doctor

Go to the Staff page

In this page: contact : research : publications : links

No foto available
Contact:
  Department of Software and Computing Systems.
  University of Alicante.
  E-03080 Alicante.
  Spain

  E-mail:    pertusa at dlsi.ua.es
  Telephone: +34 96 5903400 ext. 2972

Other pages: Teaching, Personal

Research:

Curriculum Vitae:not available yet

Research Interests:Signal processing and machine learning techniques (mainly deep learning) applied to computer vision and music information retrieval tasks.

Projects:

Publications:
Search pubs:

Select a year : all : [2017] : 2016 : 2013 : 2012 : 2011 : 2010 : 2009 : 2008 : 2007 : 2006 : 2005 : 2004 : 2003

  1. Alacid, B.; Gallego, A-J.; Gil, P.; Pertusa, A.
    "Oil Slicks Detection in SLAR Images with Autoencoders"
    5th International Symposium on Sensor Science, Barcelona, Spain (2017)
    : bibtex : more info : url
  2. Calvo-Zaragoza, J.: Pertusa, A.; Oncina, J.
    "Staff-line detection and removal using a convolutional neural network"
    Machine Vision and Applications, pp. 1-10 (2017)
    : bibtex : more info : URL
  3. Calvo-Zaragoza, J.; Gallego, A.-J.; Pertusa, A.
    "Recognition of Handwritten Music Symbols with Convolutional Neural Codes"
    14th IAPR International Conference on Document Analysis and Recognition (ICDAR), pp. 691--696, Kyoto, Japan (2017)
    : bibtex : more info
  4. Calvo-Zaragoza, J.; Valero-Mas, J.J.; Pertusa, A
    "End-To-End Optical Music Recognition using Neural Networks"
    Proc. of International Society for Music Information Retrieval Conference (ISMIR), Suzhou, China (2017)
    : bibtex : more info : pdf
  5. Pertusa, A; Gallego, A.-J; Bernabeu, M.
    "MirBot, a collaborative object recognition system for smartphones using convolutional neural networks"
    arXiv:1706.02889 (2017)
    : bibtex : more info : URL
Links:
Accessed 103915 times since: 2004-10-06
Last updated: 2003-02-16
Valid XHTML 1.0!Valid CSS!